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Abstract. This paper presents an absorbing boundary condition for molecular dynam-
ics simulations of materials defects. The purpose of the boundary condition is to elim-
inates spurious reflections of phonons at the boundary and minimize the finite size
effect. In contrast to other existing methods, our emphasis is placed on the ease of im-
plementation. In particular, we propose a method for which the implementation can
be done within existing molecular dynamics code, and it is insensitive to lattice struc-
ture, the geometry and space dimension of the computational domain. To demonstrate
the effectiveness, the results from two test problems are presented.
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1 Introduction

Molecular dynamics (MD) models have emerged in the last few decades as a powerful
methodology in studying material properties. In MD, the interactions of the atoms are
explicitly taken into account [1]. As a result, assumptions on the strain-stress relation,
interface kinetics, geometry of crystal defects etc, are not needed. Expressed as second-
order ordinary differential equations (ODEs), the numerical implementation has been
standardized, e.g. see [1]. Recent development of more accurate interatomic potentials
[2–4] has made MD even more promising. In particular, MD models that are based on
fundamental considerations (quantum mechanics) are also available [5].
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Meanwhile, a fundamental limitation, which will likely remain for many years to
come, is the scale of the material systems that it can describe. This difficulty stems from
the intrinsic spatial scale of MD, which starts at the Angstrom scale (10−10m). As a result,
one is often restricted to small systems (e.g., thousands to a few million atoms). In ad-
dition, periodic boundary conditions (PBC) have been implemented almost exclusively.
The implication of PBC is an infinite system with periodic images, which creates an ar-
tificial interactions among the images. Furthermore, applying non-uniform boundary
condition under this setting is not possible. More importantly, there are many mechani-
cal systems that can not be embedded into a larger periodic sample, e.g, an open crack.

Fortunately, non-periodic BCs that correctly describe the influences of the surround-
ing medium has been recently developed by numerous groups [6–10]. The mathematical
derivation starts with an infinite system, from which the computational domain is se-
lected. The degrees of freedom associated with the atoms in the surrounding region are
eliminated by using Fourier/Laplace transform. The result is that the atoms outside the
boundary can be written as an integral that involves the time history of displacement of
the atoms inside the computational domain. In principle this gives the correct boundary
condition. For planar boundaries, this derivation is particularly simple, and it can be
implemented directly [10–12]. In this case, the BCs can also be approximated by mini-
mizing the reflection coefficients [6, 7, 9, 13–15]. Another important application of these
BCs can be found in multiscale models that involve MD and continuum models [16–24]
to reduce the computational cost. Typical observations are that as defects migrate, lattice
waves are generated continuously, and as they arrive at the artificial boundary, reflec-
tions may occur. In many cases, the reflected waves interfere with the dynamics of the
defects e.g., [25], which is undesirable. This observation is similar to artificial reflections
in the simulations of wave propagation problems, where absorbing BCs play a vital role
in minimizing the boundary reflection [26–28].

Despite the success of the existing methods, there are several remaining difficul-
ties. First, the implementation of most existing methods requires significant effort to
pre-compute the parameters. For example, such preparations include the force constant
matrices, crystal orientations, and the geometry of the computational domain. These
steps may not be familiar to general MD practitioners. Secondly, most of the calcula-
tions are limited to planar boundaries, and the proper extension to corners is highly non-
trivial [9,11]. Thirdly, when the BC is expressed as a memory integral, one needs to store
the previous values of the displacement of the atoms near the boundary, and the integrals
have to be evaluated at every step in time. This significantly increases the computational
cost. Finally, the implementation of the BCs in existing code is not straight-forward. To
our knowledge, none of the above mentioned methods has been included in existing MD
code.

This paper presents a simple approach to implement an approximation of the ab-
sorbing BCs. We first express the exact BC as a convolutional integral where the kernel
function is written as a matrix function. Motivated by the success of the Krylov subspace
approximation of matrix functions [29–32], we introduce a hierarchical approximation.
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We then show that this approximation is equivalent to extending the system by adding a
few auxiliary variables. This will effectively eliminate the history dependence and makes
the implementation much more efficient. What makes this method particularly appeal-
ing is that the implementation can be easily incorporated into an existing MD code. In
particular, the subspace only requires force calculations, which are usual components in
MD. The method is insensitive to the lattice structure, the geometry and the dimension-
ality of the computational domain. Finally, the extended system inherits the equation
forms of the Newton’s equations of motion. Consequently, the Verlet type of integrators
can be used.

The rest of the paper is organized as follows. We first show a derivation of the BC
using a matrix-vector notation. Then in Section 2, we present an approximation of the
memory function using Krylov subspaces. The implementation of this algorithm using
force calculation subroutines are then discussed in Section 3. Finally, we present results
from several numerical tests.

