
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 4, No. 4, pp. 389-421

DOI: 10.4208/aamm.10-m1108
August 2012

Contaminant Flow and Transport Simulation in Cracked
Porous Media Using Locally Conservative Schemes

Pu Song1 and Shuyu Sun1,2,∗

1 Department of Mathematical Sciences Clemson University, Clemson, SC 29634,
USA
2 Computational Transport Phenomena Laboratory (CTPL), Division of Physical
Sciences and Enginerring (PSE), King Abdullah University of Science and
Technology (KAUST), 4700 King Abdullah University of Science and Technology,
Thuwal 23955-6900, Kingdom of Saudi Abrabia

Received 5 January 2011; Accepted (in revised version) 11 December 2011

Available online 10 July 2012

Abstract. The purpose of this paper is to analyze some features of contaminant
flow passing through cracked porous medium, such as the influence of fracture net-
work on the advection and diffusion of contaminant species, the impact of adsorp-
tion on the overall transport of contaminant wastes. In order to precisely describe
the whole process, we firstly build the mathematical model to simulate this prob-
lem numerically. Taking into consideration of the characteristics of contaminant
flow, we employ two partial differential equations to formulate the whole problem.
One is flow equation; the other is reactive transport equation. The first equation is
used to describe the total flow of contaminant wastes, which is based on Darcy law.
The second one will characterize the adsorption, diffusion and convection behavior
of contaminant species, which describes most features of contaminant flow we are
interested in. After the construction of numerical model, we apply locally conserva-
tive and compatible algorithms to solve this mathematical model. Specifically, we
apply Mixed Finite Element (MFE) method to the flow equation and Discontinuous
Galerkin (DG) method for the transport equation. MFE has a good convergence
rate and numerical accuracy for Darcy velocity. DG is more flexible and can be
used to deal with irregular meshes, as well as little numerical diffusion. With these
two numerical means, we investigate the sensitivity analysis of different features of
contaminant flow in our model, such as diffusion, permeability and fracture den-
sity. In particular, we study Kd values which represent the distribution of contami-
nant wastes between the solid and liquid phases. We also make omparisons of two
different schemes and discuss the advantages of both methods.
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1 Introduction

In this paper, we are interested in simulating processes in subsurface waste reposi-
tories. We have a solid concrete matrix to seal the radioactive wastes underground,
however, there will be some fractures produced by the erosion of water, acid solute or
other undetermined elements during the long time periods. Hence, we need to con-
sider how these radioactive wastes leak through our concrete matrix from these aper-
tures since the convection in fractures is much faster than that in matrix. Although
this scenario is complicated to model exactly, we make reasonable simplification to
create a mathematical model that can be handled numerically and yet produce accu-
rate prediction. We shall construct a mathematical model as follows: we will consider
the flow of an incompressible fluid through a homogeneous saturated porous media,
where the fluid is contaminated by a solute, with concentration c ≥ 0. We assume
that the flow is at steady state and that transport is described by advection, molecular
diffusion, mechanical dispersion, and chemical reaction (adsorption) between solute
and the surrounding solid porous skeleton. There are lots of applications related to
this model [2, 9, 15, 16, 25, 30, 31, 33].

The contaminant flow of fluids through fractures is a process that plays an im-
portant role for many areas of the geosciences. Research on fluid flow in fractures
and in fractured porous media has a history that spans nearly four decades. This re-
search can be classified as four principal aspects of fracture flow: 1) development of
conceptual models, 2) development of analytical and numerical solution schemes, 3)
description of fracture hydraulic characteristics in static and deforming media, and 4)
development of stochastic techniques to describe fracture flow and hydro-geologic pa-
rameter distributions. In this paper, we will firstly build the mathematical model for
the original problem, then apply appropriate numerical schemes to solve this model
and analyze the numerical results from our proposed methods in order to derive a
better solution and accurate results.

Several conceptual models have been developed for describing contaminant fluid
flow in fracture porous media. Fundamentally, each method can be distinguished on
the basis of storage and flow capacities of the porous medium and the fracture. The
storage characteristics are associated with porosity, and the flow characteristics are
associated with permeability. There are three conceptual models which dominated
the research so far: 1) dual continuum, 2) discrete fracture network, 3) single equiva-
lent continuum. In addition, multiple-interacting continua and multi-porosity/multi-
permeability conceptual models (Sahimi [24], 1995) have recently been introduced into
literature. Further distinctions can be drawn on the basis of spatial and temporal scales
of integration, or averaging, of the flow regime. In our research, we will mainly focus
on discrete fracture network [20, 21], which preserves physics closely.

After we built the mathematics model, we need to solve it with numerical algo-
rithms. For different parts of our models, we deal with them by specific methods in
order to obtain best simulation results. The movement of contaminants through the
fractured porous medium is modeled by transport equations; that is, equations which
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describe the advection, diffusion and interaction of contaminants within the environ-
ment. These equations are often advection-dominated, and thus require special care
when solved numerically. In recent years, there has been much interest in using up-
wind schemes for simulating such transport problems. These schemes can also be im-
proved to high resolution or shock-capturing methods. In this paper, we employ an
upwind-mixed finite element/finite volume method to deal with transport and flow
equation due to the advantage of Finite Volume Method (FVM) in dealing with ad-
vection part of transport equation and Mixed Finite Element (MFE) method in dealing
with flow and diffusion, adsorption part of transport equation. On structured grids,
using special numerical integration rules, the upwind-mixed method is equivalent to
a cell-centered finite difference method, which is much easier to handle and code. We
also investigate the Discontinuous Galerkin (DG) method [26–29] for advection part of
transport equation since DG method can be a locally conservative, stable, high-order
accurate, flexible, less numerical diffusion and easy implemented method which can
easily handle complex geometries, irregular mesh with hanging nodes and also can be
easily coupled with other methods like conforming mixed finite element methods.

Substantial research has been published in various aspects of the contaminant
flow in fractured porous medium. For example, Shinichi nakayama and Ikuji takagi
et al. [23] (1986) studied the advection-diffusion migration of radionuclide through
two-layer geological media. Clint Dawson [10] (1998) used upwind-mixed finite el-
ement method to solve nonlinear contaminant transport models. Vandym Aizinger
and Dawson, et al. [1] (2001) used local DG to simulate contaminant flow models.

This paper is divided into following sections: First, the differential equations de-
scribing the contaminant diffusion and transport in the fractured cementitious matrix
are presented. Second, a numerical model in saturated fractured media is described.
We discuss in detail various components of our numerical approach, which include
the MFE method and cell centered finite difference method for the flow equation, the
combined FVM-MFE method and DG-MFE method for the transport equation and
the numerical discretization in time. We then present numerical examples in fractured
media with various fracture distributions. For each example, we provide and discuss
simulated concentration profiles at different times, together with pressure and veloc-
ity fields, and we also present some examples between MFE scheme and DG scheme
to see the difference between two schemes. Finally, we numerically carry out a sen-
sitivity analysis of parameters to our model and investigate the relationship between
intrinsic Kd value and effective Kd value, also the relationship between fracture den-
sity and effective Kd value, and impact of impulse concentration on our models, all of
which will help us design barriers that are protective of the public environment.

