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Abstract. In this paper, a reliable algorithm based on an adaptation of the stan-
dard differential transform method is presented, which is the multi-step differential
transform method (MSDTM). The solutions of non-linear oscillators were obtained
by MSDTM. Figurative comparisons between the MSDTM and the classical fourth-
order Runge-Kutta method (RK4) reveal that the proposed technique is a promising
tool to solve non-linear oscillators.
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1 Introduction

Vibration problems and most of scientific problems in mechanics are naturally nonlin-
ear. The equations modeling all these phenomena and problems are either ordinary or
partial differential equations.Most of them do not have any analytical solution except-
ing a restricted set of these problems. Some are solved via the analytical perturbation
method [1], whereas some of them are solved by numerical techniques. In many case
studies, similarity transformations are used to reduce the governing differential equa-
tions into an ordinary nonlinear differential equation. In most cases, these equations
do not have analytical solution. Therefore, these equations should be solved via spec-

∗Corresponding author.
URL: http://www2.omu.edu.tr/akademikper.asp?id=156
Email: vserturk@yahoo.com (V. S. Ertürk), z.odibat@gmail.com (Z. M. Odibat), shahermm@yahoo.com
(S. Momani)

http://www.global-sci.org/aamm 422 c⃝2012 Global Science Press



V. S. Ertürk, Z. M. Odibat and S. Momanic / Adv. Appl. Math. Mech., 4 (2012), pp. 422-438 423

cial techniques. In last years, new methods were used by some researchers to solve
these sorts of problem [2–5].

Integral transform methods like the Laplace and the Fourier transform methods
are extensively used in engineering problems. By using these methods, differential
equations are transformed into algebraic equations which are easier to cope with. In
fact, integral transform methods are more complex and difficult when applying to
nonlinear problems. A different dealing method to solve non-linear initial value prob-
lems is the MSDTM [6]. Our motivation is to concentrate on the applications of the
multistep differential transform method (MSDTM).It should be mentioned that one of
the main advantages of the MSDTM is its ability in providing us a continuous repre-
sentation of the approximate solution, which allows better information of the solution
over the time interval.

On the other side, the Runge-Kutta method (RK4) will provide solutions in dis-
cretized form, only at two ends of the time interval, thereby making it complicated
in achieving a continuous representation. We purpose to contrast the effectiveness of
MSDTM against the well-known fourth-order Runge-Kutta method.

Nonlinear oscillator models have been extensively encountered in many areas of
physics and engineering. These models have meaningful importance in mechanical
and structural dynamics for the wide understanding and accurate prediction of mo-
tion. Since many practical engineering components comprise of vibrating systems are
modeled by using oscillator systems, these systems are important in physics and en-
gineering [7, 8].

2 Differential transform method

The differential transform technique is one of the semi-numerical analytical methods
for ordinary and partial differential equations that uses the form of polynomials as
approximations of the exact solutions that are sufficiently differentiable. The basic
definition and the fundamental theorems of the differential transform method (DTM)
and its applicability for various kinds of differential equations are given in [9–13]. For
convenience of the reader, we present a review of the DTM. The differential transform
of the kth derivative of function f (t) is defined as follows:

F(k) =
1
k!

[dk f (t)
dtk

]
t=t0

, (2.1)

where f (t) is the original function and F(k) is the transformed function. The differ-
ential inverse transform of F(k) is defined as

F(t) =
∞

∑
k=0

F(k)(t − t0)
k. (2.2)

From Eqs. (2.1) and (2.2), we get

f (t) =
∞

∑
k=0

(t − t0)
k

k!
dk f (t)

dtk

∣∣∣
t=t0

, (2.3)
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Table 1: Operations of differential transformation.

