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Abstract. A general 3D flow and transport model in porous media was derived applying an
axiomatic continuum modeling approach, which was implemented using the finite element method
to numerically simulate, analyze and interpret microbial enhanced oil recovery (MEOR) processes
under laboratory conditions at core scale. From the methodological point of view the development
stages (conceptual, mathematical, numerical and computational) of the model are shown. This

model can be used as a research tool to investigate the effect on the flow behavior, and consequently
the impact on the oil recovery, due to clogging/declogging phenomena by biomass production, and
interfacial tension changes because of biosurfactant production. The model was validated and then
applied to a case study. The experimental results were accurately predicted by the simulations.
Due to its generality, the model can be easily extended and applied to other cases.

Key words. Axiomatic continuum modeling approach, microbial enhanced oil recovery, clog-
ging/declogging, interfacial tension, wettability change, trapping number.

1. Introduction

The oil fields at the initial stage of operation produce using basically its natural
energy, which is known as primary recovery. As the reservoir loses energy it re-
quires the injection of gas or water in order to restore or maintain the pressure of
the reservoir. This stage is called secondary recovery. When the secondary recov-
ery methods become ineffective it is necessary to apply other more sophisticated
methods such as steam injection, chemicals, microorganisms, etc. These are known
as tertiary or enhanced oil recovery (EOR). Some important oil fields in Mexico are
entering the third stage.

For the optimal design of enhanced oil recovery methods it is required to per-
form a variety of laboratory tests under controlled conditions to understand what
are the fundamental recovery mechanisms for a given EOR method in a specif-
ic reservoir.The laboratory tests commonly have a number of drawbacks, which
include among others, that they are very sophisticated, expensive and largely un-
representative of the whole range of phenomena involved. A proper modeling of
the laboratory tests would be decisive in the interpretation and understanding of
recovery mechanisms and in obtaining the relevant parameters for the subsequent
implementation of enhanced recovery processes at the well and the reservoir scale.

In this work, a very general 3D flow and transport model in porous media was
obtained to numerically simulate, analyze and interpret microbial enhanced oil
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recovery (MEOR) processes under laboratory conditions at core scale, such as clog-
ging/declogging and interfacial tension changes because of biosurfactant produc-
tion. The model was validated with experimental data from [28] and then applied
to a case study using a sandstone Berea core, while the oil and the microbial culture
are from Agua Fŕıa field, reported in the work of [7].

From the methodological point of view the development stages (conceptual,
mathematical, numerical and computational) of the model are shown. In particular,
for mathematical modeling was used the axiomatic continuum modeling approach,
for numerical modeling a finite element method and COMSOL Multiphysicsr
Software for computational implementation.

In section 2, we present a review of the State of the Art leading to this work. In
section 3, we present the core idea of this paper, which is to describe the systematic
methodology used to define a conceptual model, then how to derive a mathemat-
ical model, then how to discretize this later numerically, and finally how to make
computational implementations for validation and application to a case study. In
section 4 a broad description of the axiomatic modeling of continuum systems is
given, with the necessary details for the description of flow and transport of the
MEOR model. In section ?? the validation of the flow model is described. In
section 6, this work was compared with the experimental data and numerical simu-
lations of other authors, to validate the clogging and declogging process. In section
7, this MEOR model was applied to our own experimental data. In section 8, the
results of the case study are analyzed, and in section 9 the main contributions are
summarized.

2. Review of the State of the Art

The modeling of the microorganisms behavior influencing the enhanced oil re-
covery through microorganisms (MEOR) and their activities in the reservoir, has
attracted a strong interest from the beginning of the research about MEOR. Some
models describe transport equations in one or at most two dimensions, describing
the clogging process, without solving the flow equation, as in [16, 17] and [35].
Others, beside the transport equations and clogging process, do include a flow for-
mulation, coupled with the transport equations, as in [32, 33] and [48]. Still others
investigated the mechanisms of the change in wettability, besides the described
process, as in [9, 10, 11, 12].

One of the problems for modeling, is obtaining the parameters for the equations,
so experiments in laboratory conditions have been performed, as in [4]. The rate
of growth or chemical reactions coming from, or acting on the microbial activity
has also been investigated, as in [50], together with their action on recovery pro-
cess, due, for example, because of the surfactant produced by the microorganisms.
Others, concentrated on some or all parts of the growth and decaying process of
the microorganisms, as in [18].

The problem of clogging and declogging has been addressed through transport
equations as in [49] or [34]. Others, give more importance to the effects of surfactant
produced by the microorganisms, as in [42]. Of course there are some models which
include both clogging/declogging and surfactant, as in [37], although most of them
are one-dimensional, with exceptions like [31], and this work, which are fully 3-D.

3. Modeling Methodology

A fundamental issue that is pursued by this paper is to illustrate how to develop a
flow and transport models in porous media applying a general systematic modeling
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methodology, see Fig. 1. In the literature, to the extent of our knowledge, there
are a few publications where this approach is roughly described [27, 25].

This methodology could be universally applied to develop models in scientific,
technological and industrial areas and basically consists on four modeling proce-
dures, namely conceptual, mathematical, numerical and computational models.

The conceptual model is an abstraction from a real life problem which comprises
the most relevant hypothesis, postulations, assumptions, conditions, restrictions,
scope, etc, to be satisfied by the mathematical model. The mathematical model
is a mathematical formulation of the conceptual model, that could be expressed in
terms of equations [29]. While the numerical model is a discretization version of
the mathematical model by the application of the appropriate numerical methods.
And finally, the computational model is the implementation of the numerical model
in a specific computing platform.

Two additional stages that are part of the model natural life cycle are its val-
idation and application. The validation step is imperative for the model to be
consistent with the conceptual model and normally is a comparison with the out-
put of simplified or referenced problems. Whereas the final step is the application
of the model to different case studies of interest, which are the motivation of model
development.

The results obtained in the case studies may serve as feedback to the conceptual
model and eventually modify its requirements, and consequently another cycle be-
gins in the modeling workflow. Understandably, the change in any of the stages of
the above procedure may lead to perform a new loop of model development (Fig.1).

Figure 1. Flow diagram of the Modeling Methodology.

4. Model derivation

4.1. Conceptual model. The following assumptions are considered:

(1) There are two fluid phases, water (w) and oil (o), and a solid (s) one.
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(2) There are five components: water (w), only in the water phase, oil (o), only
in the oil phase, microorganisms (m) in the water phase (planktonic) and
in the solid phase (sessile), nutrients (n) in the water phase and surfactant

(surf ) produced by the microorganisms, in the water phase.
(3) The porous medium and the fluids are incompressible.
(4) The porous medium is homogeneous, isotropic and fully saturated.
(5) The fluid phases are separated in the pores and there is no diffusion between

them.
(6) All phases are in thermodynamical equilibrium.
(7) Capillary pressure and relative permeability curves are taken in account.
(8) Dynamical porosity and permeability variation due to clogging/declogging

processes is allowed.
(9) Microorganisms, surfactant and nutrients dispersive fluxes follow the Fick’s

law.
(10) Microorganisms and nutrients have biological interaction, as growth Monod

equation, also known as Michaelis-Menten kinetics [41, 26, 40].
(11) Microorganisms’ death is a first-order irreversible reaction [12].
(12) Microorganisms have physico-chemical interaction with the porous medium,

assuming reversible and irreversible clogging and reversible declogging [12].
(13) The modification of porosity due to the process of clogging is expressed as

in [17] and [11].
(14) The oil-water interfacial tension (σow) is assumed to be a function of the

surfactant concentration.

After making such restrictions, it is made, for each model, a table of phases,
their components and their extensive and intensive properties (see Tables 1 and 2)

Table 1. Intensive properties associated with the mass of the
components by phases for the flow model.

