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Abstract

We establish a class of improved relaxed positive-definite and skew-Hermitian splitting

(IRPSS) preconditioners for saddle point problems. These preconditioners are easier to

be implemented than the relaxed positive-definite and skew-Hermitian splitting (RPSS)

preconditioner at each step for solving the saddle point problem. We study spectral prop-

erties and the minimal polynomial of the IRPSS preconditioned saddle point matrix. A

theoretical optimal IRPSS preconditioner is also obtained. Numerical results show that

our proposed IRPSS preconditioners are superior to the existing ones in accelerating the

convergence rate of the GMRES method for solving saddle point problems.
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1. Introduction

We consider the iterative solution of large sparse saddle point problems of the form

Au ≡

[
A BT

−B 0

] [
x

y

]
=

[
f

g

]
≡ b, (1.1)

where A ∈ R
n×n is a positive definite matrix, B ∈ R

m×n (m ≤ n) has full row rank, x, f ∈ R
n

and y, g ∈ R
m. Under these assumptions we know that the saddle point matrixA is nonsingular

and the linear system (1.1) has a unique solution; see [1] for a general discussion about the

nonsingularity of block two-by-two matrices. The saddle point problem (1.1) arises from many

scientific computing and engineering applications [2], such as constrained optimization and

constrained least-squares problem [3], computational fluid dynamics [4,5], data interpolation [6],

element-free Galerkin discretization of elasticity problem [7–9]. The linear system (1.1) is also

termed as a Karsh-Kahn-Tucker (KKT) system, an augmented system or an equilibrium system.
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There exists many efficient methods for solving saddle point problems, such as the null

space method, the coupled direct solver, the stationary iterative method, the Krylov subspace

method, and so on; see [2] for more details. The Krylov subspace method is one of the most

effective methods for solving large sparse systems of linear equations [10]. However, when the

Krylov subspace method is applied to solve the saddle point problem (1.1), it often converges

very slowly and an efficient preconditioner is needed to achieve rapid convergence. One way to

construct preconditioner is by matrix splitting iterative methods. For solving the saddle point

problem (1.1), the Uzawa-like iteration methods [2] and the Hermitian and skew-Hermitian

splitting (HSS)-like iteration methods [11–13] are two classes of efficient iterative methods,

which lead to the block diagonal and block triangular preconditioners [14–16] and the HSS-like

preconditioners [12, 13], respectively.

Let

A =

[
A BT

−B 0

]
=

[
H 0

0 0

]
+

[
S BT

−B 0

]
= H + S

be the Hermitian and skew-Hermitian splitting of the matrix A, where H = 1
2 (A + AT ) and

S = 1
2 (A − AT ) are the symmetric and the skew-symmetric parts of the (1,1) block matrix

A, respectively. Applying the HSS iteration method proposed in [11], Benzi and Golub [13]

proposed the HSS preconditioner

PHSS =
1

2α

[
αI +H 0

0 αI

] [
αI + S BT

−B αI

]
(1.2)

for the saddle point problem (1.1), where α is a real positive parameter and I is the identity

matrix of suitable dimension. The HSS preconditioner (1.2) is induced by the stationary HSS

iteration method
{

(αI +H)uk+ 1

2 = (αI − S)uk + b,

(αI + S)uk+1 = (αI −H)uk+ 1

2 + b,
k = 0, 1, 2, . . . .

It is noted that Bai et al. [11] first proposed the HSS iteration method for solving non-Hermitian

positive definite linear systems and they proved the unconditionally convergent property of this

method. Then Benzi and Golub [13] applied the HSS iteration method to the saddle point

problem (1.1) and proved that it is also unconditionally convergent for (1.1). There are several

variants of the HSS iteration method in recent years; see [17–21]. Spectral properties of the

HSS preconditioned matrices as well as the optimal parameters can be found in [22–27].

The HSS iteration method is a two-half steps iteration method. The first step is easy to

solve since αI +H is symmetric positive definite. However, the second step is difficult to solve

since the coefficient matrix αI+S has the same structure as the original saddle point matrix A

and the (1,1) block of the matrix αI+S is also nonsymmetric. Based on the idea of the positive-

definite and skew-Hermitian splitting (PSS) iteration method [28], Pan et al. [29] proposed a

deteriorated PSS (DPSS) preconditioner

P̃DPSS =
1

2α

[
αI +A 0

0 αI

] [
αI BT

−B αI

]

for the saddle point problem (1.1). When A is Hermitian, the DPSS preconditioner is the

same as the HSS preconditioner. When A is non-Hermitian, the DPSS preconditioner is easier
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to be implemented than the HSS preconditioner. Theoretical analyses in [20, 29, 30] indicate

that the corresponding DPSS iteration method is unconditionally convergent and the DPSS

preconditioned matrix has a clustered eigenvalue distribution. When the matrix P̃DPSS is used

as a preconditioner, the pre-factor has no effect on the preconditioned system. So we can replace
1
2α by 1

α
. Now, the DPSS preconditioner becomes

PDPSS =
1

α

[
αI +A 0

0 αI

] [
αI BT

−B αI

]
=

[
αI +A (I + 1

α
A)BT

−B αI

]
. (1.3)

As a preconditioner, it is expected to be close to the coefficient matrix as much as possible.