Original function Transformed function
f (t) = u(t)± v(t) F(k) = U(k)± V(k)
f (t) = αu(t) F(k) = αU(k)

f (t) = u(t)v(t) F(k) =
k

∑
l=0

U(l)± V(k − l)

f (t) =
du(t)

dt
F(k) = (k + 1)U(k + 1)

f (t) =
dmu(t)

dtm F(k) = (k + 1)(k + 2) · · · (k + m)U(k + m)

f (t) =
∫ t

t0

u(t)dt F(k) =
U(k − 1)

k
, k ≥ 1

f (t) = tm F(k) = δ(k − m) =

{
1, k = m,
0, k ̸= m,

f (t) = exp(λ, t) F(k) =
λk

k!

f (t) = sin(ωt + α) F(k) =
wk

k!
sin

(πk
2

+ α
)

f (t) = cos(ωt + α) F(k) =
wk

k!
cos

(πk
2

+ α
)

h(t) =
f (t)
g(t)

K(k) =
1

G(0)

[
F(k)−

k−1

∑
m=0

H(m)G(k − m)
]

f (t) = [g(t)]b F(k) =


G(0), k = 0,

k

∑
m=1

(b + 1)m − k
kG(0)

G(m)F(k − m), k ≥ 1.

which implies that the concept of differential transform is derived from Taylor se-
ries expansion, but the method does not evaluate the derivatives symbolically. How-
ever, relative derivatives are calculated by an iterative way which are described by
the transformed equations of the original function. For implementation purposes, the
function f (t) is expressed by a finite series and Eq. (2.2) can be written as

f (t) ≈
N

∑
k=0

(t − t0)
k. (2.4)

Here N is decided by the convergence of natural frequency. The fundamental oper-
ations performed by differential transform can readily be obtained and are listed in
Table 1. The main steps of the DTM, as a tool for solving different classes of non-
linear problems, are the following. First, we apply the differential transform (2.1) to
the given problem (integral equation, ordinary differential equation or partial differ-
ential equations), then the result is a recurrence relation. Second, solving this relation
and using the differential inverse transform (2.2), we can obtain the solution of the
problem.

3 Multi-step differential transform method

Although the DTM is used to provide approximate solutions for a wide class of nonl-
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inear problems in terms of convergent series with easily computable components, it
has some drawbacks: the series solution always converges in a very small region and
it has slow convergent rate or completely divergent in the wider region [14–17]. In
this section, we present the multi-step DTM that hase been developed in [6] for the
numerical solution of differential equations. For this purpose, we consider the follow-
ing nonlinear initial value problem

f (t, y, y′, · · · , y(p)) = 0, (3.1)

subject to the initial conditions y(0) = ck, for k = 0, 1, · · · , p − 1.
Let [0, T] be the interval over which we want to find the solution of the initial

value problem (3.1). In actual applications of the DTM, the approximate solution of
the initial value problem (3.1) can be expressed by the finite series

y(t) =
N

∑
n=0

αntn, t ∈ [0, T]. (3.2)

The multi-step approach introduces a new idea for constructing the approximate
solution. Assume that the interval [0, T] is divided into M subintervals [tm−1, tm],
m = 1, 2, · · · , M of equal step size h = T/M by using the nodes tm = mh. The
main idea of the multi-step DTM are as follows. First, we apply the DTM to Eq. (3.1)
over the interval [0, t1], we will obtain the following approximate solution

y1(t) =
K

∑
n=0

α1ntn, t ∈ [0, t1], (3.3)

using the initial conditions y(k)1 = ck. For m ≥ 2 and at each subinterval [tm−1, tm] we
will use the initial conditions y(k)m (tm−1) = y(k)m−1(tm−1) and apply the DTM to Eq. (3.1)
over the interval [tm−1, tm], where t0 in Eq. (2.1) is replaced by tm−1 The process is
repeated and generates a sequence of approximate solutions ym(t), m = 1, 2, · · · , M,
for the solution of y(t),

ym(t) =
K

∑
n=0

αmn(t − tm−1)
n, t ∈ [tm, tm+1], (3.4)

where N = K · M. In fact, the multi-step DTM assumes the following solution

y(t) =


y1(t), t ∈ [0, t1],
y2(t), t ∈ [t1, t2],
...
yM(t), t ∈ [tM−1, tM].