Phase Component Extensive
property

Intensive
property

Water (w) Water (w) Mw
w (t) φSwρ

w
w

Oil (o) Oil (o) Mo
o (t) φSoρ

o
o

Table 2. Intensive properties associated with the mass of the
components by phases for the transport model.

Phase Component Extensive
property

Intensive
property

Water (w) Microorganisms (m) Mm
w (t) φSwc

m
w

Nutrients (n) Mn
w (t) φSwc

n
w

Surfactants (surf) M surf
w (t) φSwc

surf
w

Solid (s) Microorganisms (m) Mm
s (t) φσρm

4.2. Mathematical model. For deriving the equations of the mathematical mod-
el, the axiomatic formulation of continuum mechanics systems [1, 29] is applied.
This axiomatic formulation adopts a macroscopic approach, which considers that
the material systems are fully occupied by particles. A continuum system is made
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of a particle set known as material body. The continuum system approach works
with the volume average of the body properties and consequently there is a volume
called representative elementary volume (REV) over which the property averages
are valid.

Using the aforementioned approach, the equations of flow and transport were
derived, under the assumptions specified in the conceptual model (section 4.1).

4.2.1. Flow model equations. According to the axiomatic formulation of con-
tinuum mechanics systems applying the mass balance equations for oil and water
components a general biphasic flow model is obtained

(1) (φSwρw)t +∇ · (ρwuw) = gw;

(2) (φSoρo)t +∇ · (ρou o) = go;

where φ is the porosity, Sα is the saturation, ρα is the density, uα is the Darcy
velocity and gα is the mass source term, for α = w, o.

Substituting in Eqns.(1-2) the velocities with the Darcy law expression Eq. 5
and dividing by densities, since the fluids are considered incompressible, results the
following

(3) (φSw)t −∇ ·

(

krw
µw

k · (∇pw + ρwγg∇z)

)

= qw;

(4) (φSo)t −∇ ·

(

kro
µo

k · (∇po + ρoγg∇z)

)

= qo;

where the Darcy law can be expressed as follows

(5) uα = −
krα
µα

k · (∇pα + ραγg∇z) ; α = o, w

and k is the absolute permeability tensor, µα is the viscosity, pα is the phase

pressure, krα is the relative permeability, qα = gα/ρα is the volumetric source term,
γg is the gravitational acceleration constant and z is the elevation.
As can be observed, the equation system 3-4 consists of only two equations and
it contains four unknowns (po, pw, So, Sw), therefore the following two additional
equations are required for the system to be determined:

So + Sw = 1(6)

pcow = po − pw

where pcow is the oil-water capillary pressure.

For convenience, the following notation is introduced: for α = w, o, λα = krα/µα

are the phase mobility functions, λ =
∑

λα is the total mobility and fα = λα/λ
are the fractional flow functions. So that

∑

fα = 1. The total velocity is defined as
u =

∑

uα. Since the oil is a continuous phase and consequently its pressure is well
behaved, we are going to define the oil phase pressure po as the pressure variable p.

Rewriting the equations (3-4) applying the oil phase pressure and total velocity
formulation given in [13], in which the capillary pressure and relative permeability
curves are taken in account, results the biphasic flow model [21, 24]:
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• Pressure equation

−∇ ·

{

λk · ∇po −

(

λw
dpcow
dSw

)

k · ∇Sw

}

(7)

−∇ ·
{

(λoρo + λwρw) γgk · ∇z
}

+
∂φ

∂t
= qo + qw

• Saturation equation

φ
∂Sw

∂t
−∇ ·

{

λwk · ∇po −

(

λw
dpcow
dSw

)

k · ∇Sw

}

(8)

−∇ ·
{

(λwρwγg) k · ∇z
}

+

(

∂φ

∂t

)

Sw = qw

• Velocity equations

(9)

u = −λk · ∇po + λfw

(

dpcow

dSw

)

k · ∇Sw − λ (foρo + fwρw) γgk · ∇z;

uw = −λfwk · ∇po + λfw

(

dpcow

dSw

)

k · ∇Sw − λfwρwγgk · ∇z;

uo = −λfok · ∇po − λfoρoγgk · ∇z;

where pcow is the oil-water capillary pressure, λ is the total mobility, and
λα is the phase mobility.

Notice that phase velocities can be known once the pressure and saturation equa-
tions are solved. The modification of the porosity due to the clogging/declogging
processes is also taken in account.

4.2.2. Transport model equations. Following the aforementioned axiomatic
formulation of continuum mechanics systems applying the mass balance equation
for a flowing component (η) in a water phase (w) a generic transport equation was
derived (Eq. 10), from which can be instantiated the specific transport equations
that were used

(10) (φSwc
η
w)t −∇ ·

(

φSwD
η

w
· ∇cηw

)

+∇ · (uwc
η
w) =gηw

where in the advection term uw is Darcy’s velocity for the water phase (Eq. 5);
φSwD

η

w
· ∇cηw is the dispersive flux term for the ηth component (Fick’s Law) (Eq.

24) and gηw is a generic source term.

• Mass balance equation of the planktonic microorganisms component (m)
in the water phase (w) [37, 50]

Making gηw = φSw (gm − dm − kd) c
m
w + kdρmσr − Rsurf /Ysurf /m in Eq.

(10), it is obtained:

(11)
(φSwc

m
w )t −∇ ·

(

φSwD
m

w
· ∇cmw

)

+∇ · (uwc
m
w ) =

φSw (gm − dm − kd) c
m
w + kdρmσr −Rsurf /Ysurf /m

• Mass balance equation of the nutrients component (n) in the water phase
(w) [50]

Making
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(12)
gηw =
−gm (φSwc

m
w + σρm) /Ym/n −Rsurf /Ysurf /n

−mn (φSwc
m
w + σρm)

in Eq. (10), it is obtained:

(13)
(φSwc

n
w)t −∇ ·

(

φSwD
n

w
· ∇cnw

)

+∇ · (uwc
n
w) =

−gm (φSwc
m
w + σρm) /Ym/n −Rsurf /Ysurf /n

−mn (φSwc
m
w + σρm)

• Mass balance equation of the surfactant component (surf ) in the water
phase (w)

Making gηw = Rsurf in Eq. (10), it is obtained:

(14)
(

φSwc
surf
w

)

t
−∇ ·

(

φSwD
surf

w
· ∇csurfw

)

+∇ · (uwc
n
w) = Rsurf

In the same manner applying the mass balance equation for a component
(η) in a solid phase (s) a generic equation was obtained

(15) (cηs )t = gηs

• Mass balance equations of the sessile microorganisms component (m) in
the solid phase (s) [37, 50]

Expressing the time derivative of Eq. (15) (cηs )t = (ρmσr)t, and making

(16) gηw = (gm − kd − dm) ρmσr + kc1φc
m
w

a mass balance equation for reversible clogging is obtained

(17) (ρmσr)t = (gm − kd − dm) ρmσr + kc1φc
m
w

And in a similar way expressing (cηs)t = (ρmσi)t, and making

(18) gηw = (gm − dm) ρmσi + kc2φc
m
w

a mass balance equation for irreversible clogging is obtained

(19) (ρmσi)t = (gm − dm) ρmσi + kc2φc
m
w

where cηw is the concentration, Dη

w
is the hydrodynamic dispersion ten-

sor, D∗η
w is the molecular diffusion coefficient of microorganisms, nutrients

or surfactant, respectively (η = m, n, surf ), in the water phase (w); dm
is the decaying rate (death) of microorganisms; kd is the declogging rate;
ρm is the microbial density at surface conditions gm is the microbial rate
growth; mn is the energy coefficient for maintaining life through substrate
consumption; σ, σr, σi are the total, reversible and irreversible volume frac-
tion (respectively) occupied by the settled microorganisms over total pore
volume; kc1 is the reversible clogging rate; kc2 is the irreversible clogging
rate; Ym/n is the yield coefficient of microorganism per unit of nutrients;
Ysurf /η is the yield coefficient of surfactant per unit of microorganism or
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nutrients (η = m, n); Rsurf is a source term for the surfactant, and is given
by [50]

(20) Rsurf = µmax
surf

(

cnw − cnCw
Ksurf /n + cnw − cnCw

)

(φSwc
m
w + σρm) ,

where µmax
surf is the maximal surfactant formation rate; Ksurf /n is the

saturation constant for surfactant over nutrient; cnCw is the critical nutrient
(n) concentration for the surfactant (surf ) formation.