From (1.1) and (1.3), we can see that the difference between the saddle point matrix A and the

DPSS preconditioner PDPSS is given by

RDPSS = PDPSS −A =

[
αI 1

α
ABT

0 αI

]
.

We find that only the (2,1) block ofRDPSS is zero and an ideal parameter α should be chosen to

balance the diagonal and the off-diagonal parts. To get a better approximation, by removing the

(1,1) block of RDPSS , Zhang et al. [31] proposed a relaxed positive-definite and skew-Hermitian

splitting (RPSS) preconditioner

PRPSS =
1

α

[
A 0

0 αI

] [
αI (I + αA−1)BT

−B αI

]
=

[
A (I + 1

α
A)BT

−B αI

]
(1.4)

for the saddle point problem (1.1). The relaxed technique has also been studied for other HSS-

like preconditioners [9, 32, 33]. Numerical results in [31] show that the RPSS preconditioned

matrix P−1
RPSSA has more clustered eigenvalue distribution than the DPSS preconditioned ma-

trix P−1
DPSSA and the RPSS preconditioned GMRES method needs less iteration steps than

the DPSS preconditioned GMRES method. Recently, a generalized RPSS preconditioner is

presented for the saddle point problem (1.1) [34]. However, when these RPSS preconditioners

are used to accelerate convergence of Krylov subspace methods, it is necessary to solve a linear

subsystem with the coefficient matrix like αI + 1
α
BBT + BA−1BT at each iteration. This is

expensive due to the existing of the Schur complement matrix.

In this paper, based on ideas of the RPSS preconditioner and the inexact preconditioners

studied in [15], we propose an improved relaxed positive-definite and skew-Hermitian splitting

(IRPSS) preconditioner for the saddle point problem (1.1), which is much easier to be imple-

mented than the RPSS preconditioner. Some properties including the eigenvalue distribution,

the eigenvector distribution and the minimal polynomial of the IRPSS preconditioned matrix

are studied. By choosing an appropriate preconditioning matrix, we can obtain a more clustered

eigenvalue distribution of the IRPSS preconditioned saddle point matrix and a theoretical op-

timal IRPSS preconditioner. Numerical results show that the IRPSS preconditioners are more

effective than the RPSS preconditioner when they are used to accelerate Krylov subspace meth-

ods for solving the saddle point problem (1.1).

The outline of this paper is as follows. In Section 2, we propose an IRPSS preconditioner

for saddle point problem (1.1). In Section 3, some properties of the IRPSS preconditioned

matrix are studied in detail and a theoretical optimal IRPSS preconditioner is obtained. In

Section 4, numerical experiments are given to show the effectiveness of the proposed IRPSS

preconditioners. Finally, we end this paper with a few concluding remarks in Section 5.
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2. The Improved RPSS Preconditioner

When the RPSS preconditioner PRPSS in (1.4) is used to accelerate Krylov subspace meth-

ods such as GMRES for solving the saddle point problem (1.1), the following generalized residual

equation needs to be solved at each iteration

PRPSSz =

[
A (I + 1

α
A)BT

−B αI

] [
z1

z2

]
=

[
r1

r2

]
= r, (2.1)

where z1, r1 ∈ R
n and z2, r2 ∈ R

m. According to the procedure in [31], we can first do the

matrix factorization for the RPSS preconditioner

PRPSS =
1

α

[
A 0

0 αI

] [
I 0

− 1
α
B I

] [
αI 0

0 C

] [
I ( 1

α
I +A−1)BT

0 I

]
,

where C = αI + 1
α
BBT +BA−1BT . Then we obtain the following algorithm to solve (2.1).

Algorithm 2.1. Let z = [zT1 , zT2 ]
T and r = [rT1 , rT2 ]

T be the current and the generalized

residual vectors, respectively, with r1, z1 ∈ R
n and r2, z2 ∈ R

m. We can solve the linear

system PRPSSz = r (2.1) by the following procedure:

(1) solve At1 = r1;

(2) solve Cz2 = Bt1 + r2;

(3) compute t2 = BT z2 and solve Az̃1 = t2;

(4) compute z1 = t1 −
1
α
t2 − z̃1.

From Algorithm 2.1, we see that there are two linear systems with the same coefficient

matrix A and one linear system with the coefficient matrix C = αI+ 1
α
BBT +BA−1BT needed

to be solved. If the matrix A is symmetric positive definite, then we can use the sparse Cholesky

decomposition or the conjugate gradient method to solve the linear system. If the matrix A

is nonsymmetric positive definite, then the sparse LU decomposition can be used. However, it

is difficult to solve the linear system with the coefficient matrix C = αI + 1
α
BBT +BA−1BT .

The computation of the coefficient matrix αI + 1
α
BBT +BA−1BT is expensive due to existing

of the Schur complement matrix BA−1BT .