(3.5)

The new algorithm, multi-step DTM, is simple for computational performance for all
values of h. It is easily observed that if the step size h is T, then the multi-step DTM
reduces to the classical DTM. As we will see in the next section, the main advantage of
the new algorithm is that the obtained series solution converges for wide time regions.
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4 Numerical experiments

To demonstrate the applicability of the proposed algorithm as an approximate tool for
solving nonlinear oscillatory systems, we apply the proposed algorithm, the multi-
step DTM, to four non-linear oscillator equations.

Example 4.1. Consider the following non-linear equation

y” + y = −εy2y′, (4.1)

subject to the following initial conditions

y(0) = 1, y′(0) = 0. (4.2)

This equation can be appropriately called the ”unplugged” Van der Pol equation and
all of its solutions are expected to oscillate with decreasing amplitude to zero. Mo-
mani et al. [18] derived a numerical solution for the above equation using the modi-
fied homotopy perturbation method when ε = 0.1. For comparison with the solution
obtained in [18] we set the parameter ε = 0.1 in this example.

With y′ = x, Eq. (4.1) is transformed into the following system of the first-order
differential equations

dy
dt

= x,
dx
dt

= −y − εy2x, (4.3)

and the initial conditions y(0) = 1 and y′(0) = 0 become

y(0) = 1, x(0) = 0. (4.4)

In view of the differential transform, given in Eq. (2.1), and the operations of differen-
tial transform given in Table 1, applying the differential transform to the system (4.3),
we obtain

Y(k + 1) =
1

k + 1
X(k),

X(k + 1) =
1

k + 1

(
− Y(k)− ε

k

∑
k2=0

k2

∑
k1=0

Y(k1)Y(k2 − k1)X(k − k2)
)

,
(4.5)

where X(k) and Y(k) are the differential transforms of x(t) and y(t), respectively. The
differential transform of the initial conditions are given by Y(0) = 1 and X(0) = 0. In
view of the inverse differential transform, given in Eq. (2.2), the DTM series solution
for the system (4.3) can be obtained as

y(t) =
N

∑
n=0

Y(n)tn,

x(t) =
N

∑
n=0

X(n)tn.

(4.6)
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Now, according to the multi-step DTM, taking N = K · M, the series solution for the
system (4.3) is given by

y(t) =



K

∑
n=0

Y1(n)tn, t ∈ [0, t1],

K

∑
n=0

Y2(n)(t − t1)
n, t ∈ [t1, t2],

...
K

∑
n=0

YM(n)(t − tM−1)
n, t ∈ [tM−1, tM],

(4.7a)

x(t) =



K

∑
n=0

X1(n)tn, t ∈ [0, t1],

K

∑
n=0

X2(n)(t − t1)
n, t ∈ [t1, t2],

...
K

∑
n=0

XM(n)(t − tM−1)
n, t ∈ [tM−1, tM],

(4.7b)

where Yi(n) and Xi(n) for i = 1, 2, · · · , M satisfy the following recurrence relations
Yi(k + 1) =

1
k + 1

Xi(k),

Xi(k + 1) = −Yi(k)− ε
k

∑
k2=0

k2

∑
k1=0

Yi(k1)Yi(k2 − k1)Xi(k − k2),
(4.8)

such that Yi(0) = Yi−1(0) and Xi(0) = Xi−1(0). Finally, if we start with Y(0) = 1 and
X(0) = 0, using the recurrence relations given in (4.8), then we can obtain the multi-
step solution given in Eqs. (4.7a) and (4.7b). Fig. 1 shows the displacement and phase
diagram of the multi step DTM solution to the nonlinear equation (4.1).

Fig. 1 shows that the results of our computations are in excellent agreement with
the results obtained by the numerical solution of Momani et al. [18] using homotopy
perturbation method method. It is to be noted that the multi-step DTM results are
obtained when K = 10, M = 250 and T = 150, and the multi-step DTM results are
obtained when N = 2500.