4.2.3. Initial and boundary conditions.

• Initial conditions:

(21)
po (t0) = p0o, Sw (t0) = S0

w;
σ (t0) = σ0, c

η
w (t0) = cη0w , η = m,n, surf ;

where p0o is the initial oil pressure, k0 is the initial absolute permeability;
φ0 is the initial porosity of porous medium; σ0 is the initial volume fraction
occupied by the settled microorganisms over total pore volume.

• Boundary conditions
(1) Inlet conditions (constant rate)

(22)
u o · n = uw · n = uin

w · n; c
surf in
w = 0;

−
[

cηwu
in
w − φSwD

η

w
· ∇cηw

]

· n = cηin
w uin

w · n, η = m,n, surf ;

(2) Outlet conditions (constant pressure, pouto at the top of the core)

(23) po = pouto ,
∂Sw

∂n
= 0;

∂cηw
∂n

= 0, η = m,n, surf ;

(3) No flow conditions for all not specified boundaries.

4.2.4. Complementary relationships.

• It is used the Fick’s law: τηw = φSwDwη · ∇cηw, η = m, n, where cηw is the
concentration of the component η in water (mass of the component η per
volume of water), and

(24) (Dη
w)ij = (αT )

η
w |vw| δij + ((αL)

η
w − (αT )

η
w)

vwivwj

|vw|
+ τ (Dm)ηw δij

are the hydrodynamic dispersion tensor components (i, j = 1, 2, 3) [2],
where (αT )

η
w and (αL)

η
w are the transversal and longitudinal dispersivity of

component η in water, respectively. |vw| is the Euclidean norm of the water
velocity vector, δij is the Kronecker delta function, τ < 1 is the tortuosity
and (Dm)

η
w is the molecular diffusion coefficient of the component η in

water.
• It is used the growth Monod equation:

gm = gmax
m

(

cnw
Km/n+cnw

)

, where gmax
m is the maximum specific growth rate,

Km/n is the Monod constant for nutrients, cnw is the nutrients concentration
in water.

• A Brooks-Corey [3] model for capillary pressure is used (Eq. 25).

(25) pcow(Sw) = pt (Se)
(−1/θ)

and
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(26) Se =
Sw − Swr

1− Swr − Sor

where Se is the normalized water saturation, pt is the threshold input
pressure and θ is the capillary pressure exponent for the Brooks-Corey
model.

• A modified Brooks-Corey [36] model for relative permeability curves is used:

(27)
krw = k0rwS

nw
e

kro = k0ro (1− Se)
no

where Se is the normalized water saturation, k0rw, k
0
ro are the endpoints

and nw, no are the exponents for water w and oil o relative permeability
curves, respectively.

• Porosity modification: The porosity modification due to the clogging/ de-
clogging processes was taken in account by the following expression given
in [11]:

(28) φ = φ0 − σ

where φ - is the actual porosity, φ0 - is the initial porosity and σ - the
volume fraction occupied by sessile microorganisms.

• Permeability modification: The permeability modification is expressed as
a porosity function by the Kozeny-Carman equation [6]:

(29) k = k0
(1−φ0)

2

φ3
0

φ3

(1−φ)2

where k and k0 are the actual and initial permeability, respectively.
• Interfacial tension: The change of interfacial tension due to the surfactant
concentration has been measured in the laboratory, and its behavior is
represented approximately by a best fit curve obtained with experimental
data:

(30) σow =
1

1000

√

√

√

√

10
(

csurfw + ccritw

)

where csurfw = 0 ⇒ σmax
ow = 1

1000

√

10
(ccritw ) = 35.59 [mN/m]

The interfacial tension oil-water σow is given in mN/m and the surfactant
concentration csurfw in kg/m3 The original fitting is shown in Fig. 2.

• Trapping number:
Following the formulation given by Penell et al. [38, 44] the trapping

number of the oil phase is defined as follows:

(31) NTo =
√

N2
CA + 2NCANB sin(α) +N2

B

whereNTo is the oil phase trapping number, NCA = (uin
w µw)/(σow cos(θow))

is the capillary number, NB = ∆ργgkkrw/(σow cos(θow)) is the Bond num-
ber, θow is the contact angle between the aqueous/non-aqueous interface
and the porous medium, α is the angle of flow relative to the horizontal,
and γg is the gravitational constant.

Since in our experiments we are considering only vertical flow, then α =
π/2, and consequently Eq. (31) becomes NTo =| NCA + NB |. Moreover,
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Figure 2. Best fit curve of experimental data for the interfacial
tension as a function of surfactant concentration.

the Bond number is two orders of magnitude smaller than the capillary
number so it can be neglected (NB = 0). Since the velocity of the water
phase (uw) varies relatively little, to avoid instabilities, it was set equal to
the injection velocity (uin

w ), the trapping number finally results in

(32) NTo = NCA =
uin
w µw

σow cos θow

• Change in the residual oil saturation:
The change in the residual oil saturation is a function of the trapping

number, which can be expressed as a linear interpolation as follows:

(33) Sor = Slow
or −

(

Slow
or − Shigh

or

)

(

NTo −N low
To

)

(

Nhigh
To −N low

To

)

where Sor is the residual oil phase saturation and

Sor = Slow
or if Sor > Slow

or and Sor = Shigh
or if Sor < Shigh

or

Here the index low is associated with a low trapping number and the
index high is associated with a high trapping number.

• Change of relative permeability: The change of relative permeability for
the modified Brooks-Corey model (Eq. 34) consist of the modification of
the endpoint k0ro and the exponent no as follows:

(34) k0ro = k0 low
ro +

Slow
or − Sor

Slow
or − Shigh

or

(

k0high
ro − k0 low

ro

)

(35) no = nlow
o +

Slow
or − Sor

Slow
or − Shigh

or

(

nhigh
o − nlow

o

)

• Note that the recovery mechanism connected with the surfactant concentra-
tion has been taken in account through an empiric function (Eq. 30) of the
interfacial tension, which modifies the trapping number (Eq. 31), and then
the residual oil saturation is modified (Eq. 33), which in turn modifies the
oil-water capillary pressure, the endpoint (Eq. 34) and the exponent (Eq.
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35) of the oil relative permeability. All this can be expressed schematically
as in Eq.(36) or as in Fig. 3.

(36) Csurf ⇒ σow ⇒ NTo ⇒ Sor ⇒ {pcow, k
0
ro, no} ⇒ {kro}

Figure 3. Flow chart of changes in the interfacial tension phe-
nomenon, and the change in the corresponding values of the rele-
vant parameters.

4.3. Numerical model. The numerical model consists of making the appropri-
ate choice of the numerical methods in terms of precision and the efficiency for the
solution of the mathematical model.

A brief review of the state of the art literature concerning the numerical imple-
mentation of multiphasic fluid flow model reflects that the finite difference (FD)
and finite volume (FV) methods are the general framework for numerical simulation
in very large problems [14]; however, the basic mixed finite element (MFE) method
[45] has shown to be superior for accurate flux calculation in heterogeneous media
in comparison to conventional FD and FV methods.