In order to effectively implement the RPSS preconditioner, we propose an improved relaxed

positive-definite and skew-Hermitian splitting (IRPSS) preconditioner as follows

PIRPSS =
1

α

[
A 0

0 αI

] [
I 0

− 1
α
B I

] [
αI 0

0 Ĉ

][
I ( 1

α
I +A−1)BT

0 I

]

=

[
A (I + 1

α
A)BT

−B Ĉ −B( 1
α
I +A−1)BT

]
, (2.2)

where Ĉ ∈ R
m×m is a nonsingular matrix. Here, we expect that the matrix Ĉ is chosen such

that the linear system with the coefficient matrix Ĉ is easy to be solved and the IRPSS pre-

conditioned saddle point matrix P−1
IRPSSA has more clustered eigenvalue distribution. Similar



Improved Relaxed Positive-Definite and Skew-Hermitian Splitting Preconditioners 99

to Algorithm 2.1, we obtain the following algorithm to implement the IRPSS preconditioner,

which is equivalent to solving a sequence of generalized residual equations

PIRPSSz =

[
A (I + 1

α
A)BT

−B Ĉ −B( 1
α
I +A−1)BT

] [
z1

z2

]
=

[
r1

r2

]
= r, (2.3)

where z1, r1 ∈ R
n and z2, r2 ∈ R

m.

Algorithm 2.2. Let z = [zT1 , zT2 ]
T and r = [rT1 , rT2 ]

T be the current and the generalized

residual vectors, respectively, with r1, z1 ∈ R
n and r2, z2 ∈ R

m. We can solve the linear

system PIRPSSz = r in (2.3) by the following procedure:

(1) solve At1 = r1;

(2) solve Ĉz2 = Bt1 + r2;

(3) compute t2 = BT z2 and solve Az̃1 = t2;

(4) compute z1 = t1 −
1
α
t2 − z̃1.

Comparing Algorithm 2.2 with Algorithm 2.1, we find that only the second step is different.

Note that the matrix Ĉ here is not an approximation to the matrix C = αI+ 1
α
BBT +BA−1BT .

We can choose an appropriate matrix Ĉ such that the IRPSS preconditioned matrix P−1
IRPSSA

has clustered eigenvalue distribution and at the same time the IRPSS preconditioner is easy

to be implemented. For example, let Ĉ be an approximate matrix of BA−1BT according to

theoretical analysis in Section 3. Hence, the IRPSS preconditioner is not an inexact variant of

the RPSS preconditioner.

3. Properties of the IRPSS Preconditioned Matrix

In this section, we derive some properties of the IRPSS preconditioned matrix P−1
IRPSSA.

The following theorem describes the eigenvalue distribution of the preconditioned matrix

P−1
IRPSS A.

Theorem 3.1. Let A ∈ R
n×n be a positive definite matrix, B ∈ R

m×n have full row rank

and α be a positive constant. Let the IRPSS preconditioner PIRPSS be defined as in (2.2).

Then the IRPSS preconditioned matrix P−1
IRPSSA has an eigenvalue 1 with multiplicity n, and

the remaining m eigenvalues are the eigenvalues of the matrix Ĉ−1BA−1BT . Furthermore, if

Ĉ = BA−1BT , then all eigenvalues of the preconditioned matrix P−1
IRPSSA are 1.

Proof. By the matrix factorization of the IRPSS preconditioner in (2.2), we get

P−1
IRPSS =

[
A−1 − ( 1

α
I +A−1)BT Ĉ−1BA−1 −( 1

α
I +A−1)BT Ĉ−1

Ĉ−1BA−1 Ĉ−1

]
.

Then it holds that

P−1
IRPSSA =

[
I A−1BT − ( 1

α
I +A−1)BT Ĉ−1BA−1BT

0 Ĉ−1BA−1BT

]
. (3.1)
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From (3.1) we immediately obtain that the preconditioned matrix P−1
IRPSSA has an eigen-

value 1 with multiplicity n, and the remaining m eigenvalues are the eigenvalues of the matrix

Ĉ−1BA−1BT .

Furthermore, if Ĉ = BA−1BT , then the IRPSS preconditioned matrix has the following

structure

P−1
IRPSSA =

[
I − 1

α
BT

0 I

]
, (3.2)

which implies that all eigenvalues of the preconditioned matrix P−1
IRPSSA are 1. �

Remark 3.1. Theorem 3.1 presents an ideal eigenvalue distribution when Ĉ = BA−1BT .

However, it is not practical in actual computation. In this remark, we give further results about

the remaining m eigenvalues of the preconditioned matrix P−1
IRPSSA for a general symmetric

positive definite matrix Ĉ.

• If A ∈ R
n×n is symmetric positive definite, then the Schur complement matrix BA−1BT ∈

R
m×m is also symmetric positive definite. Assume that the smallest and the largest

eigenvalues of BA−1BT are ξ1 and ξm, respectively. Let Ĉ ∈ R
m×m be symmetric positive

definite and its smallest and largest eigenvalues are µ1 and µm, respectively. Then the

remaining m eigenvalues of the preconditioned matrix are located in the positive real

interval [ ξ1

µm

,
ξm

µ1

]
.

• If A ∈ R
n×n is nonsymmetric positive definite. Further assume that all eigenvalues of the

Schur complement matrix BA−1BT are enclosed in the rectangle [ξ1, ξm]× [−η, η]. Let

Ĉ ∈ R
m×m be symmetric positive definite and its smallest and largest eigenvalues are µ1

and µm, respectively. Then the remaining m eigenvalues of the preconditioned matrix are

located in [ ξ1

µm

,
ξm

µ1

]
×
[
−

η

µ1
,
η

µ1

]
.

From the block structure of the preconditioned matrix P−1
IRPSSA, we can obtain the minimal

polynomial of the preconditioned matrix P−1
IRPSSA, which is presented in the following theorem.