In Fig. 2, we give a comparison among the multi-step DTM solution, the DTM
solution and RK4 solution for the problem (4.1)-(4.2). Fig. 2 shows the advantage of
the multi-step DTM over DTM . One can see that DTM exhibits great error because its
solution increasingly goes to infinity.

We determine the accuracy of RK4 for the solution of (4.3) for different time steps.
From the results presented in Table 2 we see that the maximum difference between the
RK4 solutions on the time steps h = 0.01 and h = 0.001 is of the order of 10−9 whereas
the maximum difference between the time steps of h = 0.001 and h = 0.0001 is of the
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(a) (b)
Figure 1: (a) Displacement y versus time t and (b) phase plane diagram.

order of 1013. Although RK4 results are relatively accurate for h = 0.01, we choose
h = 0.001 for its higher precision.

Table 2 shows two sets of MSDTM solutions being compared to RK4 (h = 0.001).
The absolute values were obtained to determine its performance against RK4. The first
set of result is between a 5 term MSDTM (h = 0.01) and RK4. We could see clearly
that the highest error is of . Next, we proceed to compare 5 term MSDTM (h = 0.001)
with RK4. The accuracy is strengthened by a maximum error of 10−13. The results
show that MSDTM is an excellent tool in solving the equation considered.

Example 4.2. Consider the following initial-value problem

y” + y + 6y2 + 8y3 = 0, (4.9)

subject to the following initial conditions

y(0) = 2, y′(0) = 0. (4.10)

Let y′ = x. Then Eq. (4.9) can be written as

dy
dt

= x,
dx
dt

= −y − 6y2 − 8y3, (4.11)

Figure 2: Plots of displacement of y versus time t: Dashed line (the DTM solution); Solid line (the multi-step
DTM solution, Dotted line (RK4 solution).
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Table 2: Absolute differences between RK4 solutions.

∆ = |RK40.01 − RK40.0001| ∆ = |RK40.001 − RK40.0001|
t ∆x ∆y ∆x ∆y

15 8.63388E-10 6.7354E-10 1.03473E-13 5.06262E-14
30 3.15983E-10 1.86788E-9 6.79456E-14 1.86684E-13
45 1.31539E-9 2.19618E-9 9.88098E-14 2.46636E-13
60 2.98053E-9 9.83527E-10 3.02092E-13 1.18461E-13
75 3.43937E-9 1.436E-9 3.60684E-13 1.47105E-13
90 1.8496E-9 3.74658E-9 2.0195E-13 3.79141E-13
105 1.15989E-9 4.4542E-9 1.05915E-13 4.62852E-13
120 4.06571E-9 2.85524E-9 4.06564E-13 3.10585E-13
135 5.36705E-9 5.40324E-10 5.52822E-13 2.81442E-14
150 3.98036E-9 4.17555E-9 4.19054E-13 4.11671E-13

Table 3: Absolute errors between MSDTM and RK4 solutions.

∆ = |MSDTM(K = 5)0.01 − RK40.001| ∆ = |MSDTM(K = 5)0.001 − RK40.001|
t ∆x ∆y ∆x ∆y

15 1.0163E-12 1.04294E-12 4.07452E-14 1.31006E-14
30 2.14651E-12 5.08191E-13 2.24265E-14 6.21864E-14
45 2.74858E-12 1.321E-12 2.24265E-14 6.62248E-14
60 1.54521E-12 3.38196E-12 6.9611E-14 4.81837E-14
75 1.27873E-12 3.92308E-12 9.33975E-14 8.10463E-15
90 3.83604E-12 2.30871E-12 6.86118E-14 7.19702E-14
105 4.74898E-12 7.51593E-13 2.66454E-15 1.03362E-13
120 3.43947E-12 3.93718E-12 8.17124E-14 7.9714E-14
135 5.09592E-14 5.52297E-12 1.20952E-13 4.05231E-15
150 3.78625E-12 4.36934E-12 1.04527E-13 8.199E-14

which is a system of two equations of order one in two unknown functions. According
to the multi-step DTM, the series solution for the system (4.11) is given by