2 Mathematical model

When the contaminants leak through the porous medium, there will be adsorption, c-
onvection and diffusion brought by the movement of those contaminants. Therefore,
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we use reactive transport equation to describe those phenomena during the periods
of contaminants passing through the medium. We also need to use flow equation to
govern the fluid flow and predict the pressure field and Darcy velocity field. Based on
experimental data and above analysis, we construct mathematical model for contam-
inant species passing through the porous media, which include two coupled differen-
tial equations: one is flow equation which is an elliptic equation of unknown scalar
variable pressure, the other one is reactive transport equation which is a parabolic
equation used for describing adsorption, diffusion and convection of contaminant
flows.

Let Ω denote a bounded polygonal domain in Rd, (d = 2, 3). The classical equa-
tions governing the miscible displacement of contaminants in porous medium are as
follows:

2.1 Flow equation

The flow equation is obtained from the conservation of total fluid volume and Darcy’s
law [13, 32]

−∇ · (K∇p) ≡ ∇ · u = q, x ∈ Ω, (2.1)

and here K is the conductivity defined by:

K =
k
µ

, (2.2)

where p (the pressure in the fluid mixture) and u (the Darcy velocity of the mix-
ture, i.e., the volume of fluid flowing cross a unit across-section per unit time) are
unknowns. The permeability tensor k of the medium measures the conductivity of the
medium to fluid flow; the viscosity µ of the fluid measures the resistance to flow of
the fluid mixture; the imposed external total flow rate q is a sum of source (injection)
and sinks (extraction).

Darcy velocity is defined as follows:

u = − k
µ
∇p. (2.3)

The boundary conditions for our domain Ω are:

p = pB, x ∈ ΓD,
u · n = uB, x ∈ ΓN ,

where Ω = ΓD ∪ ΓN , ΓD denotes the Dirichlet boundary and ΓD denotes the Neumann
boundary.
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2.2 Reactive transport equations

The reactive equation system is obtained from the mass conservation of considered
contaminant species. It governs the convection, diffusion, and adsorption of contam-
inants and gives the concentration profile provided the velocity field is given from
flow equation. The contaminant concentrations in the fluid and in the solid as well as
their relation can be described by:

∂Φc
∂t

+∇ · (uc − D(u)∇c) = r(c, cs),

∂ρcs

∂t
= −r(c, cs), (x, t) ∈ Ω × (0, T],

cs = Kdc.

(2.4)

Summation of the two concentration equations above (one in fluid and one in solid)
yields:

∂Φe f f c
∂t

+∇ · (uc − D(u)∇c) = 0, (2.5)

where
Φe f f = Φ + ρKd,

is the effective porosity and it is calculated separately for the matrix and for the frac-
tures: in the matrix:

Φ = Φmatrix;

in the fracture: Φ = 1, Kd = 0, Φe f f = Φ = 1.0. The reason for this setting of porosity
is due to the definition of porosity. The unknown variable c is the concentration of
the interested species within the fluid (i.e., the amount of the species per unit volume
of the fluid mixture) and cs is the concentration of the interested species in the solid.
T is the final simulation time. The parameter Kd is the partitioning coefficient of the
considered species between the fluid and the solid. We will talk about the details of
Kd in later section. ρ is the density of fluid mixture; the porosity Φ is the fraction of
the volume of the medium occupied by pores and is assumed to be time-independent,
uniformly bounded above and below by positive numbers; the dispersion-diffusion
tensor D(u) has contributions from molecular diffusion and mechanical dispersion,
and can be calculated by:

D(u) = dmI + |u|{α1E(u) + αt(I − E(u))}, (2.6)

where dm = ΦτDm and is assumed to be strictly positive; τ is the tortuosity coefficient;
Dm is the molecular diffusivity; α1 and αt are the longitudinal and the transverse dis-
persivities, respectively; E(u) is the tensor that projects onto the u direction, whose
(i, j) component is

E(u) =
uiui

|u|2 .
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We assume our domain Ω has Lipschtiz boundary ∂Ω = Γin ∪ Γout, where Γin is the
inflow boundary and Γout is the out flow boundary, which is defined as follows:{

Γin = {c ∈ ∂Ω : u(x) · n∂Ω < 0},
Γout = {c ∈ ∂Ω : u(x) · n∂Ω ≥ 0},

where n∂Ω is the unit outward normal vector to ∂Ω. The boundary conditions for
transport equation are defined as follows:{

(uc − D(u)∇c) · n = cBu · n, x ∈ Γin, t ∈ (0, T],
(−D(u)∇c) · n = 0, x ∈ Γout, t ∈ (0, T].

We specify an initial concentration in the following way:

c(x, 0) = c0(x).

3 Numerical algorithms

In this paper, the system contains two parts: a flow equation involving the pressure
(scalar variable) and Darcy velocity (vector variable), and a reactive transport equa-
tion for describing the evolution of contaminant concentrations. We first solve the
flow equation by a MFE method; then we solve the reactive transport equation semi-
implicitly (explicitly for convection and implicitly for diffusion and adsorption) in
time by using a combination of FVM and MFE method and also employing a combi-
nation of DG and MFE method to treat advection and diffusion parts respectively.

3.1 Mixed finite element method

Mixed finite element method was initially introduced by engineers in the 1960’s for
solving problems in solid continua, which is a generalized finite element method [3,4,
7,17]. The advantage for using the mixed method is that it can be used to approximate
both vector variable (flux velocity) and scalar variable (pressure) simultaneously and
to give a high order approximation of both variables. Compared with traditional fi-
nite element method, mixed method employed two different spaces to deal with two
variables mentioned above, and these two spaces must satisfy inf-sup condition for
the mixed method to be stable, which avoids to work with conventional finite element
space, something which is difficult to use piecewise constant functions. Detailed for-
mulation for mixed finite element method applied to the flow problem is listed in the
appendix.

3.2 Discontinuous Galerkin method

Traditional Continuous Galerkin (CG) finite element method has been around for
more than 60 years [5,6,14]. It is widely used for solving practical problems due to its
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simple implementation comparing with MFE and DG method. However, with more
requirements on the accuracy of solutions and high efficient computation, CG method
cannot meet the needs of every problem. Thus, the investigation of MFE method and
DG method draws lots of attention in recent years.