Theorem 3.2. Let the IRPSS preconditioner PIRPSS be defined as in (2.2). Then both the

degree of the minimal polynomial of the preconditioned matrix P−1
IRPSSA and the dimension of

the Krylov subspace K(P−1
IRPSSA, b) are at most m + 1. Furthermore, if Ĉ = BA−1BT , then

the minimal polynomial of the preconditioned matrix P−1
IRPSSA is (λ − 1)2.

Proof. Let Θ1 = Ĉ−1BA−1BT and Θ2 = A−1BT − ( 1
α
I + A−1)BT Ĉ−1BA−1BT . Then

from (3.1) the preconditioned matrix P−1
IRPSSA can be rewritten as

P−1
IRPSSA =

[
I Θ2

0 Θ1

]
,

which is a block upper triangular matrix with the (1,1) block being an identity matrix.

Let λi (i = 1, · · · , m) be the eigenvalues of Θ1. The characteristic polynomial of the matrix

P−1
IRPSSA is

Φ(λ) = det(P−1
IRPSSA− λI) = (−1)m+n(λ− 1)n

m∏

i=1

(λ− λi).
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By expanding the (m+ 1)-degree polynomial (λ− 1)
m∏
i=1

(λ− λi), we have

(P−1
IRPSSA− I)

m∏

i=1

(P−1
IRPSSA− λiI) =




0 Θ2

m∏
i=1

(Θ1 − λiI)

0 (Θ1 − I)
m∏
i=1

(Θ1 − λiI)


 .

Since λi (i = 1 · · ·m) are the eigenvalues of Θ1 ∈ R
m×m, by Hamilton-Cayley theorem the

equality
m∏
i=1

(Θ1 − λiI) = 0 holds. Therefore, the degree of the minimal polynomial of the

preconditioned matrix P−1
IRPSSA is at most m + 1. From [35, Proposition 6.1], we know that

the dimension of the Krylov subspace K (P−1
IRPSSA, b) is equal to the degree of the minimal

polynomial of the corresponding preconditioned matrix P−1
IRPSSA. So, the dimension of the

Krylov subspace K(P−1
IRPSSA, b) is at most m+ 1, too.

Moreover, if Ĉ = B A−1BT , then it follows from (3.2) that the preconditioned matrix

P−1
IRPSSA is a block upper triangular matrix with block diagonal matrices being the identity

matrix. Therefore, we obtain the minimal polynomial of the preconditioned matrix P−1
IRPSS

A. �

From Theorems 3.1 and 3.2, we find that the theoretical optimal IRPSS preconditioner is

the one when Ĉ = BA−1BT . For this case, we denote it by

POIRPSS =
1

α

[
A 0

0 αI

] [
I 0

− 1
α
B I

] [
αI 0

0 BA−1BT

] [
I ( 1

α
I +A−1)BT

0 I

]

=

[
A BT + 1

α
ABT

−B − 1
α
BBT

]
. (3.3)

As discussed in Remark 3.1, the optimal IRPSS preconditioner is difficult to be implemented

although nice properties of the preconditioned matrix P−1
OIRPSSA are shown in Theorems 3.1

and 3.2. Therefore, in actual computation, we should choose the preconditioning matrix Ĉ

which is an approximation to the Schur complement matrix BA−1BT . Numerical behavior of

two choices of the preconditioning matrix Ĉ will be shown in Section 4.

The termination of a Krylov subspace method is not only related to the location of the

eigenvalues, but also to the number of corresponding linearly independent eigenvectors. The

following theorem describes the eigenvector distribution of the IRPSS preconditioned matrix.

Theorem 3.3. Let the IRPSS preconditioner PIRPSS be defined as in (2.2). Then the pre-

conditioned matrix P−1
IRPSSA has n + i (0 ≤ i ≤ m) linearly independent eigenvectors. There

are

• n eigenvectors

[
u1
p

0

]
(p = 1, 2, · · · , n) that correspond to the eigenvalue 1, where u1

p

(p = 1, 2, · · · , n) are arbitrary linearly independent vectors.

• i (0 ≤ i ≤ m) eigenvectors

[
u2
p

v2p

]
(0 ≤ p ≤ i) that correspond to nonunit eigenvalues,

where v2p 6= 0, BA−1BT v2p = λĈv2p and u2
p = [ λ

α(1−λ)I −A−1]BT v2p.
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Proof. Let λ be an eigenvalue of the preconditioned matrix P−1
IRPSSA and

[
u

v

]
be the

corresponding eigenvector. From (3.1) we get the following eigenvalue problem
[

I A−1BT − ( 1
α
I +A−1)BT Ĉ−1BA−1BT

0 Ĉ−1BA−1BT

][
u

v

]
= λ

[
u

v

]
,

which is equal to
{
(1− λ)u = ( 1

α
I +A−1)BT Ĉ−1BA−1BT v −A−1BT v,

BA−1BT v = λĈv.
(3.4)

Substituting the second equation into the first equation in (3.4), we obtain that

(1− λ)u = (λ − 1)A−1BT v +
λ

α
BT v. (3.5)

If λ = 1, then from (3.5) we have

BT v = 0.

Since B has full row rank, v is a zero vector for this case. Therefore, there are n linearly

independent eigenvectors

[
u1
p

0

]
(p = 1, 2, · · · , n) that correspond to the eigenvalue 1, where

u1
p (p = 1, 2, · · · , n) are arbitrary linearly independent vectors.