(y(t), x(t)) =



K

∑
n=0

(Y1(n), X1(n))tn, t ∈ [0, t1],

K

∑
n=0

(Y2(n), X2(n))(t − t1)
n, t ∈ [t1, t2],

...
K

∑
n=0

(YM(n), XM(n))(t − tM−1)
n, t ∈ [tM−1, tM],

(4.12)

where Yi(n) and Xi(n), for i = 1, 2, · · · , M satisfy the following recurrence relations
Yi(k + 1) =

1
k + 1

Xi(k),

Xi(k + 1) =
1

k + 1

(
− Yi(k)− 6

k

∑
l=0

Yi(l)Yi(k − l)− 8
k2

∑
k1=0

Yi(k1)Yi(k2 − k1)Yi(k − k2)
)

,
(4.13)

such that Y1(0) = y(0), X1(0) = x(0) and Yi(0) = Yi−1(0), Xi(0) = Xi−1(0), for
i = 2, 3, · · · , M. For this example, we use the values of the stepsize h, K and N as 0.04,
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Figure 3: Phase plane for the problem (4.9)-(4.10): Solid line (present solution), Dotted line (RK4 solution).

Figure 4: Plots of displacement of y versus time t: Dashed line (the DTM solution); Solid line (the multi-step
DTM solution, Dotted line (RK4 solution).

10 and 1000, respectively. Fig. 3 shows the comparison between the multi-step DTM
solution and the numerical integration results obtained by RK4 method for the phase
diagram of the problem (4.9)-(4.10).

Fig. 3. Phase plane for the problem (4.9)-(4.10): Solid line (present solution), Dotted
line (RK4 solution). It can be seen from Fig. 3 that the solution obtained by the present
method is nearly identical with that given by RK4 method. Also, the results of our
computations are in excellent agreement with the results obtained in [19].

The graphs of the solutions corresponding to the multi-step DTM solution, DTM
solution and RK4 solution are sketched in Fig. 4. Fig. 4 shows that the multi-step DTM
greatly improves the solution obtained by DTM.One can see that DTM exhibits great
error because its solution decreasingly goes to to infinity.

Table 4 shows the maximum differences between the RK4 solution on time steps
h = 0.01 and h = 0.001.

Table 5 exhibits two sets of MSDTM solutions being compared to RK4 (h = 0.001).
The first set of result is between a 5 term MSDTM (h = 0.01) and RK4. We could see
clearly that the highest error is of 10−5. Next, we proceed to compare a 5 term MSDTM
(h = 0.001) with RK4. The accuracy is strengthened by a maximum error of 10−8.
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Table 4: Absolute differences between RK4 solutions.

∆ = |RK40.01 − RK40.0001| ∆ = |RK40.001 − RK40.0001|
t ∆x ∆y ∆x ∆y

0.5 1.13408E-5 1.33742E-6 1.12236E-9 1.21716E-10
1 2.66115E-6 4.43673E-6 3.66017E-10 3.93943E-10

1.5 4.57189E-6 7.63335E-6 1.95914E-10 6.61934E-10
2 7.14694E -6 1.08138E-5 3.25782E-10 9.17359E-10
2.5 3.8657E -5 1.29197E-5 2.80493E-9 1.07407E-9
3 1.31574E -4 8.40425E-6 1.00006E-8 6.98749E-10

3.5 1.82084E-4 6.01948E-6 1.12236E-9 4.00081E-10
4 9.32339E-5 2.1128E-5 7.07433E-9 1.47319E-9

Table 5: Absolute differences between MSDTM and RK4 solutions.