The DG method has many attractive features compared with the CG method. For
example, the cross-element communication is more expensive in CG than it in DG,
which makes DG more attractive for parallel computation. The DG method is locally
mass conservative at the element level while CG method only satisfies a global mass
balance over the whole computational domain. The property of mass conservation is
crucial in flow and transport problems, especially in convection-dominated problems.
In addition, it has less numerical diffusion and provides more local approximation
than most conventional algorithms. The success of this method is mainly due to three
facts. First, the nonlinear conservation laws are enforced locally; second, when the
approximate solution is not piecewise constant, the stability of the method does not
follow from the form the numerical fluxes anymore and has to be enforced by means
of flux or slope limiter; third, both the approximate solution and associated fluxes can
experience discontinuities across inter-element boundaries due to its discontinuous
function space. But for CG methods or other traditional algorithms, they must enforce
continuity condition when crossing the inter-element boundaries. Because of local
property of DG method, the trial and test spaces are easier to construct than conform-
ing methods, which renders the code shorter and more efficient for DG method. Un-
like mixed finite element methods or traditional continuous Galerkin methods which
not only care about information of interface and elements but also include vertices
of each element, DG method just needs to handle the information of elements and
interfaces, which make the code more reliable.

There are only two popular families of DG methods. One is primal DG method,
namely variations of interior penalty methods which include symmetric interior penalty
Galerkin (SIPG), incomplete interior penalty Galerkin (IIPG,) and non-symmetric in-
terior penalty Galerkin (NIPG) methods; the other is mixed DG methods which have
been systematically investigated by B. Cockburn and C. W. Shu and others. Both meth-
ods have their attractive features, but we will use the primal DG in this paper. Detailed
formulation for mixed finite element method applied to the transport problem is listed
in the Appendix.

3.3 Stability analysis

We used mixed finite element method based on RT0 space for the flow equation, which
has been proved to be stable in the literature [8, 22]. After we got the Darcy velocity
from flow equation, we plugged it into transport equation; then applied backward
Euler method to get the final solution, which has been proved to be stable in many
literatures. Also for each numerical example, the plots of the flow weighted mean
concentration versus time indicated that our algorithm is stable for the coupled sys-
tem [11].
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4 Numerical results on rectangular meshes

4.1 Simulation examples (MFE scheme)

According to experimental data, we construct a computational domain of (0, 0.6m)×
(0, 0.6m) for all numerical examples. We used a uniform time step to run the simu-
lations, each time steps take 100 years. We also use non-uniform rectangular mesh
to discretize a (0, 0.6m)× (0, 0.6m) rectangular domain with random fractures for our
simulation.

Among our simulation examples, Example 4.1 is the base case to be compared with
other examples. In this base case, we use a set of standard parameters from labora-
tory (see Table 1). In other examples we vary the fractures with different lengths and
distributions, but maintain the same parameters with base case. In all examples, we
assume no-flow boundary conditions on both top (y = 0m) and bottom boundaries
(y = 0.6m). We also specify a constant pressure of 0 (gauge pressure against a refer-
ence pressure) on the right boundary (x = 0.6m). Contaminant species is injected on
the inflow boundary located on the left (x = 0m), where a higher pressure condition
of 1 m-H2O is imposed. The medium is initially saturated with clean water.

Example 4.1. Three horizontal and two vertical fractures (Base Case)

Table 1: Standard parameters.

Saturated Hydraulic Conductivity Saturated Effective Diffusion Coefficient Effective Porosity Kd value
Ks (cm/s) De (cm2/s) (%) (ml/g)

1.0E-12 5.0E-11 18.4 0

We use parameters listed in Table 1 for our base case and the total simulation time
is 10,000 years. The fracture network involves three horizontal and two vertical frac-
tures that are interconnected (Fig. 1). We generate non-uniform rectangular mesh for
this fractured media due to efficiency. As described before, we apply MFE for the
flow equation, and semi-implicit FVM-MFE for the transport equation using a uni-
form time step of 100 years. The simulated pressure field (Fig. 2) clearly indicates the
influence of the fractures on the flow. We could see that there is a sharp peak when the
inlet and outlet of fracture network does not touch the matrix boundary. If the inlet
of fracture network extends to the boundary of our domain, then contaminant species
pass through the fracture immediately, the pressure field will not be too much differ-
ent from that in the matrix. Velocity fields are displayed in the streamline/quiver plot
(Fig. 2). As expected, the magnitude of the velocity is much smaller in the matrix as
compared to it in the fracture. Moreover, it can be observed that streamlines tend to
converge into fractures in the left part of the domain but diverge from the fractures
in the right part, which suggests that factures are the main pathways for transporting
contaminants via convection. Fig. 3 gives results of simulated concentration profiles at
different times (only 300 years and 5,000 years shown). At 100 years to 1000 years, the
contaminant transports mainly through the convection within fractures. This is clearly
demonstrated by the concentration plume formed quickly at the fracture outlets while
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Figure 1: Fracture and conductivity distribution for base case.

the matrix closer to the inflow boundary is still quite clean. After 2,000 years, diffu-
sion and convection via the matrix also start to play a significant role in the overall
contaminant transport behavior.

The flow weighted mean concentration in effluent fluid as a function of time is pro-
vided in Fig. 4. We note that the flow weighted mean concentration quickly increases
to 0.999, and then slowly approaches to 1. This is because the fracture network here
connects inflow and outflow boundaries, which creates a flow shortcut and leads to

Pressure distribution Velocity field
Figure 2: Pressure distribution and Velocity filed for Example 4.1.

Concentration distribution at 300 year Concentration distribution at 5000 year
Figure 3: Concentration at different time within ten thousand years.
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Figure 4: The flow weighted mean concentration versus time for Example 4.1.

almost all fluid exiting from the cracks rather than from the matrix.

Example 4.2. Five horizontal and three vertical fractures (within medium interior)
Similar to Example 4.1, we employ the model parameters listed in Table 1 and

we also simulate up to 10,000 years. We impose Neumann boundary condition (10−4

m/year) on the left boundary and Dirichlet boundary condition (0 m-H2O) on the
right boundary. Unlike previous crack setting, the fracture network in this case in-
volves five horizontal and three vertical fractures that are interconnected, but do not
extend to the boundary (Fig. 5). We apply RT0-MFE on rectangular meshes for the
flow equation, and semi-implicit FVM-MFE for the transport equation using a uni-
form time step of 100 years. The simulated pressure field (Fig. 6) clearly indicates the
influence of the fractures on the flow. The velocity fields are displayed in the stream-
line/quiver plot (the right panel of Fig. 6). Again, the magnitude of the velocity is
much smaller in the matrix as compared to it in the fracture. Moreover, it can be ob-
served that streamlines tend to converge into fractures near the inflow boundary but
diverge from the fractures close to the outflow boundary. Obviously, we observe one
more time that factures are the main pathways for transporting contaminants via con-
vection. Fig. 7 are results of simulated concentration profiles at different times (300
years and 5000 years) from rectangular mesh simulation. At early simulation times,
the contaminant transports mainly through the convection within fractures. This is
clearly demonstrated by the fact that the concentration plume is formed quickly at
the fracture outlets while the matrix closer to the inflow boundary is still quite clean.
At later simulation times, diffusion and convection via the matrix also start to play a
significant role in the overall contaminant transport behavior. Fig. 8 depicts the rela-
tionship between flow weighted mean concentration and time. We note that the flow
weighted mean concentration does not quickly increase to 0.999 within a short time,
cause our fracture network does not extend to the inflow and outflow boundaries, thus
it leads our curve smoothly increasing before the contaminant species reaches the frac-
ture network and also increasing smoothly when it comes out from fracture network,
therefore we can see a breakthrough curve (a smooth step function) in this example. In
about ten thousand years, the average normalized concentration on outflow boundary
reaches about 99%.
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Figure 5: Fracture and conductivity distribution for Example 4.2.