On the other hand, a mixed finite element approach requires a special Raviart-
Thomas mixed space for base and weighting functions, which makes more difficult
its implementation. In view of the scale and resolution requirements for our flow
model, we decided that it could be acceptable to perform the implementation mak-
ing use of the standard finite element framework provided in COMSOLMultiphysics
[15]. In particular, the numerical implementation of previously derived model was
accomplished using the PDE mode for time dependent analysis in the coefficient
form.

In this case, the resulting problem is a system of nonlinear partial differential
equations with initial and boundary conditions. For the numerical solution the
following methods were applied:

• For the time derivative, it was used a second order backward finite differ-
ences discretization, resulting in a totally implicit scheme in time.

• For the rest of the differential operators, concerning the spatial derivatives,
it was applied a standard Galerkin finite element discretization, where La-
grange quadratic polynomials were used as weighting and basis functions,
which in this work imply a convergence of order two [51].

• It was used a regular mesh of tetrahedral elements in 3D.
• For the linearization of the nonlinear system of equations, an iterative
Newton-Raphson method was applied.
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• For the solution of the resulting algebraic system of linear equations, it was
used a variant of the direct LU method for sparse, unsymmetrical matrices.

• The general procedure for coupling flow and transport is sequential and is
executed iteratively in the following manner:
(1) The flow model is solved, and from them it is obtained: saturations

Sα, pressures pα and the velocities of the phases uα for α = o, w,
(2) The transport model is solved and from them it is obtained: the con-

centration components cηw, η = m,n, surf , and σ,
(3) The porosity φ and permeability k are modified according to equations

(28) and (29).
(4) The relative permeabilities krα for α = o, w are modified according to

equations (33-36).
(5) Once a given precision is obtained, the procedure stops; otherwise, it

goes over the first step, and continues.

All the above description is summarized in Fig. 4

Figure 4. Flow chart of the numerical model.

4.4. Computational model. The computational implementation was done in
COMSOL multiphysics, using the general coefficient form [15, 24]) for all the equa-
tions. This computational implementation in COMSOL, of the flow and transport
models, has been thoroughly validated in other previous works [22, 19, 20, 23, 24],
with data taken from the literature.
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The system of equations (3-4) can be rewritten in matrix form as follows:

(37)

(

0 0
0 φ

)

∂

∂t

(

po
Sw

)

+∇ ·

{

−

(

λ −λw
dpcow

dSw

λw −λw
dpcow

dSw

)

k · ∇

(

po
Sw

)

+

(

− (λoρo + λwρw) γgk · ∇z
−λwρwγgk · ∇z

)}

+

(

0 0
0 ∂φ/∂t

)(

po
Sw

)

=

(

qo + qw − ∂φ/∂t
qw

)

The previous matrix representation can be translated in straightforward manner
to the standard COMSOL notation in coefficient form [15, 24]):

(38) ea
∂2u

∂t2
+da

∂u

∂t
+∇ · (−c∇u− αu+ γ) + β · ∇u+ au = f

where

u ≡

(

po
Sw

)

, da ≡

(

0 0
0 φ

)

, c ≡

(

λ −λw
dpcow

dSw

λw −λw
dpcow

dSw

)

k,

γ ≡

(

− (λoρo + λwρw) γgk · ∇z
−λwρwγgk · ∇z

)

,

a ≡

(

0 0
0 ∂φ/∂t

)

, f ≡

(

qo + qw − ∂φ/∂t
qw

)

and ea, α, β ≡ 0.
To complete the model only remain to define suitable constitutive laws for rela-

tive permeabilities (krw, kro) and oil-water capillary pressure pcow and to prescribe
proper initial and boundary conditions.

For defining initial and boundary conditions in those problems the following
notations will be introduced:
Initial conditions

(39) p (t0) = p0, Sw (t0) = Sw0

Boundary conditions
Using the standard COMSOL notation in coefficient form for boundary condi-

tions

(40)
n · (c∇u+ αu− γ) + qu = g − hTµ
hu = r

(41)
rin ≡

(

pin

Sin
w

)

, gin ≡

(

ginp
ginSw

)

,hin ≡

(

hin11 hin12
hin21 hin22

)

rout ≡

(

pout

Sout
w

)

, gout ≡

(

goutp

goutSw

)

,hout ≡

(

hout11 hout12

hout21 hout22

)

where q ≡ 0, but h depends on the type of specific boundary conditions. Here in
and out stand for inlet and outlet boundary conditions, recpectively.
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Table 3. Buckley-Leverett problem data. The viscosity of oil and
water were taken initially as equal for a basis case, and then played
with their proportion, as in[30], (see Table 4).

Property Units Value
Domain length (L) m 300
Absolute Permeability (k) m2 1.00E-15
Porosity (φ) 0.2
Water viscosity (µw) Pa.s 1.00E-03
Oil viscosity (µo) Pa.s 1.00E-03
Residual water saturation (Swr) 0
Residual oil saturation (Sor) 0.2
Injection velocity (uin

w ) m.s−1 3.4722E-07
Production pressure (pout) MPa 10
Artificial diffusion coefficient (ε) 1.00E-7

5. Validation of the flow model

In the next two subsections the flow model described above will be tested for
two specific problems in 1-D.

5.1. Buckley-Leverett Problem. We first will verify the implemented numerical
flow model with known analytical solutions. To this end, we solve the Buckely–
Leverett problem in a homogeneous medium with different fluid properties and zero
capillary pressure [47].

We consider a 1-D horizontal homogeneous domain of length 300 m, initially
saturated with oil. Water is injected with a constant flow rate at one end to
displace oil to the other end, where the pressure is kept constant.

The relative permeability constitutive equations are given by:

(42) krw = Sω
e ; kro = (1− Se)

ω
;

where ω = 1 is for the linear case and ω = 2 is for the quadratic case, whereas Se

is the effective or normalized saturation, which is defined as:

(43) Se =
Sw − Swr

1− Swr − Sor

where Swr and Sor are the residual saturations for water and oil, respectively.
In relation to the general model description given in COMSOL notation in equa-

tions (38, 39), only the matrix c and vector f are modified

(44) c ≡

(

kλ 0
kλw ε

)

; f ≡

(

0
0

)

Since pcow ≡ 0 and qw, qo ≡ 0. Note that it was introduced a small artificial
diffusion coefficient (ε) in the saturation equation to stabilize the numerical solution,
due to its hyperbolic nature, numerical instabilities can be appeared.

For this problem the initial conditions are

(45) p (t0) = p0 ≡ 10MPa, Sw (t0) = Sw0 ≡ 0

and the corresponding boundary conditions are

(46) rin ≡

(

0
Sin
w

)

, gin ≡

(

uin
w

0

)

,hin ≡

(

0 0
0 1

)
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Table 4. Simulated cases for Buckley-Leverett problem.

Cases Relative
permeability
model (ω)

Viscosity
ratio
(µw/µo)

Simulation
periods
(tmax) [days]

(a) 1 2 300-900
(b) 1 2/3 300-900
(c) 2 2/3 300-900

(47) rout ≡

(

pout

0

)

, gout ≡

(

0
0

)

,hout ≡

(

1 0
0 0

)

Where Sin
w ≡ 0.8, ginp ≡ 3.47E−7m · s−1, pout ≡ 10MPa.

The relevant data are taken from [30] and are provided in Table 3.
The simulations were carried out for three cases with different water-oil viscosity

ratios combining two types of relative permeability models (linear and quadratic)
for seven time periods, (see Table 4).