∆ = |MSDTM(K = 5)0.01 − RK40.001| ∆ = |MSDTM(K = 5)0.001 − RK40.001|
t ∆x ∆y ∆x ∆y

0.5 8.40675E-7 9.78464E-8 1.13026E-9 1.22554E-10
1 1.23449E-7 3.40013E-7 3.65342E-10 3.97121E-10

1.5 1.08766E-6 5.66513E-7 2.06102E-10 6.67335E-10
2 1.62996E-6 8.20343E-7 3.41373E-10 9.25256E-10

2.5 4.88093E-6 1.0002E-6 2.85221E-9 1.08377E-9
3 1.33778E-5 5.98731E-7 1.01313E-8 7.04532E-10

3.5 1.86411E-5 8.06935E-7 1.38756E-8 4.08015E-10
4 9.88639E-6 2.65161E-6 7.17111E-9 1.49914E-9

Example 4.3. Consider the following nonlinear oscillator [20]

y” +
y√

1 + y2
= 0, (4.14)

with the initial conditions

y(0) = B, y′(0) = 0. (4.15)

Let y′ = x. Then, Eq. (4.14) is transformed into the system of the first-order differential
equations

dy
dt

= x,
dx
dt

= − y√
1 + y2

, (4.16)

and the initial conditions y(0) = 0 and y′(0) = 0 become

y(0) = B, x(0) = 0. (4.17)

In view of the differential transform, given in Eq. (2.1), and the operations of differen-
tial transform given in Table 1, applying the differential transform to the system (4.16),
we obtain 

Y(k + 1) =
1

k + 1
X(k),

X(k + 1) = − 1
k + 1

H(k),
(4.18)
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where X(k), Y(k) and H(k) are the differential transforms of x(t), y(t) and h(t) =
y(t)/

√
1 + y2(t), respectively.

The differential transform of the initial conditions are given by Y(0) = B and
X(0) = 0. In view of the inverse differential transform, given in Eq. (2.2), the DTM
series solution for the system (4.16) can be obtained as

y(t) =
N

∑
n=0

Y(n)tn,

x(t) =
N

∑
n=0

X(n)tn.

(4.19)

Now, according to the multi-step DTM, taking N = K · M, the series solution for the
system (4.16) is given by

y(t) =



K

∑
n=0

Y1(n)tn, t ∈ [0, t1],

K

∑
n=0

Y2(n)(t − t1)
n, t ∈ [t1, t2],

...
K

∑
n=0

YM(n)(t − tM−1)
n, t ∈ [tM−1, tM],

(4.20a)

x(t) =



K

∑
n=0

X1(n)tn, t ∈ [0, t1],

K

∑
n=0

X2(n)(t − t1)
n, t ∈ [t1, t2],

...
K

∑
n=0

XM(n)(t − tM−1)
n, t ∈ [tM−1, tM],

(4.20b)

where Yi(n) and Xi(n), for i = 1, 2, · · · , M satisfy the following recurrence relations
Yi(k + 1) =

1
k + 1

Xi(k),

Xi(k + 1) = − 1
k + 1

Hi(k),
(4.21)

such that Yi(0) = Yi−1(0) and Xi(0) = Xi−1(0). Finally, if we start with Y(0) = B and
X(0) = 0, using the recurrence relations given in (4.21), then we can obtain the multi-
step solution given in Eqs. (4.20a) and (4.20b). We set the parameter B = 0.5 in this
example. The values of K and N are taken as 10 and 3000, respectively. Fig. 5 exhibits
the comparison between the multi-step DTM solution and the numerical integration
results obtained by RK4 method for the displacement and phase diagram of nonlinear
equation (4.14) subject to the initial conditions (4.15). It can be seen from Fig. 5 that
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(a) (b)
Figure 5: The displacement and phase plane for Example 4.3: Solid line (present solution), Dotted line
(RK4 solution).

the solution obtained by the present method is nearly identical with that given by RK4
method.

In Fig. 6, we give a comparison against the multi-step DTM solution, the DTM
solution and RK4 solution for the problem (4.14)-(4.15). Fig. 6 shows the advantage
of multi-step DTM over DTM. One can see that DTM exhibits great error because its
graph diverts decreasingly to infinity.

Table 6 shows the maximum differences between the RK4 solution on time steps
h = 0.01 and h = 0.001.

A comparison between two sets of MSDTM solutions and the RK4 solutions is
given in Table 7. The first set of result is between a 5 term MSDTM (h = 0.01) and RK4.
We could see clearly that the highest error is of 10−3. Next, we proceed to compare a
5 term MSDTM (h = 0.001) with RK4. The accuracy is strengthened by a maximum
error of 10−4.