Pressure distribution Velocity field
Figure 6: Pressure distribution and Velocity filed for Example 4.2.

Concentration distribution at 300 year Concentration distribution at 5000 year

Figure 7: Concentration at different time within ten thousand years.

Example 4.3. Random generated fracture network without touching boundary The
model parameters employed in this base case are listed in Table 1 and we attempt
to simulate up to 10,000 years. The fracture network is randomly generated but not
extending to the boundary (Fig. 9) and the fracture density is 16.36081. We generate
non-uniform rectangular mesh for this fractured media due to efficiency. As described
before, we apply RT0-MFE for the flow equation, and semi-implicit FVM-MFE for the
transport equation using a uniform time step of 100 years. Fig. 10 presents results of
simulated concentration profiles at different times (300 years and 5000 years). At 100
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Figure 8: The flow weighted mean concentration versus time for Example 4.2.

years to 1000 years, the contaminant transports mainly through the convection within
fractures. This is clearly demonstrated by the concentration plume formed quickly at
the fracture outlets while the matrix closer to the inflow boundary is still quite clean.
After 2,000 years, diffusion and convection via the matrix also start to play a significant
role in the overall contaminant transport behavior.

The flow weighted mean concentration in effluent fluid as a function of time is pro-
vided in Fig. 11. We note that the flow weighted mean concentration quickly increases
to 0.999, and then slowly approaches to 1. This is because the fracture network here

Figure 9: Fracture and conductivity distribution for Example 4.3.

Concentration distribution at 300 year Concentration distribution at 5000 year

Figure 10: Concentration at different time within ten thousand years.
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Figure 11: The flow weighted mean concentration versus time for Example 4.3.

connects inflow and outflow boundaries, which creates a flow shortcut and leads to
almost all fluid exiting from the cracks rather than from the matrix.

Example 4.4. Random generated fracture network extending to boundary
In this example, we still employ the model parameters listed in Table 1 and we

also simulate up to 10,000 years. We apply RT0-MFE on rectangular meshes for the
flow equation, and semi-implicit FVM-MFE for the transport equation using a uni-
form time step of 100 years. The fracture network (Fig. 12) in this example is extend-
ing to the boundary and the fracture density is 24.49502. Fig. 13 shows are results
of simulated concentration profiles at different times (300 years and 5000 years) from

Figure 12: Fracture and conductivity distribution for Example 4.4.

Concentration distribution at 300 year Concentration distribution at 5000 year

Figure 13: Concentration at different time within ten thousand years.
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Figure 14: The flow weighted mean concentration versus time for Example 4.4.

rectangular mesh simulation. At early simulation times, the contaminant transports
mainly through the convection within fractures. This is clearly demonstrated by the
concentration plume formed quickly at the fracture outlets while the matrix closer to
the inflow boundary is still quite clean. At later simulation times, diffusion and con-
vection via the matrix also start to play a significant role in the overall contaminant
transport behavior. Fig. 14 depicts the relationship between average effluent concen-
tration and time. We note that the effluent concentration does not quickly increase to
0.999 within a short time, causing that our fracture network does not extend to the
inflow and outflow boundaries, thus it leads our curve smoothly increasing before
the contaminant species reaches the fracture network and also increasing smoothly
when it comes out from fracture network, therefore we can see a breakthrough curve
(a smooth step function) in this example. In about ten thousand years, the average
normalized concentration on outflow boundary reaches about 99%. Through observ-
ing two graphs of average effluent concentration versus time (Fig. 11 and Fig. 14), we
find that even if in the random fracture network, provided that there’s one side of our
fracture network touching the boundary, S-curve will increase to 99% quickly, there-
fore, our fracture network plays an import role in transporting contaminant species
and cannot be neglected in the reality and simulation process.

4.2 Simulation examples (DG scheme)

Example 4.5. Four horizontal and two vertical fractures
We still use the same parameter as previous numerical examples and also attempt

to simulate up to 10,000 years. The fracture network in this case involves four hori-
zontal and two vertical fractures that are interconnected and does not extend to the
boundary (Fig. 15). We first apply RT0-MFE for the flow equation, and semi-implicit
FVM-MFE for the transport equation using a uniform time step of 100 years.

Fig. 16 contains results of simulated concentration profiles at different times (300
years and 5000 years). We apply RT0-MFE for the flow equation, and semi-implicit
DG-MFE for the transport equation using a uniform time step of 100 years. Fig. 17
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Figure 15: Fracture and conductivity distribution for Example 4.5.

shows results of simulated concentration profiles at different times under DG schemes
with same simulation time. In order to demonstrate the advantage of DG scheme,
we use original concentration output, which is not the post-processed data file. In
Fig. 19, at simulation time 100 years, we can see that there is a gradual transition in the
matrix region (outside the fracture network), but in Fig. 18, this gradual transition does
not appear very obviously in the matrix region. Also, when the contaminant species

Concentration distribution at 300 year Concentration distribution at 5000 year

Figure 16: Concentration at different time within ten thousand years under MFE scheme for Example 4.5.

Concentration distribution at 300 year Concentration distribution at 5000 year

Figure 17: Concentration at different time within ten thousand years under DG scheme for Example 4.5.
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Figure 18: The flow weighted mean concentration on the outflow boundary versus time for Example 4.5
under MFE scheme.

Figure 19: Same as Fig. 18 except under DG scheme.

approaches fracture network, this gradual transition will be more sharpen contrasting
with picture in Fig. 18 (which is under MFE scheme). Furthermore, in the fracture
network, we can still see that the gradual transition is much better than that under
MFE scheme. All these facts demonstrate that DG scheme will present more detailed
simulation processes than MFE scheme and therefore make our numerical results be
more accurate and reliable. Figs. 18 and 19 are the pictures of the flow weighted mean
concentration on the outflow boundary versus time under both MFE and DG scheme,
from two pictures, we can observe that under DG scheme, S-curve will be closer to a
step function which is real solution to our problem.

Example 4.6. Single fracture (without extending to the boundary)
We consider a single fracture in our domain with fracture inlet/outlet not touching

the domain boundary. The fracture network is depicted in Fig. 20. We still give out
the simulated concentration profiles at different times under two different schemes
(Figs. 21 and 22), from those pictures (2000 years and 8000 years), we can clearly see
the difference between two schemes, the simulated concentration profile under MFE
scheme obviously looks more coarsely than DG scheme and covers lots of details no
matter in the fracture net work or in the matrix region. In addition, we can see the
picture of the average effluent concentration on the outflow boundary versus time
under DG scheme will be more accurate than MFE scheme (Figs. 23 and 24), since it
looks more like a step function, which is our real solution to our problem, and the
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Figure 20: Fracture and conductivity distribution for Example 4.5.