If λ 6= 1, then from (3.5) we have

u =

[
λ

α(1 − λ)
I −A−1

]
BT v.

It must be v 6= 0. Otherwise, v = 0 implies that u = 0, which contradicts with

[
u

v

]
being

an eigenvector. When there exists any v 6= 0 which satisfies the second equation in (3.4), there

will be i (0 ≤ i ≤ m) eigenvectors

[
u2
p

v2p

]
(0 ≤ p ≤ i) that correspond to nonunit eigenvalues,

where v2p 6= 0 are the eigenvectors of the generalized eigenvalue problem of the second equation

in (3.4) and u2
p = [ λ

α(1−λ) I −A−1]BT v2p.

Now, we show that the n+i eigenvectors are linearly independent. Let a1 =
[
a11 · · · a1n

]T

and a2 =
[
a21 · · · a2i

]T
be two vectors. Then we need to show that

[
u1
1 · · · u1

n

0 · · · 0

]



a11
...

a1n


+

[
u2
1 · · · u2

i

v21 · · · v2i

]



a21
...

a2i


 = 0 (3.6)

holds true if and only if the vectors ak (k = 1, 2) are zero vectors. In (3.6), the first matrix

consists of the eigenvectors corresponding to the eigenvalue 1 and the second matrix consists of

the eigenvectors corresponding to the nonunit eigenvalues. By multiplying P−1
IRPSSA on both

sides of (3.6), we have

[
u1
1 · · · u1

n

0 · · · 0

]



a11
...

a1n


+

[
u2
1 · · · u2

i

v21 · · · v2i

]



λ1a
2
1

...

λia
2
i


 = 0. (3.7)
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Subtracting (3.6) from (3.7), we obtain

[
u2
1 · · · u2

i

v21 · · · v2i

]



(λ1 − 1)a21
...

(λi − 1)a2i


 = 0.

Since λi 6= 1 and

[
u2
p

v2p

]
(p = 1, · · · , i) are linearly independent, we know that a2p = 0 (p =

1, · · · , i). As u1
p (p = 1, · · · , n) are linearly independent, from (3.7) we have a1p = 0 (p =

1, · · · , n). Therefore, the preconditioned matrix P−1
IRPSSA has n + i (0 ≤ i ≤ m) linearly

independent eigenvectors. �

Since the optimal IRPSS preconditioner (3.3) is a special case of the IRPSS preconditioner,

we directly obtain the following Corollary for the eigenvector distribution of the optimal IRPSS

preconditioned matrix P−1
OIRPSSA.

Corollary 3.1. Let the optimal IRPSS preconditioner POIRPSS be defined as in (3.3). Then

the preconditioned matrix P−1
OIRPSSA has n linearly independent eigenvectors

[
u1
p

0

]
(p =

1, 2, · · · , n), where u1
p (p = 1, 2, · · · , n) are arbitrary linearly independent vectors.

4. Numerical Experiments

In this section, we use three test problems to verify the feasibility and effectiveness of the

IRPSS preconditioners for the saddle point problem (1.1). The first and the second test prob-

lems are standard saddle point problems with the (1,1) block matrix A being symmetric positive

definite. The third test problem is a nonsymmetric saddle point problem with the (1,1) block

matrix A being nonsymmetric positive definite. We compare the IRPSS preconditioners with

the DPSS preconditioner in (1.3), the RPSS preconditioner in (1.4) and the RDPSS precondi-

tioner in [33] from aspects of numbers of total iteration steps (denoted by ‘IT’) and elapsed CPU

times in seconds (denoted by ‘CPU’). In actual computations, we use the left preconditioned

GMRES method. Numerical results of the GMRES method without preconditioning are also

listed, which show advantages of the preconditioning techniques.

In our implementations, the initial guess is chosen to be the zero vector and the iteration is

terminated if the current iteration satisfies

ERR =
‖b−Auk‖2

‖b‖2
≤ 10−6.

To accelerate the convergence rate of GMRES, we can choose the IRPSS preconditioner ac-

cording to the preconditioning matrix Ĉ. Besides the optimal choice Ĉ = BA−1BT , we use

other two choices of Ĉ which are Ĉ = 1
α
BBT and Ĉ = 1

α
BÂ−1BT with Â = diag(A). The

corresponding IRPSS preconditioners are denoted by

PIRPSS1
=

1

α

[
A 0

0 αI

] [
I 0

− 1
α
B I

] [
αI 0

0 1
α
BBT

] [
I ( 1

α
I +A−1)BT

0 I

]
, (4.1)

PIRPSS2
=

1

α

[
A 0

0 αI

] [
I 0

− 1
α
B I

] [
αI 0

0 1
α
BÂ−1BT

][
I ( 1

α
I +A−1)BT

0 I

]
. (4.2)
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In all these preconditioners, the parameter α is involved. To implement these preconditioners

efficiently, we need to choose the parameter α appropriately. By making use of the techniques

studied in [36], the following estimates

αDPSS =

√
‖A‖F · ‖B‖F

‖In‖F + ‖Im‖F
and αRPSS =

√
‖A‖F · ‖B‖F

‖Im‖F

are used for the DPSS preconditioner and the RPSS preconditioner, respectively. Here, ‖ · ‖F
denotes the Frobenius norm of the corresponding matrix, and In and Im denote the n× n and

the m×m identity matrices, respectively. For the RDPSS preconditioner, when the (1,1) block

matrix A is symmetric positive definite, the RDPSS preconditioner reduces to the relaxed HSS

preconditioner and the parameter α is chosen by [9, Theorem 3.1]; when the (1,1) block matrix