Example 4.4. Consider the oscillatory equation [21]

y” +
y3

1 + y2 = 0, (4.22)

Figure 6: Plots of displacement of y versus time t: Dashed line (the DTM solution); Solid line (the multi-step
DTM solution, Dotted line (RK4 solution).
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Table 6: Absolute differences between RK4 solutions.

∆ = |RK40.01 − RK40.0001| ∆ = |RK40.001 − RK40.0001|
10 2.8005E-10 4.35242E-11 2.61041E-14 7.27196E-15
20 5.42142E-10 1.7748 E-10 5.9841E-14 2.86993E-14
30 7.6914E-10 3.95651E-10 9.21763E-14 4.45755E-14
40 9.43099E-10 6.88071E-10 1.09246E-13 7.68274E-14
50 1.04535E-9 1.04089E-9 1.18683E-13 1.1624E-13
60 1.0574E-9 1.43627E-9 1.10745E-13 1.59206E-13

Table 7: Absolute differences between MSDTM and RK4 solutions.

∆ = |MSDTM(K = 5)0.01 − RK40.001| ∆ = |MSDTM(K = 5)0.001 − RK40.001|
t ∆x ∆y ∆x ∆y

10 1.58904E-4 6.97676E-4 1.4238E-5 6.96139E-5
20 5.69291E-4 1.5793E-3 5.40092E-5 1.57342E-4
30 1.14969E-3 2.80963E-3 1.11566E-4 2.79816E-4
40 1.76393E-3 4.5227E-3 1.73732E-4 4.5074E-4
50 2.21915E-3 6.80578E-3 2.21718E-4 6.79336E-4
60 2.26893E-3 9.68298E-3 2.31397E-4 9.68766E-4

subject to the initial conditions

y(0) = 0, y′(0) = A. (4.23)

By using the transformation y′ = x, we get the following system of differential equa-
tions

dy
dt

= x,
dx
dt

= − y3

1 + y2 . (4.24)

Also, by this transformation the initial conditions y(0) = 1 and y′(0) = 0 become

y(0) = 0, x(0) = A. (4.25)

Taking the differential transform for Eq. (4.24) with respect to time t gives
Y(k + 1) =

1
k + 1

X(k),

X(k + 1) = − 1
k + 1

H(k),
(4.26)

where X(k), Y(k) and H(k) are the differential transforms of the corresponding func-
tions x(t), y(t) and h(t) = y3(t)/(1 + y2(t)), respectively. The initial conditions are
given by Y(0) = 0 and X(0) = A. By using Eq. (2.2), the DTM series solution for the
system (4.24) can be obtained as

y(t) =
N

∑
n=0

Y(n)tn,

x(t) =
N

∑
n=0

X(n)tn.

(4.27)



V. S. Ertürk, Z. M. Odibat and S. Momanic / Adv. Appl. Math. Mech., 4 (2012), pp. 422-438 435

(a) (b)
Figure 7: The displacement and phase plane for Example 4.4: Solid (present solution), Dotted line (RK4
solution).

Now, according to the multi-step DTM, taking N = K · M, the series solution for the
system (4.26) is given by

y(t) =



K

∑
n=0

Y1(n)tn, t ∈ [0, t1],

K

∑
n=0

Y2(n)(t − t1)
n, t ∈ [t1, t2],

...
K

∑
n=0

YM(n)(t − tM−1)
n, t ∈ [tM−1, tM],

(4.28a)

x(t) =



K

∑
n=0

X1(n)tn, t ∈ [0, t1],

K

∑
n=0

X2(n)(t − t1)
n, t ∈ [t1, t2],

...
K

∑
n=0

XM(n)(t − tM−1)
n, t ∈ [tM−1, tM],

(4.28b)

where Yi(n) and Xi(n), for i = 1, 2, · · · , M satisfy the following recurrence relations
Yi(k + 1) =