Concentration distribution at 300 year Concentration distribution at 5000 year

Figure 21: Concentration at different time within ten thousand years under DG scheme for Example 4.5.

Concentration distribution at 2000 year Concentration distribution at 8000 year

Figure 22: Concentration at different time within ten thousand years under DG scheme for Example 4.5.

break through time is shorter under DG scheme than MFE scheme.

4.3 Sensitivity analysis under MFE scheme

In all sensitivity analysis, we use flow weighted mean concentration to test the influ-
ence of different parameters to our model, the flow weighted mean concentration c̄ is
defined as follows:

c̄ =

∫
Γout f low

u · ncds∫
Γout f low

u · nds
.
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Figure 23: The flow weighted mean concentration on the outflow boundary versus time for Example 4.6
under MFE scheme.

Figure 24: Same as Fig. 23 except under DG scheme.

4.3.1 Effect of Kd values

The parameter Kd value, which represents the distribution of contaminant between
the solid and liquid phases, is defined as follows

Kd =
cs

c̄
=

mass o f solute on the solid phase per unit mass o f solid phase
concentration o f solute in solution

.

The effect of the Kd expresses as a retardation in the breakthrough curve of a con-
taminant. Retardation of dissolved contaminant element is due to sorption, chemical
reactions with porous media or fracture walls, and movement into dead-end pores by
diffusion. As a result, contaminant element will not move as fast as average advective
velocity of ground water which carries it. The retardation coefficient in porous media
is expressed as (Freeze and Cherry, 1979; Prickett et al., 1981)

Kd =
v
vc

, (4.1a)

Kd = 1 +
ρbRd

n
, (4.1b)

and in fracture media (Burkholder, 1976) as

Kd = 1 + ARa, (4.2)
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Figure 25: Sensitivity analysis for parameter Kd under MFE scheme.

Figure 26: Sensitivity analysis for parameter conductivity under MFE scheme.

Figure 27: Sensitivity analysis for parameter diffusion coefficient under MFE scheme.

Figure 28: Sensitivity analysis for fracture density under MFE scheme.

where v = average ground-water velocity; vc = average velocity of the contaminant
mass; ρb = bulk mass density of the porous medium; n = effective porosity; Rd =
distribution coefficient of porous medium; Ra = fracture-rock distribution coefficient;
and A = ratio of fracture-wall surface area to void space (volume).
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To analyze the effect of Kd values, we test three cases. Different Kd values are
employed and the flow weighted mean concentrations on outflow boundary versus
time are depicted in Fig. 25. Clearly, the contaminants consume less time to exit the
matrix in a fractured medium with low Kd than with high Kd value.

4.3.2 Effect of conductivity

We simulate contaminant transport with three different conductivity values. The
breakthrough curves for these cases are depicted in Fig. 26. From the picture we see
that the exiting time of the contaminant reduces slightly in fractured medium with
high conductivity values as compared to the one with lower conductivity.

4.3.3 Effect of diffusion coefficient

To analyze the effect of diffusion coefficient, we again test three cases. Different diffu-
sion coefficient is employed and the concentrations on outflow boundary versus time
are depicted in Fig. 27. Contaminant reaches the outflow boundary more quickly with
a lower diffusion coefficient.

4.3.4 Effect of fracture density

We modulate various fracture density to investigate its influence. Different fracture
density is employed and the concentrations on outflow boundary versus time are de-
scribed in Fig. 28. Clearly and also as expected, concentration on the outflow bound-
ary increases to 0.5 more quickly in a fractured medium with higher fracture density
at in our simulation.

4.4 Lumping an entire fracture network into one equivalent crack via
effective Kd

We first use our flow and contaminant transport simulator to obtain the relationship
between 50% concentration time and real Kd values (Fig. 29). Here we use polynomials
to fit this relationship. The resultant correlation is

y = 5000x + 8000,

where y is 50% concentration time, x is real Kd. In the second step, we get the rela-
tionship between 50% concentration time and effective Kd values (Fig. 30) for a single-
fracture network:

y = 12500x + 1080,

where y is 50% concentration time, x is effective Kd. Finally, we use 50% concentration
time to match relationship between effective Kd and real Kd. The final relationship we
obtained is:

12.5u + 1.08 = 5v + 8,

where u denotes effective Kd, v denotes real Kd. Apparently, the relationship between
the effective Kd is the real Kd is a linear relationship (also shown in Fig. 31).
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Figure 29: Relationship between 50% concentration time and real Kd.

Figure 30: Relationship between 50% concentration time and effective Kd.

Figure 31: Effective Kd versus intrinsic Kd.

4.5 Relationship between lumped effective Kd and fracture density

In order to find this relationship between lumped effective Kd and fracture density, we
first get the relationship between 50% concentration time and fracture density (Fig. 32)
under multi-fracture network. Like above, we still use polynomials to fit this relation-
ship. From Fig. 32 we can see that this relationship is kind of linear relationship,
although there’s some discrepancy around real curves, it can be considered as a linear
relation due to the numerical errors of our simulator. The resultant correlation is

y = 62.7x + 1527.3,

where y is 50% concentration time, x is fracture density. In the second step, we get
the relationship between 50% concentration time and effective Kd values (Fig. 33) for
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Figure 32: Relationship between 50% concentration time and fracture density.

Figure 33: Relationship between 50% concentration time and effective Kd.

Figure 34: Effective Kd vs Fracture density.

a single-fracture network:
y = 38588x + 3477,

where y is 50% concentration time, x is effective Kd. Finally, we use 50% concentra-
tion time to match relationship between effective Kd and fracture density. The final
relationship we obtained is:

38.588u + 3.477 = 0.0627v + 1.5273,

where u denotes effective Kd, v denotes fracture density. Apparently, the relationship
between the effective Kd and fracture density is a linear relationship (also shown in
Fig. 34).
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Step function of left boundary concentration Flow weighted mean concentration versus time

Figure 35: Standard case.