A is nonsymmetric positive definite, the parameter α is chosen by [33, Theorem 2.2]. Both of

them are theoretically optimal for the RDPSS preconditioner. Since the parameter α does not

influence the minimal polynomial of the optimal IRPSS preconditioned matrix P−1
OIRPSSA, we

always choose α = 1 for the optimal IRPSS preconditioner. From Remark 3.1, we choose

αIRPSS =
ξ1

µm

for the IRPSS preconditioners (4.1) and (4.2). For this case, all eigenvalues of the IRPSS

preconditioned matrix P−1
IRPSSA are located in (0, 1] for the first and the second examples and

the real part of the eigenvalues of the IRPSS preconditioned matrix P−1
IRPSSA are located in

(0, 1] for the third example. In addition, the linear sub-systems with the symmetric positive

definite coefficient matrices are solved by sparse Cholesky factorizations and the linear sub-

systems with the nonsymmetric positive definite coefficient matrices are solved by sparse LU

factorizations. All codes are run in MATLAB (version R2010b) in double precision and all

experiments are performed on an Intel Core (4G RAM) Windows 7 system.

Example 4.1. ([12, 16, 17]) Consider the saddle point problem (1.1), in which

A =

[
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

]
∈ R

2q2×2q2 , BT =

[
I ⊗ F

F ⊗ I

]
∈ R

2q2×q2 ,

where

T =
1

h2
· tridiag(−1, 2,−1) ∈ R

q×q, F =
1

h
· tridiag(−1, 1, 0) ∈ R

q×q

with ⊗ being the Kronecker product symbol and h = 1
q+1 the discretization mesh size.

This example can be regarded as the discretized linear system of the Stokes equation with

the upwind difference scheme [16]. For this example, we have n = 2q2 and m = q2. Thus, the

total number of variables of the corresponding saddle point problem is n+m = 3q2. In the test

problems, we choose four grids with q = 8, 16, 32, 64.

In Table 4.1, we list the parameters α for the DPSS preconditioner, the RPSS preconditioner,

the RDPSS preconditioner and the IRPSS preconditioners. In Table 4.2, we show numerical

results of the preconditioned GMRES methods with no preconditioner (denoted by “I”), the

DPSS preconditioner, the RPSS preconditioner, the RDPSS preconditioner, the OIRPSS pre-

conditioner, the IRPSS1 preconditioner in (4.1) and the IRPSS2 preconditioner in (4.2). From

Table 4.2, we see that all these preconditioners can accelerate the convergence rate of the GM-

RES method. If preconditioning technique is not applied, the GMRES method converges very
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Table 4.1: The parameter α for Example 4.1.

Grids 8× 8 16× 16 32× 32 64× 64

DPSS 1.7092e+2 6.3469e+2 2.4412e+3 9.5699e+3

RPSS 2.6557e+2 9.8617e+2 3.7930e+3 1.4869e+4

RDPSS 45.3643 49.2549 51.1942 52.1320

IRPSS1 5.5167 5.2345 5.0868 5.0114

IRPSS2 0.0170 0.0045 0.0012 0.0003

Table 4.2: Numerical results of the preconditioned GMRES method for Example 4.1.

P-GMRES
Grids

8× 8 16× 16 32× 32 64× 64

I

IT 54 119 233 501

CPU 0.0450 0.1882 2.1357 26.9776

ERR 8.7414e-7 8.5548e-7 9.0958e-7 9.6239e-7

DPSS

IT 32 62 115 240

CPU 0.0193 0.0654 0.4026 5.9913

ERR 8.7332e-7 8.6804e-7 8.9561e-7 9.4197e-7

RPSS

IT 9 9 10 10

CPU 0.0244 0.0601 0.8826 16.6941

ERR 1.7442e-7 7.0233e-7 8.1376e-7 6.8020e-7

RDPSS

IT 14 19 28 41

CPU 0.0134 0.0257 0.1548 0.9057

ERR 3.9359e-7 8.8039e-7 8.6786e-7 9.4785e-7

OIRPSS

IT 3 3 3 3

CPU 0.0125 0.0514 0.7107 13.7626

ERR 7.1259e-13 4.4518e-12 4.9479e-11 3.8931e-10

IRPSS1

IT 16 25 40 63

CPU 0.0130 0.0201 0.1163 0.9046

ERR 6.8725e-7 7.1917e-7 6.7647e-7 7.5079e-7

IRPSS2

IT 23 39 67 116

CPU 0.0167 0.0494 0.2061 2.1301

ERR 3.7089e-7 9.3355e-7 7.6667e-7 8.0765e-7

slow. From the iteration steps of these preconditioned GMRES methods, the OIRPSS pre-

conditioner is the best one and shows h-independent convergence property which is consistent

with the theoretical results in Theorem 3.2. However, the elapsed CPU times of the OIRPSS

preconditioned GMRES method are much more than those of the IRPSS and the RDPSS pre-

conditioned GMRES methods. The IRPSS and the RDPSS preconditioned GMRES methods

cost much less CPU times than the DPSS, the RPSS and the OIRPSS preconditioned GMRES

methods. Moreover, for the IRPSS1 and IRPSS2 preconditioned GMRES methods, the former

needs less iteration steps and CPU times. Therefore, the IRPSS1 preconditioner is the best one

among these preconditioners in accelerating the GMRES method for Example 4.1.