5.2. Water Flooding Case Study. The second problem is about to reproduce
the flow behavior in a water flooding experiment through a sandstone core under
laboratory conditions. The intention is to couple this flow model with multicom-
ponent transport equations to study Enhaced Oil Recovery processes [39]. Data of
this problem is given in Table 5.

In this case, the relative permeability constitutive equations are based on the
Brooks-Corey model [3]:

(48) krw = S
2+3θ

θ
e ; kro = (1− Se)

2
(

1− S
2+θ
θ

e

)

;

where θ characterizes the pore size distribution.
While oil-water capillary pressure is defined by the Brooks-Corey [3] model given

in Eq. (25).
We impose the following initial conditions

(49) p (t0) = p0 ≡ 10MPa, Sw (t0) = Sw0 ≡ 0.2

and boundary conditions

(50) rin ≡

(

0
Sin
w

)

, gin ≡

(

uin
w

0

)

,hin ≡

(

0 0
0 1

)

(51) rout ≡

(

pout

0

)

, gout ≡

(

0
0

)

,hout ≡

(

1 0
0 0

)

Where ginp ≡ 5.3E− 07 m · s−1, pout ≡ 10MPa.
In the Fig. 5 the numerical solutions of the Buckley–Leverett problem with

linear relative permeabilities and viscosity ratio µw/µo = 1 for a time period of 300
days with different artificial diffusion coefficients are shown. We can observe that
it is attained the best trade of in terms of efficiency and accuracy for an artificial
diffusion coefficient value ε = 1e− 7.

Figs. 6-8 show a quite well qualitative reproduction of the analytic solution
behavior for the Buckley–Leverett problems for cases (a)-(c) described in table 4,
respectively. These problems were numerically solved with the optimal artificial
diffusion coefficient value ε = 1e− 7 previously obtained.

The numerical simulation of the water coreflooding experiment through a sand-
stone core during a time period of 24 hours is shown in Fig. 9. It can be observed
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Table 5. Water coreflooding experimental data.

Property Units Value
Domain length (L) m 0.25
Absolute permeability (k) m2 8.25E-13
Porosity (φ) 0.2
Water viscosity (µw) Pa.s 1.00E-03
Oil viscosity (µo) Pa.s 1.00E-02
Residual water saturation (Swr) 0.2
Residual oil saturation (Sor) 0.15
Injection velocity (uin

w ) m.s−1 5.3E-07
Production pressure (pout) MPa 10
Brooks-Corey parameter (θ) 2
Entry threshold pressure (pt)

MPa
1.00E-2

the formation of a water front displacing the oil through the porous medium which
is recovered at the production end of the core.

The main result of the present work is the implementation of a biphasic (water-
oil) flow model in porous media, including capillary pressure, which coupled to
multiphase and multicomponent transport equations could be useful to study En-
haced Oil Recovery processes at laboratory scale.

Even more, applying a flow model coupled with transport equations can serve
to study the impact in the flow conditions due to the porosity and permeability
alterations by transport processes, such as adsorption of some fluent components.

Figure 5. Numerical solutions of
the Buckley–Leverett problem with
linear relative permeabilities and
viscosity ratio µw/µo = 1 for a pe-
riod of 300 days, varying artificial
diffusion coefficient (ε).

Figure 6. Numerical solutions of
the Buckley–Leverett problem with
linear relative permeabilities for
case (a) and viscosity ratio µw/µo =
2 for time periods from 300 to 900
days.

6. Validation of the clogging/declogging modeling

The validation of the flow model has been already presented in several previously
published works and for further details the reader is referred to them [21, 19, 20, 23,
24]. The transport model equations (Eqs. 11,17,19) were tested for validation of
clogging/declogging processes against the experimental data published by [28] and
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Figure 7. Numerical solutions of
the Buckley–Leverett problem case
(b) with linear relative permeabili-
ties and viscosity ratio µw/µo = 2/3
for a period of 300 days, varying ar-
tificial diffusion coefficient (ε).

Figure 8. Numerical solutions
of the Buckley–Leverett problem,
case (c) with quadratic relative
permeabilities and viscosity ratio
µw/µo = 2/3 for time periods from
300 to 900 days.

Figure 9. Numerical simulation of the water coreflooding exper-
iment for a time period of 24 hours.

compared with the results obtained in [37] and [34]. Firstly, our model parameters
were fitted with the experimental Hendry’s data and then were compared with the
fitting parameters obtained by [37] and [34].

6.1. Experiment Description. The experimental setup consists of the water
injection with microorganisms from the bottom into a vertical column packed with
silica sand [28]. Where column length is L = 40 cm and the diameter is d = 5
cm, respectively. The initial column porosity φ0 is 0.4, and the dispersivities are
αL

m
w = αT

m
w = 0.27 cm. The microorganisms, having a density ρm = 1.085× 106

mg/L, are injected with a constant concentration of cmin
w = 4.32 mg/L at a constant

water velocity of uw = 2.17× 10−4 cm/s.

6.2. Modeling Considerations. For comparison purposes [34] and [37] works are
considered. In all cases molecular diffusion is omitted, i.e., D∗m

w = 0 and bacterial
diffusion processes are set as a single parameter of dispersivity. The bacterial
settling velocity is included by [34] and [37], but in this work this was neglected
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Table 6. Fitting parameters for the experimental results of [28].
All have units as [s−1], except the resultant measure of error, RMS,
which is adimensional (proportion of effluent/injected microorgan-
isms).

Property [34] [37] This work
gmax
m 1× 10−6 0 1× 10−6

dm 1× 10−7 0 1× 10−7

kc1 2.28× 10−5 2.28× 10−5 5.7× 10−5

kd 3.56× 10−7 3.56× 10−7 6.408× 10−7

kc2 1.72× 10−6 1.72× 10−6 3.44× 10−6

RMS 1.9× 10−2 2.1× 10−2 2.1× 10−3

since it is too small, about two orders of magnitude with respect to water phase
velocity uw.

The biological kinetic parameters controlling growth/death and clogging/ declog-
ging processes such as maximal growth rate (gmax

m ), decaying rate (dm), reversible
clogging rate (kc1), irreversible clogging (kc2), declogging rate (kd), given in Table
6, are considered for fitting the experimental results of Fig. 10.

The combination of the described adjustments in the values of the rates of
growth, decaying, reversible/irreversible clogging and declogging, renders a total
of three possible configurations, those given in the Table 6 (with their correspond-
ing resultant RMS), which are depicted in the Fig. 10.

6.3. Results and Discussion. A one-dimensional transport problem of clogging
and declogging was solved in the test of the model in [34] and [37], using for com-
parison the experimental data in [28]. In the model developed for this work, there
is a complete 3D system, and the clogging/declogging equations were considered as
two separate transport equations. So, the model derived for this work is general
enough that it can take as particular cases those models of [34] and [37].

In the Fig. 10 it can be appreciated the comparison of the numerical simulation
with the different values for the experimental parameters. Our model does cross
among the data from [28], in a qualitative manner similar to that of [37] and [34].

Tests were performed, first with the suggested parameters by [37], but as the
fitting of the experimental data with [28] did not quite agree with the results from
[37], the parameters were changed, specially those for clogging and declogging, until
more adequate results were obtained.