Step function of left boundary concentration Flow weighted mean concentration versus time

Left boundary pressure at 3 mH2O Left boundary pressure at 10 mH2O

Left boundary pressure at 50 mH2O Left boundary pressure at 100 mH2O

Figure 36: Flow weighted mean concentration versus time at different boundary pressure.
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4.6 Impact of disturbed initial concentration on our model

In the previous numerical examples, we have assumed that the concentration of con-
taminant species is a constant on the boundary of our matrix. However, in the practical
case, concentration on the boundary may be changed with time. Thus, it is interest-
ing to investigate the case that concentration is not a constant. To see the difference
between two different cases, we will again investigate the picture of flow weighted
mean concentration versus time in each case. We have already known that in the for-
mer case the graph of flow weighted mean concentration versus time was a smooth S-
curve, because our fracture network and different permeability between fracture and
matrix made contaminant species reach the right boundary at different time. Thus, in
the first case the flow weighted mean concentration on the left boundary was a con-
stant (Fig. 35). In the second case, we disturbed concentration on the left boundary
(Fig. 36), then we used our simulator to get the graph of flow weighted concentra-
tion versus time (Fig. 36).We can clearly see that this curve did not have a S-shape, it
looked like the graph of normal distribution. In this graph, we can see that this curve
reached its peak at 5000 years, and the peak value was about 85 percent, which was
consistent with picture of constant concentration on the left boundary at 5000 years
(Fig. 36). In Fig. 35, S-curve increased smoothly to 99 percent. However, In Fig. 36,
we have seen that after 5000 years, the curve dropped smoothly from 85 percent into
about 0 percent due to the disturbed concentration. Thus, we can see that the flow
weighted mean concentration curve is related to disturbed initial concentration.

5 Conclusions and future work

In this paper, an efficient and robust simulator has been developed for the solution
of contaminant species passing through a fractured cementitious matrix. We first
present our mathematical model consisting of two differential equations, i.e., the flow
equation and the reactive transport equation. A numerical scheme based on the MFE
method is developed to approximate the second-order partial derivate terms in the
flow and transport equations. The convection term in the transport equation is treated
using an upwind FVM and DG method. With the MFE method, the fluxes through
fractures are accurately approximated using non-uniformed rectangular mesh, be-
cause rectangular grids have the advantages of efficient vectorization for computation.
Various patterns of fractures are simulated and compared. In the rectangular sim-
ulations, we employ non-uniform meshes with small elements representing cracks.
Sensitivity analysis has been carried out for the analysis of each parameter’s impact
on our models. The effective Kd calculation for lumping an entire crack network to
an equivalent single-fracture system has been proposed using our contaminant trans-
port simulator on rectangular meshes. We also investigate the relationship between
lumped effective Kd and fracture density on rectangular meshes, which we believe is
meaningful and useful to our applications because the fracture network plays a cru-
cial rule in the contaminant transport system and it tightly interacts with many other
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parameters in our mathematics model such as conductivity, porosity and intrinsic Kd,
thus affecting the lumped effective Kd. At last, we impose a disturbed initial concen-
tration into our clean matrix and we see an interesting result as described in Section
4.7. In the near future, we plan to design a multi-scale scheme for efficiency.

Appendix

A Mixed finite element method

For simplicity, we consider only two dimensional rectangular domain and we only
consider rectangular mesh. However, the results can be directly extended to logically
rectangular domain/mesh by conforming mapping. Although we can employ dif-
ferent domain partitions for flow and transport problems respectively, the same non-
uniform rectangular partition is considered for both flow and transport equations.
The permeability tensor is assumed to be invertible and uniformly positive definite
and uniformly bounded. Viscosity µ is considered to be constant in our simulation.

Before giving out the variational form of our problem, we first introduce some
abstract spaces, which are used to formulate mixed finite element scheme:

W = L2(Ω) =
{

v :
∫

Ω
v2dx < ∞

}
, V = H(div; Ω) = {v ∈ (L2(Ω))d : ∇ · v ∈ L2(Ω)},

V0 = {v ∈ H(div; Ω) : v · n = 0 on ∂Ω}, V0
N = {v ∈ H(div; Ω) : v · n = 0 on ΓN},

where

∇ · v =
∂v1

∂x1
+

∂v2

∂x2
+ · · ·+ ∂vd

∂xd
.

The norms of the two spaces W = L2(Ω) and V = H(div; Ω) are respectively defined
by

∥w∥ ≡ ∥w∥L2(Ω) =
( ∫

Ω
w2dx

) 1
2
, w ∈ W,

∥v∥V ≡ ∥v∥L2(Ω) = {∥v∥2 + ∥∇ · v∥2} 1
2 , v ∈ V.

A.1 MFE for flow equation

We first give the weak formulation of the flow equation. The mixed variational form
of the flow equation is to find u ∈ V0

N + E(uB), p ∈ W such that:{
(K−1u, v)− (∇ · v, p) = −

∫
ΓD

pBv · nds, ∀v ∈ V0
N , t ∈ (0, T],

(∇ · u, w) = (q, w), ∀w ∈ W, t ∈ (0, T].

Here E(uB) is the velocity extension such that its normal component agrees with uB
on ΓN .
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For simplicity, we choose to use Raviart-Thomas (RT) space (R. A. Raviart, 1977)
to discretize the above weak formulation.

For a two-dimensional rectangular mesh εh, the r-th order RT space is defined by

Wh =
{

w ∈ L2(Ω) : w|E ∈ Qr,r(E), E ∈ εh

}
,

Vh =
{

v ∈ H(div; Ω) : v|E ∈ Qr+1,r(E)× Qr,r+1(E), E ∈ εh

}
,

where Qr,s(E) is the space of polynomials of degree less than or equal to r and s,
respectively, in the first and second variables restricted to the element E, clearly, Vh ⊂
V and Wh ⊂ W. In our numerical examples below we use RT0 space. The MFE method
for flow equation is to find

ph ∈ L∞((0, T], Wh) and uh ∈ L∞((0, T], V0
N,h + E(uB)),

such that  (K−1u, v)− (∇ · v, ph) = −
∫

ΓD

pBv · nds, ∀v ∈ V0
N,h,

(∇ · uh, w) = (q, w), ∀w ∈ W.

A.2 MFE and FVM for reactive transport equation

Like above, we first give the weak formulation of transport equation. The weak for-
mulation of transport equation is to find the concentration solution c ∈ W and the
diffusive flux solution v ∈ V0 such that:(∂Φe f f c

∂t
, w

)
+ (∇ · v, w) + ∑

E

∫
∂E

wuc∗ · nds − ∑
E
(cu,∇w) = 0, ∀w ∈ W, t ∈ (0, T],

(−D−1v, v̂) + (c,∇ · v̂) = 0, ∀v̂ ∈ V0, t ∈ (0, T],
(c, w) = (c0, w), ∀w ∈ W, t = 0.

Here c∗ denotes the upwind value of the concentration on an edge. We will introduce
its definition in the DG schemes.

The continuous-in-time MFE method for approximating the transport equation is
to find ch ∈ L∞((0, T], Wh) and vh ∈ L∞((0, T], V0

h ), such that:

(∂Φe f f ch
∂t

, w
)
+ (∇ · vh, w) + ∑

E

∫
∂E

wuc∗h · nds − ∑
E
(c∗hu,∇w) = 0, ∀w ∈ Wh, t ∈ (0, T],

(−D−1vh, v̂) + (ch,∇ · v̂) = 0, ∀v̂ ∈ V0
h , t ∈ (0, T],

(ch, w) = (c0, w), ∀w ∈ W, t = 0.