Figure 4.1 describes the residual curves for Example 4.1 with 32 × 32 grids. From this

figure, we see that the convergence rate of the GMRES method is very slow. Among these

preconditioned GMRES methods, the IRPSS preconditioned ones are more effective than the
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Fig. 4.1. Residual curves of preconditioned GMRES methods for Example 4.1 (32× 32 grids).

existing DPSS and RPSS preconditioned ones and the residuals of these preconditioned GMRES

methods decrease sharply.

Example 4.2. The second example arises from the meshfree discretization of the elasticity

mechanics cantilever beam problem [6–8]. Consider a beam of length L = 48m and height

H = 12m subjected to a parabolic traction of force P = 1000kN at the free right end. The

Young’s modulus and the Poisson’s ratio of the beam are E = 3.0 × 107kPa and ν = 0.3,

respectively. The element-free Galerkin method is used to discretize this problem and the

essential boundary conditions are enforced by the augmented Lagrangian approach [8]. For

detail of the discretization method, see [7–9].

For this example, four regular node distributions, i.e., 37× 9, 49× 19, 97× 25 and 121× 31,

are used to discretize the problem domain. For these four node distributions, we use 10 × 4,

20 × 8, 40 × 12 and 50 × 15 background cells to obtain integrals, respectively. The orders of

saddle point matrix A are listed in Table 4.3.

Table 4.3: The orders of saddle point matrix A for Example 4.2.

Nodes Background Cells n m n+m

49× 19 20× 8 1862 38 1900

97× 25 40× 12 4850 50 4900

121× 31 50× 15 7502 62 7564

145× 37 60× 18 10730 74 10804

Table 4.4: The parameter α for Example 4.2.

Nodes 49× 19 97× 25 121× 31 145× 37

DPSS 4.7794 4.1285 3.8964 3.7183

RPSS 13.5183 13.5983 13.4974 13.4281

RDPSS 1.0050 0.8364 0.8104 0.7967

IRPSS1 0.0253 0.0174 0.0167 0.0164

IRPSS2 0.0019 0.0013 0.0012 0.0012
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Table 4.5: Numerical results of the preconditioned GMRES method for Example 4.2.

P-GMRES
Nodes

49× 19 97× 25 121× 31 145× 37

I

IT 601 799 918 1019

CPU 5.7131 29.2376 52.9165 115.0041

ERR 9.9511e-7 9.9085e-7 9.9369e-7 9.9653e-7

DPSS

IT 246 310 345 373

CPU 2.9570 13.4543 30.1783 52.4869

ERR 9.9345e-7 9.7324e-7 9.9713e-7 9.9335e-7

RPSS

IT 18 19 17 15

CPU 0.4916 1.8247 6.8323 10.6932

ERR 9.5116e-7 8.1598e-7 9.6517e-7 9.9575e-7

RDPSS

IT 20 24 26 28

CPU 0.5068 1.2874 3.5162 6.8649

ERR 7.3480e-7 8.8039e-7 6.9706e-7 7.7798e-7

OIRPSS

IT 3 3 3 3

CPU 0.2514 1.2251 4.9205 9.9664

ERR 2.7069e-14 1.1492e-13 3.8259e-14 3.4558e-13

IRPSS1

IT 23 27 30 32

CPU 0.2350 0.8361 3.3936 6.8385

ERR 7.8618e-7 9.1518e-7 6.6395e-7 7.2202e-7

IRPSS2

IT 27 31 35 37

CPU 0.2528 1.0878 3.5824 7.7637

ERR 5.9441e-7 7.5487e-7 5.1603e-7 6.2919e-7
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Fig. 4.2. Residual curves of preconditioned GMRES methods for Example 4.2 (121 × 31 nodes).

In Table 4.4, we list the parameters α for the DPSS, the RPSS, the RDPSS, the IRPSS pre-

conditioners for Example 4.2. We list numerical results of the preconditioned GMRES methods

in Table 5 and describe residual curves of preconditioned GMRES methods with 121×31 nodes

in Figure 4.2 for Example 4.2. From Table 4.5 and Figure 4.2, we can see that GMRES method
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converges very slow while the preconditioned GMRES methods converge very fast. The itera-

tion steps of the OIRPSS preconditioned GMRES method are the same for different problem

sizes, which further confirms the theoretical results. Both the iteration steps and the elapsed

CPU times show that the DPSS preconditioner is less efficient than the other preconditioners

for this example. Although the iteration steps of the RPSS preconditioned GMRES method

are a little less than those of the RDPSS, the IRPSS1 and the IRPSS2 preconditioned GMRES

methods, the elapsed CPU times of it are much more than those of the RDPSS, the IRPSS1
and the IRPSS2 preconditioned GMRES methods. And our proposed IRPSS1 preconditioner

is the most effective for Example (4.2).

Example 4.3. Consider the linearization of the steady-state Navier-Stokes equation, i.e., the

Oseen problems of the following form

{
−ν∆u+ ω · ▽u+▽p = f,

▽ · u = 0,
in Ω

where Ω is a bounded domain, ν > 0 is the viscosity, ω is the velocity field obtained from the

previous Picard step, the vector field u stands for the velocity, and p represents the pressure.