Concerning Fig. 10, the following observations can be made:
The difference between the black line and the red one is the fact that the red
one has values different of zero for the growth and decaying rates (gmax

m and dm,
respectively), but that does not seem to make a significant qualitative or quantita-
tive difference (the fitting curves overlapped), with respect to that instance which
does not consider either rate, so for our own adjustments it was decided to sim-
ply leave those processes active (with the values from [34]), and only adjust the
reversible/irreversible clogging rates and the declogging rate. In a first attempt, it
was only considered the adjustment of the clogging rates, and the result is the dark
green line, which fits better the group of experimental values near the concentration
of 10−2. Then it was manipulated the value of the declogging rate (light green line
with asterisks), and it was obtained the fit which seems to embrace the most of the
experimental values, compared with the other adjustments, including those of [34]
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Figure 10. Experimental data and numerical simulations of
breakthrough planktonic microorganisms concentration with re-
spect to time. The blue circles are the [28] experimental values;
the red line is the [34] fitting, with RMS = 1.9 × 10−2; the black
line is the [37] fitting, with RMS = 2.1 × 10−2; the light green
with asterisks is our own fitting with kd = 6.408 × 10−7, and
RMS = 2.1× 10−3.

or those of [37]. From here, and from the resultant RMS, it can be concluded that
the computational model has been validated, since the fit is approximately very
close, qualitatively and quantitatively speaking, to the experimental values of [28].

7. Case study

7.1. Description of the Experiment. A laboratory experiment of microbial
recovery of hydrocarbons was performed where it was used as porous media a
sandstone Berea core, while the oil and the microbial culture employed came from
the field Agua Fŕıa. Hereafter this experiment will be called DP1, which has
been previously reported in the work of [7] and a similar set up [8]. The mi-
crobial culture used in the recovery experiment is comprised of microorganism-
s thermophiles, barophiles, halotolerants, acidotolerants, and anaerobes; contain-
ing the following microorganisms among others: Thermoanaerobacter ethanolicus,
Thermoanaerobacter uzonensis, Thermoanaerobacter inferii, Geothermobacterium

sp, Methanobacterium subterraneum, Methanobacterium formicicum, Methanolinea

tarda and /or Methanoculleus sp [43]. The mixed culture were obtained from oil
samples of the aforementioned Mexican oil field.

The experiment consisted on initially saturating the Berea core with water and
oil, to perform oil displacement through water injection in a first stage of secondary
recovery, and after that perform three stages of water injection with microorganisms
and nutrients that will be named MEOR stages, alternating with periods with no
internal flow that will be called confinement stages. So, first there is a secondary
recovery, with oil displacement due to brine injection, until it was obtained the
residual oil saturation lasting 68 hours. Then MEOR1 stage, the first injection
of microorganisms and nutrients, lasting 66 hours. Then the Confinement1 stage,
where the system is closed and it is maintained under conditions of pressure and
temperature previously established, lasting 240 hours. Then MEOR2, the second
injection of microorganisms and nutrients, lasting 72 hours, followed by the second
confinement stage of 240 hours. Finally, the MEOR3 stage, the third injection of
microorganisms and nutrients, lasting 62 hours (see Fig. 11).
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Figure 11. Schematic representation of the experiment DP1.

The results of the process of hydrocarbon recovery in the core showed that there
was recovery in each of the stages, being the most significant the secondary recovery,
followed by the first stage of microbial recovery (see Fig. 35). It will be explained
in detail the secondary recovery stage, and the first stage of microbial recovery. A
summary of all the stages is described in Table 7. In Fig. 17 it is observed the profile
of the pressure drop, which behaves smoothly and continuously. While formally
the oil displacement experiment by water lasted around 68 hours, by observing the
graph in Fig. 13 one can see that the oil recovery curve keeps a similar behavior
until 68 hours, which shows the typical conduct of a recovery process, where the
porous medium is strongly wettable by water. It can be observed that the oil
recovery reaches a value of approximately 72 ml.

Table 7. Hydrocarbon recovery for each stage of the DP1 experiment.

Stages of
recovery

Oil
recovery
(exper-
iment)
[ml]

Oil
recovery
(numeri-
cal) [ml]

Oil
recovery

[%]

Root
mean
square
error
[ml]

Duration

[hr]
Secondary
recovery

72.2 73.23 49.45 2.13 68

MEOR1 33.9 33.01 23.22 2.08 66
MEOR2 9.4 9.7 6.44 1.58 72
MEOR3 0.21 3.17 0.14 2.34 62
MEOR 43.51 45.89 29.8 2.00 200

Total 115.71 123.84 79.25 2.04 268

The total microbial recovery of 29.8 % of oil was close to the achieved values by
other authors [5] with light oils (31◦ API, 32% of recovery) and greater that the
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obtained with heavy oils. It is worth noticing that the oil used in this work has 21◦

API, which would classify it as a medium oil [43].

7.2. Numerical Simulation of the Experiment.

7.2.1. Simulation of the secondary recovery stage. The computational mesh
used for the secondary recovery stage is shown in Fig. 12. The total number of
elements of the mesh is 2,358 for a total of 7,464 degrees of freedom (for the case
when only the flow model is active).

Figure 12. Representation of a Berea core where the computa-
tional domain and mesh is observed.

The input data for the computational model corresponding to the secondary
recovery stage are listed in the Table 8.

For the fitting of the production of oil and water for the secondary recovery
stage, it was designed the following methodology:

• The relative permeabilities of oil and water were obtained from the exper-
imental values of the capillary pressure as in [46].

• Once obtained the values of relative permeability using the procedures of
[46] above mentioned, those values were fit to the modified Brooks-Corey
model.

• Obtention of the fit with the inflection point of the corresponding curve to
the change from piston flow to simultaneous flow of oil and water. This
depends on the residual oil and water saturation, and the “endpoints” k0ro
and k0rw of the formula of the modified Brooks-Corey model. By changing
the residual saturations it is necessary to find again the parameters pt and
θ which are adjusted to the capillary pressure curve in the Brooks-Corey
formula.

• Once achieved the inflection point, the adjustment of the point of inflection
requires the adjustment of the parameters k0rw, nw, k

0
ro and no.

The secondary recovery stage lasted 68 hours with an oil recovery of 72.20 ml,
corresponding to 49.52% of the initial volume. Fig. 13 shows a typical recovery
curve in a porous medium strongly wettable by water. In this figure a comparison of
the experimental recovery values and the simulated ones for the secondary recovery
stage is displayed. One can observe an adequate fitting (with an error of less
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Table 8. Data for the secondary recovery stage of the recovery
experiment DP1. Further details can be found in the section for
Nomenclature and Units.

Property Value Units
L 0.13 [m]
d 0.1016 [m]
k0 1.51E-13 [m2]
φ0 0.1978 [m3/m3]
Vp 2.08E-04 [m3]
µw 4.00E-04 [Pa.s]
µo 1.31E-02 [Pa.s]
ρw 9.89E+02 [kg/m3]
ρo 8.72E+02 [kg/m3]
Q 1.39E-09 [m3/s]
uin
w 1.71E-07 [m.s−1]

pout 551,580 [Pa]
p0o 551,580 [Pa]
Sw0 0.299 [m3/m3]
So0 0.701 [m3/m3]
t 244,800 [s]

than 10%) of the recovery curve. In this stage the biphasic flow model was used
employing the fitting parameters of capillary pressure and relative permeability,
given in Table 9, which best reproduced the production curves of oil and water. It
can be seen that during the first 12 hours the recovery curve behaves as a straight
line, which means that it is recovered only oil, followed by an asymptotic behavior
of oil and water recovery.

Figure 13. Comparison of the experimental curve (circles) and
the simulated one (continuous line) of the recovered oil volume for
the secondary recovery stage.

In Fig.14 it is shown the evolution of the water saturation profile along the core
during the water flooding. One can observe the formation of a water front through
the porous medium displacing the oil, which in turn is being recovered at the other
end of the core. The water front breaks through the upper extreme in around twelve
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Table 9. Parameters for the fitting of the capillary pressure and
relative permeability curves.