Further discretizing in time, we give the fully discretized algorithm for the transport
equation. We partition the simulation time (0, T] into m subintervals: 0 = t0 <
t1 < · · · < tm−1 < tm = T. We let ∆tk = tk − tk−1, ∆t = max ∆tk. Assuming
that there exists a constant C satisfying that ∆t ≤ C min ∆tk, the transport equation
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can be solved by semi-implicit Euler method in time and the combined FVM-MFE
method in space. The fully discretized approximation is to find ch,k ∈ L∞((0, T], Wh)
and vh,k ∈ L∞((0, T], V0

h ), for k = 0, 1, 2, · · · , m such that:

(∂Φe f f ch,k − Φe f f ch,k−1

∆t
, w

)
+ (∇ · vh,k, w) + ∑

E

∫
∂E

wuc∗h,k−1 · nds

− ∑
E
(ch,k−1u,∇w) = 0, ∀w ∈ Wh, t ∈ (0, T],

(−D−1vh,k, v̂) + (ch,k∇ · v̂) = 0, ∀v̂ ∈ V0
h , t ∈ (0, T],

(ch,0, w) = (c0, w), ∀w ∈ W, t = 0.

B Discontinuous Galerkin (DG) method

In order to formulate a DG scheme, let us firstly give broken Sobolev spaces which are
natural spaces to work with the DG method. These spaces depend strongly on the par-
tition of the domain. Let εh be a quasi-uniform family and possibly non-conforming
partitions of our bounded polygonal domain Ω, which is composed of triangles or
quadrilaterals in 2D, or a tetrahedron or hexahedra in 3D. We also require that these
partitions are regular. This means that every element is convex. If hE denotes the di-
ameter of the element E ∈ εh and h denotes the maximum diameter of a ball inscribed
in each element E ∈ εh, there exists a constant ρ > 0 such that h/hE ≤ ρ for every
element E ∈ εh. We assume no element crosses the boundaries Γin, Γout of our domain

The broken Soblev Space for any real number s is defined as follows:

Hs(εh) = {Φ ∈ L2(Ω) : Φ|E ∈ Hs(E), E ∈ εh},

where Hs is known as a Soblev space.
And the broken Soblev norm is defined as follows:

|∥Φ∥|Hs(εh) =
(

∑
E∈εh

∥Φ∥2
Hs(E)

) 1
2
.

In particular, we will use the broken gradient semi-norm:

|∥Φ∥|Hs(εh) =
(

∑
E∈εh

∥∇Φ∥2
L2(E)

) 1
2
.

Clearly, we have

Hs(Φ) ⊂ Hs(εh) and Hs+1(εh) ⊂ Hs(εh).

Next, we will introduce the jumps and averages for DG schemes, which are key con-
cepts in DG method. Let Γh be the set of all interior edges (for 2D domain) or faces (for
3D domain) for the sub-division εh. The sets of all edges or faces on Γin and Γout are
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denoted by Γh,in and Γh,out. On each edge or face γ ∈ Γh, we associate a unit normal
vector nγ. If edge or face is on the boundary of our domain, then nγ is taken to be
the unit normal outward vector to the boundary of our domain. If Φ ∈ H1(εh), then
the trace of Φ along any side of each element is well defined. But for two elements Ei
and Ej which are neighbors and share one common side, there will be two traces of Φ
along the edge or face γ = ∂Ei ∩ ∂Ej. Then we need to give the definition of jumps
and averages.

The average and the jump for Φ ∈ Hs(εh), s > 1/2 is defined as follows: Let
Ei, Ej ∈ εh and γ = ∂Ei ∩ ∂Ej ∈ Γh with nγ exterior to Ei. Denote

{Φ} =
1
2
(
(Φ|Ei)|γ + (Φ|Ej)|γ

)
, [Φ] = (Φ|Ei)|γ − (Φ|Ej)|γ.

For the one dimensional case, we extend the definition of jump and average to sides
that belong to the boundary :

{Φ} = [Φ] = (Φ|Ej)|γ,

for each γ = ∂Ei ∩ ∂Ω.
The discontinuous finite element space is taken to be

Dr(εh) ≡ {Φ ∈ L2(Ω) : Φ|E ∈ Pr(E), E ∈ εh},

where Pr(E) denotes the space of polynomials of (total) degree less than or equal to r
on E.

The inner product in (L2(Ω))d or L2(Ω) is indicated by (·, ·) and the inner product
in the boundary function space L2(γ) is indicated by (·, ·)γ. The norm (Lp(Ω))d for a
vector-value function is defined as

∥u∥(Lp(Ω))d = ∥|u|∥Lp(Ω),

where | · | is the standard vector norm defined by |u| = (u · u)1/2. For simplicity, the
norms ∥ · ∥L2(Ω) and ∥ · ∥(L2(Ω))d are also written as ∥ · ∥0 for scalar-value and vector-
value functions, respectively . The norm of (Lp(Ω))d×d for a matrix-value function is
defined as

∥A∥(Lp(Ω))d×d = ∥∥A∥2∥Lp(Ω),

where ∥ · ∥2 is the matrix 2-norm defined by ∥A∥2 = sup|u|=1 |Au|.
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B.1 DG for transport equation

B.1.1 Continuous in time formulation

For transport, we define the bilinear form B(c, ω; u) as

B(c, ω; u) = ∑
E∈εh

∫
E
(D(u)∇c − cu) · ∇ω −

∫
Ω

cq−ω − ∑
γ∈Γh

∫
γ
{D(u)∇c · nγ}[ω]

− Stransp ∑
γ∈Γh

∫
γ
{D(u)∇c · nγ}[c] + ∑

γ∈Γh

∫
γ

c∗u · nγ[ω]

+ ∑
γ∈Γh,out

∫
γ

c∗u · nγω + Jσ,β
0 (c, ω),

where the upwind value of concentration c∗|γ is defined as follows:

c∗|γ =

{
c|Ei , if u · n ≥ 0,
c|Ej , if u · n < 0,

for γ = ∂Ei ∩ ∂Ej and nγ is a unit normal vector pointing from Ei to Ej. Notice u · nγ is
continuous on the direction nγ, thus has well-defined value at the interface. Stransp =
−1 for NIPG, Stransp = 1 for SIPG and Stransp = 0 for IIPG. Here q+ is the injection
source term and q− is the extraction source term, i.e., q+ = max(q, 0), q− = min(q, 0).
By definition, we have q = q+ + q−. (Actually in our model q = 0, thus we can omit
the term relative to q in both bilinear and linear form). Because of the mixed boundary
condition, the jump term penalizes the interior face only. Jσ,β

0 is the interior penalty
term

Jσ,β
0 = ∑

γ∈Γh

σγ

hβ
γ

∫
γ

c[ω],

where σ is a discrete positive function that takes constant value σγ on the edge or face
γ and have upper and lower bound σ∗, σ∗ > 0, hγ denotes the size of γ and β ≥ 0 is a
real number.