1
k + 1

Xi(k),

Xi(k + 1) = − 1
k + 1

Hi(k),
(4.29)

such that Yi(0) = Yi−1(0) and Xi(0) = Xi−1(0). By using Y(0) = 0, X(0) = A and
Eq. (4.29), we can obtain the multi-step DTM solution given in Eqs. (4.28a) and (4.28b).
We set the parameter A = 0.3 in this example. The values of M and N are taken
as 500 and 5000, respectively. Fig. 7 exhibits the comparison between the multi-step
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Figure 8: Plots of displacement of y versus time t: Dashed line (the DTM solution); Solid line (the multi-step
DTM solution, Dotted line (RK4 solution).

DTM solution and the numerical integration results obtained by RK4 method for the
displacement and phase diagram of the problem (4.22)-(4.23). From Fig. 7, it is obvious
that the solution obtained by the present method is nearly identical with that given by
RK4 method.

Table 8: Absolute differences between RK4 solutions.

∆ = |RK40.01 − RK40.0001| ∆ = |RK40.001 − RK40.0001|
10 3.7876E-11 3.2723E-11 4.7462E-15 1.15463E-14
20 1.90299E-11 1.04086E-10 4.996E-15 8.88178E-16
30 2.48132E-11 1.78864E-10 2.38698E-15 8.27116E-15
40 1.60473E-10 9.75143E-11 2.17049E-14 2.27596E-14
50 1.24906E-12 3.03436E-10 1.15463E-14 8.0113E-14
60 2.32546E-10 1.85565E-10 7.61613E-14 5.00711E-14
70 7.45553E-11 3.98835E-10 2.10387E-14 1.33782E-13
80 6.28648E-11 4.86366E-10 3.06422E-14 1.67755E-13
90 3.85069E-10 2.16925E-10 1.50172E-13 1.00475E-13
100 2.4396E-12 6.32865E-10 5.38458E-15 2.6594E-13

Fig. 8 shows the approximate solutions for the problem (4.22)-(4.23) obtained using
the multi-step DTM, DTM and RK4 methods. One can see that DTM exhibits great

Table 9: Absolute differences between MSDTM and RK4 solutions.

∆ = |MSDTM(K = 5)0.01 − RK40.001| ∆ = |MSDTM(K = 5)0.001 − RK40.001|
t ∆x ∆y ∆x ∆y

10 9.27896E-3 1.04814E-3 4.09822E-4 1.06366E-4
20 1.22025E-3 2.49172E-2 1.46274E-4 2.47321E-3
30 1.39416E-2 4.33334E-2 1.45996E-3 4.18997E-3
40 6.02821E-2 4.29629E-2 5.48484E-3 5.01121E-3
50 1.33524E-2 1.44777E-1 1.3473E-3 1.39623E-2
60 1.13715E-1 1.20481E-1 1.31443E-2 8.27576E-3
70 8.8488E-2 2.45185E-1 3.45222E-3 2.68387E-2
80 3.43122E-2 3.32062E-1 5.94255E-3 3.31268E-2
90 1.02038E-1 4.79413E-2 3.08809E-2 1.8273E-2
100 6.1824E-2 5.65846E-1 2.65661E-3 5.60774E-2
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error because its solution decreasingly goes to infinity.
Table 8 illustrates the maximum differences between the RK4 solutions on time

steps considered.
Table 9 shows a comparison between two sets of MSDTM solution and the RK4

solution. The first set of result is between a 5 term MSDTM solution (h = 0.01) and
RK4 solution. We could see clearly that the highest error is of 10−1. Next, we proceed
to compare a 5 term MSDTM (h = 0.001) solution with RK4 solution. The accuracy is
strengthened by a maximum error of 10−2.

5 Conclusions

In this study, an algorithm for solving nonlinear oscillators was introduced via MS-
DTM. Higher accuracy solution was obtained via this algorithm. Comparison between
MSDTM solution and RK4 solution is discussed and plotted. The solution via MSDTM
is continuous on this domain and analytical at each subdomain.
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