Parameter Value Secondary Recovery Value MEOR1
θ 2.1 -
pt 2650 [Pa] -
Sor 0.2 -
k0ro 0.12 -
no 3.1 -
Swr 0.299 0.299
k0rw 0.05 0.05
nw 7 7
Slow
or - 0.2

k0 low
ro - 0.12
nlow
o - 3.1

Shigh
or - 0.05

k0high
ro - 0.18
nhigh
o - 1.7

hours, which matches the breaking point of the recovery curve in Fig. 13. From
this point the flow develops an oil saturation close to the residual one.

In the Fig. 15 and 16 it is shown the evolution of the oil pressure and the water
velocity along the z axis of the core for a period of 68 hours. One can observe that
the velocity presents some numerical instability while the displacement front does
not break through the production end of the core; this numerical instability can be
seen as well in Fig. 17, where it is observed that the profile of the pressure drop
behaves more smoothly and continuously, just after around 12 hours.

Figure 14. Evolution of the wa-
ter saturation (Sw) during the sec-
ondary recovery stage for a period
of 68 hours. The right column is in
hours.

Figure 15. Evolution of the oil
pressure (po) during the secondary
recovery stage for a period of 68
hours. The right column is in hours.

7.2.2. MEOR1 stage simulation. The data used for the first microbial recovery
stage MEOR1 are listed in Table 10, while Table 9 shows the parameters of the
rendered fit for the relative permeability curves.
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Figure 16. Evolution of the water
velocity (uw) during the secondary
recovery stage for a period of time
of 68 hours. The right column is in
hours.

Figure 17. Evolution of the oil
pressure drop during the secondary
recovery stage for a period of time
of 68 hours.

Fig. 18 shows a comparison of the experimental recovery values and the simulat-
ed ones for the MEOR1 stage. One can observe an adequate fitting of the recovery
curve.

Figure 18. Comparison of the experimental (circles) and sim-
ulated (continuous line) of recovered oil volume for the MEOR1
stage.

For MEOR1, Fig. 19 shows the variation of the water saturation along the core,
for different times, rising in a consistent and smooth manner, as the evolution of
the oil pressure (Fig. 20). The evolution of the water velocity along the core for
different times remains within a factor of about 0.75, from the maximum to the
minimum, showing just a slight drop towards the end (Fig. 21).

It is worth noticing that in Fig. 22 there is an increase of the oil pressure
drop from the time 80 hours up to around 100 hours, which is congruent with the
behavior of Fig. 24, where there is an increase and later a drop in the concentration
of sessile organisms for a similar period of time.

The Fig. 23 and 24 show the variation of the distribution of planktonic and
sessile microorganisms, respectively, during the MEOR1 stage. The curve of Fig.
23 forms a maximum displacing with the flow.
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Table 10. Data for the MEOR1 stage of the recovery experiment
DP1. Q, uin

w , and pout were kept the same as in the secondary
recovery stage. Further details can be found in the section for
Nomenclature and Units.

Property Value Units
cmwiny

2.00E-02 [kg.m−3]

D∗m
w 1.5E-09 [m2/s]

αL
m
w 0.01 [m]

αT
m
w 0.01 [m]

ρm 1600 [kg/m3]
gmax
m 1.85E-05 [s−1]

Km/n 3.20E-01 [kg/m3]
kc1 2.28E-05 [s−1]
kc2 1.72E-06 [s−1]
kd 3.56E-05 [s−1]
dm 6.10E-06 [s−1]
µmax
surf 5.00E-06 [s−1]

Ksurf /n 1.00 [kg/kg]
Ysurf /m 7.94 [kg/kg]
cnCw 0.00 [kg/m3]
cnwinj

4.80 [kg.m−3]

D∗n
w 1.5E-09 [m2/s]

αL
n
w 0.01 [m]

αT
n
w 0.01 [m]

ρn 1.4E+03 [kg/m3]
Ym/n 7.00E-02 [kg/kg]
Ysurf /n 1.41 [kg/kg]
mn 1.00E-08 [kg/kg]

D∗surf
w 1.5E-09 [m2/s]

αL
surf
w 0.01 [m]

αT
surf
w 0.01 [m]

ρsurf 1.60E+03 [kg/m3]
t 237,600 [s]

Fig. 25 shows the temporal variation of the spatial distribution of nutrients
during the 66 hours. In here it is appreciated that according to the elapsed time,
the nutrients concentration at the beginning (bottom end) of the core corresponds
to the continuous injection of nutrients at that concentration, but decreases with
time, as it is consumed by the microorganisms. This nutrient usage is not total,
since at 66 hours there is a nutrient concentration distribution at opposite side.

Fig. 26 shows a slight, but consistent drop in porosity, behavior that is matched
backwards in Fig. 24 (the distribution of sessile microorganisms along the core
increases its concentration as time goes by), and even Fig. 21, where it is seen that
for the last period, the water velocity decreases even further than for all previous
times.

There is an increase of the concentration of surfactant along the core as time
increases (Fig. 27), which is consistent with the increase of the concentration of
both planktonic and sessile microorganisms (Figs. 23 and 24 ), which produce it.
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Figure 19. Evolution of the water
saturation (Sw) during the MEOR1
stage for a period of 66 hours. The
right column is in hours.

Figure 20. Evolution of the oil
pressure (po) during the MEOR1
stage for a period of 66 hours. The
right column is in hours.

Figure 21. Evolution of the water
velocity (uw) during the MEOR1
stage for a period of 66 hours. The
right column is in hours.

Figure 22. Evolution of the oil
pressure drop during the MEOR1
stage for a period of 66 hours.

Figure 23. Distribution of plank-
tonic microorganisms (cmw ) along
the core for different times during
the MEOR1 stage. The right col-
umn is in hours.

Figure 24. Distribution of ses-
sile microorganisms (σ) along the
core for different times during the
MEOR1 stage. The right column is
in hours.
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Figure 25. Distribution of nutri-
ents (cnw) along the core for differ-
ent times during the MEOR1 stage.
The right column is in hours.

Figure 26. Variation of porosity
reduction (φ−φ0) along the core for
different times during the MEOR1
stage. The right column is in hours.

Figure 27. Distribution of surfac-
tant (csurfw ) along the core for differ-
ent times during the MEOR1 stage.
The right column is in hours.

Figure 28. Variation of absolute
permeability reduction (k − k0) a-
long the core for different times dur-
ing the MEOR1 stage. The right
column is in hours.

The rise of the concentration of microorganisms also match the drop of absolute
permeability (Fig. 28 ). The increase of surfactant concentration is reflected also
in the drop of the exponent of relative permeability, and the drop of the oil-water
interfacial tension (Figs. 29 and 30).

As the trapping number increases (Fig. 31), there is a decrease in the residual
oil saturation (Fig. 32), and there is an increase of the end point for the oil relative
permeability (Fig. 33), and also an increase in the oil phase mobility (Fig. 34)
up to a maximum of 1.8 [m2/(Pa · s)] at 108 hour, later coming to a middle point,
at about 0.9 [m2/(Pa · s)], suggesting a connection with the increase of surfactant
concentration along the core, for increasing times (Fig. 27).

Similar observations can be made for the other MEOR stages, for all the men-
tioned properties.

8. Discussion

The main objective pursued with the adjustment of recovery histories is to obtain
the controlling parameters of the recovery mechanism when they are implemented
in a process of microbial recovery. The procedure here used is fairly reliable during
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Figure 29. Variation of the oil ex-
ponent of relative permeability (no)
along the core for different times
during the MEOR1 stage. The right
column is in hours.

Figure 30. Variation of oil-water
interfacial tension (σow) along the
core for different times during the
MEOR1 stage. The right column is
in hours.

Figure 31. Variation of the oil
phase trapping number (NTo) along
the core for different times during
the MEOR1 stage. The right col-
umn is in hours.