The linear functional L(ω; u, c) is defined as

L(ω; u, c) =
∫

Ω
cωq+ω − ∑

γ∈Γh,in

∫
γ

cBu · nγω.

The continuous in time DG scheme for approximating transport equation is as follows:
we seek uh ∈ L∞((0, T]; V0

h (εh))), ch ∈ L∞((0, T]; Dr(εh))) satisfying,(
Φe f f ∂ch

∂t
, ω

)
+ B(ch, ω; uh) = L(ω; uh, ch), ∀ω ∈ Dr(εh), ∀t ∈ (0, T],

(Φe f f ch, ω) = (Φe f f c0, ω), ∀ω ∈ Dr(εh), t = 0.

In implementation, we split the whole transport equation into two sub-equations, one
is advection equation, and the other one is diffusion equation. We can treat two sub-
equations with two different schemes, which will be more convenient for coding and
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more accurate for the final solution. For instance, in our simulation, we apply DG
scheme to advection problem and use MFE or Cell Centered Finite Difference (CCFD)
method for the diffusion problem, which will render a better solution for the whole
problem.

Next, we will give the semi-discrete formulation for the advection problem. We
apply an upwind discretiztion. The upwind value of concentration function c∗ is de-
noted above. The bilinear form for advection problem is denoted by b(c, ω; u):

b(c, ω; u) = − ∑
E∈εh

∫
E

cu · ∇ω + ∑
γ∈Γh

∫
γ

c∗u · nγ[ω] + ∑
γ∈Γh,out

∫
γ

c∗u · nγω.

The continuous in time DG scheme for approximating advection equation is as fol-
lows: we seek uh ∈ L∞((0, T]; V0

h (εh))), ch ∈ L∞((0, T]; Dr(εh))), satisfying,

(
Φe f f ∂ch

∂t
, ω

)
+ b(ch, ω; uh) = L(ω; uh, ch), ∀ω ∈ Dr(εh), ∀t ∈ (0, T],

(Φe f f ch, ω) = (Φe f f c0, ω), ∀ω ∈ Dr(εh), t = 0.

For single element, the DG scheme is simplified as follows:

∫
E∈εh

∂Φe f f ch
∂t

ωdx +
∫

∂E∈Γh

c∗hωu · nγds−
∫

E∈εh

chu · ∇ωdx = 0,

∀ω ∈ Dr(εh), ∀t ∈ (0, T].

After computing local matrix on each element, we assemble local matrix into stiff ma-
trix then apply backward Euler method to compute solution for advection part.

C Cell centered finite difference method (CCFD)

We firstly solve the flow equation with cell centered finite difference method, then
plug our solved velocity into reactive transport equation using FVM and CCFD deal
with advection and diffusion part respectively. As we all known that ”Finite volume”
refers to the small volume surrounding each node point on a mesh. In the finite vol-
ume method, volume integrals in a partial differential equation that contain a diver-
gence term are converted to surface integrals, using the divergence theorem. These
terms are then evaluated as fluxes at the surfaces of each finite volume. Because the
flux entering a given volume is identical to that leaving the adjacent volume, these
methods are conservative. Another advantage of the finite volume method is that it
is easily formulated to allow for unstructured meshes. The method is used in many
computational fluid dynamics packages.

We denote δx × δy as a possibly non-uniform rectangular mesh

δx : 0 = x0 < x1 < · · · < xM = Lx, δy : 0 = y0 < y1 < · · · < yM = Ly.
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We partition the simulation time [0, T] into K subintervals: 0 = t0 < t1 < · · · < tK−1 <
tk = T. We first define center point of each subintervals:

xi+ 1
2
=

1
2
(xi + xi+1), i = 0, 1, · · · , M − 1;

yj+ 1
2
=

1
2
(yj + yj+1), j = 0, 1, · · · , N − 1.

We simply denote the approximate solution of c(xi+1/2, yj+1/2, tk) as

ck
i+ 1

2 ,j+ 1
2

for i = 1, · · · , M − 2 and j = 1, · · · , N − 2,

for the convenience to discretize flow and transport equations respectively.
With these notations, the CCFD scheme for our problem is defined as follows: For

flow problem, we have following discretezied cell-centered finite difference scheme:

−
[ 1

xi+1 − xi

(
Kxx

Pi+ 3
2 ,j+ 1

2
− Pi+ 1

2 ,j+ 1
2

xi+ 3
2
− xi+ 1

2

− Kxx
Pi+ 1

2 ,j+ 1
2
− Pi− 1

2 ,j+ 1
2

xi+ 1
2
− xi− 1

2

)
+

1
yj+1 − yj

(
Kyy

Pi+ 1
2 ,j+ 3

2
− Pi+ 1

2 ,j+ 1
2

yj+ 3
2
− yj+ 1

2

− Kyy
Pi+ 1

2 ,j+ 1
2
− Pi+ 1

2 ,j− 1
2

yj+ 1
2
− yj− 1

2

)]
= q.

For transport part, the discretezied cell-centered finite difference scheme is formulated
as follows:

Φi+ 1
2 ,j+ 1

2
ck+1

i+ 1
2 ,j+ 1

2
− Φi+ 1

2 ,j+ 1
2
ck

i+ 1
2 ,j+ 1

2

tk+1 − tk +
(uxck+1

i+1,j+ 1
2
− uxck+1

i,j+ 1
2

xi+1 − xi
+

uyck+1
i+ 1

2 ,j+1
− uyck+1

i+ 1
2 ,j

yj+1 − yj

)

−
[ 1

xi+1 − xi

(
Dxx

ck+1
i+ 3

2 ,j+ 1
2
− ck+1

i+ 1
2 ,j+ 1

2

xi+ 3
2
− xi+ 1

2

− Dxx

ck+1
i+ 1

2 ,j+ 1
2
− ck+1

i− 1
2 ,j+ 1

2

xi+ 1
2
− xi− 1

2

)

+
1

yj+1 − yj

(
Dyy

ck+1
i+ 1

2 ,j+ 3
2
− ck+1

i+ 1
2 ,j+ 1

2

yj+ 3
2
− yj+ 1

2

− Dyy

ck+1
i+ 1

2 ,j+ 1
2
− ck+1

i+ 1
2 ,j− 1

2

yi+ 1
2
− yj+ 1

2

)]
= qck+1

i+ 1
2 ,j+ 1

2
,

where Kxx, Kyy are the xx-component and yy-component of permeability tensor at cell
centers respectively; Dxx, Dyy are the xx-component and yy-component of diffusion
coefficient tensor at cell centers respectively; ux, uy are the computed x-direction and
y-direction Darcy velocity (flux) respectively from flow equation; q is a constant. For
general case, q in the transport part does not equal to 0, but in our simulation, we
simplify it as 0 in transport because of our models. Proper discretization for bound-
ary conditions is needed for the final formulation matrix for both flow and transport
equations and finish implementation.
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