Table 4.6: The parameter α for Example 4.3.

Grids 8× 8 16× 16 32× 32 64× 64

DPSS 3.0851 3.3008 3.4103 3.4657

RPSS 5.2142 5.4633 5.5883 5.6511

RDPSS 0.7160 0.1909 0.0488 0.0123

IRPSS1 2.0587e-2 1.8299e-3 1.7196e-4 1.7415e-5

IRPSS2 4.6229e-3 4.1248e-4 3.8867e-5 3.9443e-6

The test problem is the two dimensional “leaky” lid-driven cavity problem in a square

domain (0 ≤ x ≤ 1, 0 ≤ y ≤ 1). The boundary conditions are ux = uy = 0 on the three fixed

walls (x = 0, y = 0, x = 1), and ux = 1, uy = 0 on the moving wall (y = 1). We discretize the

Oseen equation by Q2-P1 finite element method on the uniform grids with q = 8, 16, 32, 64. To

generate the discretizations, the IFISS software package [4] developed by Elman et al. is used.

For this example, we have n = 2(q + 1)2 and m = 3
4q

2.

For Example 4.3, we list the parameters α for the DPSS, the RPSS, the RDPSS, the IRPSS

preconditioners in Table 4.6. In Table 4.7, we list numerical results of the preconditioned GM-

RES methods. From Table 4.7, we can see that the OIRPSS preconditioned GMRES method

needs the least iteration steps which keep invariant with respect to grids, but it costs the most

CPU time among these preconditioned GMRES methods except the RPSS preconditioned GM-

RES method. However, the IRPSS1 and the IRPSS2 preconditioned GMRES methods cost

much less CPU times than the DPSS, the RPSS, the RDPSS and the OIRPSS preconditioned

GMRES methods, and their iteration steps are also less than those of the DPSS precondtioned

GMRES method. Therefore, the IRPSS1 and the IRPSS2 preconditioners are effective in ac-

celerating the GMRES method for Example 4.3.

Figure 4.3 plots the residual curves of the preconditioned GMRES methods for Example

4.3 with 32 × 32 grids. From this figure, we see that the residuals of the GMRES method

and the DPSS preconditioned GMRES method decrease very slow, while the residuals the

RPSS, the RDPSS and the IRPSS preconditioned GMRES methods decrease very sharply.
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Table 4.7: Numerical results of the preconditioned GMRES method for Example 4.3.

P-GMRES
Grids

8× 8 16× 16 32× 32 64× 64

I

IT 93 201 420 550

CPU 0.0820 0.4604 6.1480 26.2488

ERR 8.7532e-7 9.5649e-7 9.1073e-7 9.9721e-7

DPSS

IT 57 117 238 309

CPU 0.0436 0.1352 1.6616 10.7101

ERR 9.4452e-7 9.2778e-7 9.5966e-7 9.9935e-7

RPSS

IT 19 20 21 12

CPU 0.0377 0.1676 2.1948 48.3061

ERR 5.6075e-7 7.6293e-7 7.1870e-7 9.1268e-7

RDPSS

IT 17 28 44 67

CPU 0.0177 0.0486 0.3317 2.4769

ERR 6.0654e-7 8.5818e-7 6.5853e-7 9.6179e-7

OIRPSS

IT 3 3 3 3

CPU 0.0151 0.1543 2.1221 45.0370

ERR 4.1499e-15 4.0477e-15 5.1984e-14 5.3835e-14

IRPSS1

IT 19 33 51 81

CPU 0.0139 0.0513 0.1776 1.4417

ERR 7.5302e-7 2.7659e-7 7.4276e-8 8.2083e-7

IRPSS2

IT 20 34 55 88

CPU 0.0169 0.0419 0.1862 1.5417

ERR 7.0012e-7 4.5659e-7 7.8723e-7 9.1930e-7
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Fig. 4.3. Residual curves of preconditioned GMRES methods for Example 4.3 (32× 32 grids).

Combining the numerical results in Table 4.7, we arrive at the conclusion that our proposed

IRPSS preconditioners are effective for the saddle point problem (1.1) and improve the existing

DPSS, RPSS, RDPSS preconditioners greatly.
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5. Conclusions

In this paper, we have proposed an improved relaxed positive-definite and skew-Hermitian

splitting (IRPSS) preconditioner for the saddle point problem (1.1), which is essentially based on

the positive-definite and skew-Hermitian splitting (PSS) of the coefficient matrix and the relaxed

splitting techniques. Theoretical analyses show that the IRPSS preconditioned saddle point

matrix has a clustered eigenvalue distribution. An upper bound about the degree of the minimal

polynomial of the IRPSS preconditioned saddle point matrix shows the finite-steps termination

merit of the IRPSS preconditioned GMRES method. According to theoretical results about

the IRPSS preconditioned matrix, an optimal IRPSS preconditioner is obtained. Numerical

examples arising from the Navier-Stokes equation and the elasticity mechanics equation confirm

the correctness of theoretical results and the effectiveness of the proposed preconditioners.

However, in the IRPSS preconditioner, only an approximation Ĉ to the Schur complement

matrixBA−1BT is considered in this paper. In fact, the linear system with the coefficient matrix

A is likely to be too costly, especially when solving problems arising from the discretization of

3D partial differential equations. So how to give an approximation to the matrix A should be

further studied in future work.
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