Figure 32. Variation of the resid-
ual oil saturation (Sor) along the
core for different times during the
MEOR1 stage. The right column is
in hours.

the first stage of imbibition since there was more control over the data obtained in
the laboratory. However, in the case of the parameters which were adjusted for the
second stage of microbial recovery, they posses a greater uncertainty because many
of them were taken from the published literature, so the results here obtained must
be considered preliminary and an additional analysis process is required.

However, from the experimental results it is observed in the graphic of brine
injection without microorganisms (Fig. 13), a recovery of 46%, considering that
the remaining oil is residual. With the brine injection with microorganisms and
nutrients it is obtained an additional recovery of 22.3 %, which is pretty significant
and in the second inoculation injection it is obtained an additional 6.2 % of oil
recovery. This would not be possible without the effect of the technique of enhanced
recovery over the properties of oil and the rock. This is shown with the necessity to
change the petrophysical parameters (Table 9) in order to reproduce the additional
recovery, as it is shown with comparison curves of experimentally recovered oil
volume (circles) and the numeric ones (blue line) for the MEOR1 stage (Fig. 18),
and in the Table 9.
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Figure 33. Variation of the end
point for the oil relative permeabil-
ity (k0ro) along the core for differen-
t times during the MEOR1 stage.
The right column is in hours.

Figure 34. Variation of the oil
phase mobility (λo) along the
core for different times during the
MEOR1 stage. The right column is
in hours.

The petrophysical parameter which influenced the most was the decrease of the
residual oil saturation, allowing the additional recoveries.

Figure 35. Comparison of the experimental (blue circles) with
simulated (orange line) curves of recovered oil during the recovery
stages of the experiment DP1.

In Fig. 35 it is graphed the experimental (blue circles) and simulated (orange
line) of the recovered oil volume during all the stages of the experiment DP1. One
can confirm that the root mean square error does not go over the 2.5 ml for any of
the stages, while the global root mean square error is of 2.04 ml representing the
1.76 % of the total recovered oil, see Table 7.

It is important to outline that the resulting error while fitting the experimental
oil recovery curve to the simulated values obtained with the model, was considering
as factors impinging on the recovery, the processes of clogging/declogging and the
production of surfactant generated by the microorganisms in the microbial recov-
ery stages, being this last the main factor. Other factors, such as, for example the
produced MEOR gas (CO2 y CH4), were not considered in the modeling of the
DP1 experiment, because the total amount of produced gases is relatively small
and the production curves of those gases are not available, having only the total
produced volume on each stage. The inclusion of those additional factors might
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allow a better fit for the recovery curve.

9. Conclusions

A systematic methodology for a very general 3D flow and transport model in
porous media for microbial enhanced oil recovery (MEOR) process under laborato-
ry conditions comprising conceptual, mathematical, numerical and computational
stages was applied. In particular, for mathematical modeling was used the axiomat-
ic continuum modeling approach, for numerical modeling a finite element method
and COMSOL Multiphysicsr Software for computational implementation.

The transport model was validated against the experimental data from [28] and
compared with the results from [34] and [37].

The model was successfully applied to simulate a case study which has been
previously reported in the work of [7] consisting of a laboratory experiment of mi-
crobial oil recovery process [8]. The experimental results were accurately predicted
by the simulations.

Due to the model generality it can be easily extended and applied to other
cases. The constitutive relationships such as porosity, permeability may be set up
as distributions; capillary pressure, relative permeability, interfacial tension, and
other relationships may be changed as well. This general model may be used for
the case when the MEOR product is other than surfactant (or in addition of), and
other components may be added as well.
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Nomenclature and units

αL
η
w, αT

η
w: Longitudinal and transversal dispersivity coefficients for the η component(η =

m, n, surf ) [m]
γg: Gravitational acceleration constant [m/s2]
θ: Capillary pressure exponent for the Brooks-Corey model Log[Pa]
θow: Contact angle between the aqueous/non-aqueous interface and the porous

medium [rad]
λα; λ: Phase or total mobility, respectively α = w, o [m2/(Pa.s)]
µα: Phase viscosity α = w, o [Pa.s]
µmax
surf : Maximal production rate specific for the surfactant (surf ) [s−1]

ρη: Density for the η component(η = m, n, surf ) at surface conditions [kg/m3]
ρα: Phase density (α = w, o) [kg/m3]
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σ, σr , σi: Total, reversible and irreversible (respectively) volume fraction occu-
pied by the sessile microorganisms over total pore volume [m3/m3]

σow: Oil-water interfacial tension, [mN/m]
τ : Porous medium tortuosity (>1) [m/m]
φ, φ0: Current and initial porosity of porous medium [m3/m3]
cηin
w : Injected concentration of microorganisms or nutrients, respectively (η =

m, n) [kg.m−3]
cηw: Concentration of microorganisms, nutrients or surfactant, respectively (η =

m, n, surf ), in the water phase (w) [kg/m3]
cnCw : Critical substrate concentration (n) for the surfactant formation [kg/m3]
d: Core diameter [m]
D∗η

w: Molecular diffusion coefficient for the η component in the water phase (w),
[m2/s]

Dη

w
: Hydrodynamic dispersion tensor for the component microorganisms, nu-

trients or surfactant, respectively, (η = m, n, surf ), in the water phase (w), [m2/s]
dm: Decaying rate (death) of microorganisms, [s−1]
fα: Phase fractional flow (λα/λ, α = w, o)
gm: Microbial rate growth [s−1]
gmax
m : Maximal growth rate for microorganisms [s−1]
k, k0: Current and initial absolute permeability [m2]
kc1: Reversible clogging rate [s−1]
kc2: Irreversible clogging rate [s−1]
kd: Declogging rate [s−1]
Km/n: Saturation constant for the growth of microorganisms (m) through sub-

strate consumption (n) [kg/m3]
kr α: Phase relative permeability (α = o, w) [m2]
k0r α: End point for the phase relative permeability, at residual saturation of the

other phase, in the modified Brooks-Corey model (α = o, w) [m2/m2]

k
0 low/high
ro : End point for the oil relative permeability for a low/high trapping

number in the modified Brooks-Corey model [m2/m2]
Ksurf /n: Saturation constant for the surfactant formation (surf ) through sub-

strate consumption (n) [kg/kg]
L: Core Length [m]
mn: Energy coefficient for maintaining life through substrate consumption [kg/kg]
nα: Exponent for the phase relative permeability in the modified Brooks-Corey

model (α = o, w)
NCA: Capillary number [(m2.Pa)/mN]
NB: Bond number [(m2.Pa)/mN]
NTo: Oil phase trapping number [(m2.Pa)/mN]
pcow: Oil-water capillary pressure [Pa]
po: Oil pressure [Pa]
p0o: Initial oil pressure [Pa]
pout: Production pressure [Pa]
pt: Entry capillary pressure for the Brooks-Corey model [Pa]
Q: Injection/production rate [m3/s]
Se: Effective or normalized saturation [1]
Sα: Phase saturation α = w, o [m3/m3]
Sα r: Residual phase saturation (α = o, w) [m3/m3]
Sη0: Initial phase saturation (η = w, o) [1]

S
low/high
or : Residual oil phase saturation for a low/high trapping number [m3/m3]
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t: Stage duration [s]
u: Total Darcy velocity [m/s]
uα: Phase Darcy velocity α = w, o [m/s]
uin
w : Injection velocity [m.s−1]

V : Global block volume [m3]
Vp: Initial pore volume [m3]
Yη/n: Yield coefficient of the microbial cell mass, or surfactant mass; mass of

produced cells or surfactant (η = m, surf ) per unit of removed substrate mass
(nutrient) [kg/kg]
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