2 A Mathematical formulation of the boundary condition

We have in mind a system of N atoms, and we divide the system into two subdomains.
The first sub-domain, denoted by ΩI , contains the defects of interest, and the surrounding
region, denoted by ΩII , can be regarded as an elastic medium surrounding the defects.
The partition of the domain is illustrated in Fig. 1. Meanwhile, we denote the displace-
ment of all the atoms by u with reference position X, and u is determined by Newton’s
equations of motion,

miüi =−
∂U

∂ui
. (2.1)

For simplicity of the notations, the mass mi will be set to unity. Here U(u1,u2,···) is the
potential energy that describes the interaction among the atoms. However, the method-

boundary
I

IIΩ

Ω
artificial

Figure 1: A schematic of the partition of the domain. The system contains N total atoms and n atoms are
selected to create the computational domain ΩI , n≪N.
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ology presented in this paper will not depend on the specific form of U. Most empirical
potentials for solids are short-ranged: The interaction is zero when the atomic distance is
beyond a cut-off radius rcut. This will be assumed in the present approach.

2.1 The exact boundary condition

In accordance to the partition of the domain, we divide the atomic displacement into
(uI ,uII), representing respectively the displacement for the atoms inside and outside the
actual computational domain ΩII . Further, we divide the system of equations (2.1) into
two groups, and they are written in the following form,

üI =−
∂U

∂uI
(uI ,uII),

üII =−KII,IuI−KII,IIuII .

(2.2)

We will assume that initially

u̇II(0)=uII(0)=0. (2.3)

This means that initially the surrounding region is in a mechanical equilibrium and it is
a typical assumption for deriving an absorbing BC.

In addition, we have linearized the interactions that involve the atoms in the
surrounding region ΩII . The coefficients KI,II ∈ R

n×(N−n), KII,I(= KT
I,II) and KII,II ∈

R
(N−n)×(N−n) contain the force constant matrices. More specifically, we have

KI,II =
∂2U

∂uI∂uII
,

KII,II =
∂2U

∂u2
II

.

(2.4)

The linearization can be justified on the ground that away from defects, the atomic dis-
placement is smooth.

Eqs. (2.2), (2.3) and (2.4) have been the starting point to derive explicit BCs for MD
models [9–12, 33]. We now briefly show a derivation in a matrix-vector form. By solving
the second equation in (2.2), we find that

uII(t)=
∫ t

0
K
− 1

2
II,II sin

[

√

KII,II(t−s)
]

KII,IuI(s)ds. (2.5)

The trigonometric matrix function is defined as

sinA=A−
1

3!
A3+

1

5!
A5 ··· . (2.6)

Namely, it is defined based on the Taylor series. One can easily verify from this expansion
that the kernel function in (2.5) only involves the integer powers of the matrix KII,II .
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This BC expresses the displacement of the atoms in ΩII in terms of the history of the
displacement of the atoms in the interior ΩI . At least for the model (2.2), this BC is exact.
The main difficulty is due to the memory function, which has been expressed as a matrix
function. Due to the large dimension of KII,II , direct computation is impractical. Next we
present a systematic approach to approximate (2.5).

2.2 Krylov subspace approximation of the boundary condition

The BC (2.5) involves a matrix function. A well established method for approximating
matrix functions is the Krylov subspace approximation [29–32]. For the present problem,
due to the short range interaction, the matrix KII,I is sparse: Only the entries correspond-
ing to the atoms at the artificial boundary are non-zero. This makes the Krylov subspace
approximation particularly efficient. More specifically, we let V be the columns of KII,I

that correspond to the those inside atoms whose distance to the boundary is less than
rcut. This set of atoms are specifically defined as follows,

B−=
{

Xi∈ΩI , dist(Xi,ΩII)≤ rcut.
}

. (2.7)

With these preparations, we let A=KII,II , and define the block Krylov subspace:

Kℓ(A;V)=span
{

V,AV,··· ,AℓV
}

. (2.8)

The implementation of the Krylov subspace requires a set of vectors that form the
basis of the subspace. This is typically done by using the block Lanczos method [31, 32].
Let m be the rank of V. The block Lanczos algorithm is as follows.

Algorithm 1. (Block Lanczos). Set V0=0, Z0=V and p0=m. For j=1,2,··· ,ℓ, repeat:

Rank revealing QR factorization [34] of the matrix Zj−1: Zj−1=QjRj−1.

• Let pj = rank(Zj−1), Vj be the first pj columns of Qj, and Bj−1 be the first pj rows of
Rj−1;

• Zj←−AVj−Vj−1BT
j−1;

• Aj←−VT
j Zj;

• Zj←−Zj−Vj Aj.

Let us write the basis vectors in the form of,

Q=[Q0 Q1 ···Qℓ]. (2.9)

Let M be the number of column in Q. It is the dimension of the subspace. Clearly,
M≤ (ℓ+1)m. In particular, Q0 can be obtained from a QR decomposition of V

V=Q0B0,
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in which B0 is a upper triangular matrix. Our experiences suggest that 2≤ℓ≤6 is usually
adequate.

Of particular importance to the matrix function approximation is the fact that

AQ≈QT, (2.10)

where T∈R
M×M is a block tri-diagonal matrix. As a result of this approximation, we can

approximate the product of a matrix function f (A) and the vector Q as

f (A)Q≈Q f (T). (2.11)

Since T is a block tri-diagonal matrix with much smaller dimension, the right hand side can
be efficiently computed.

In particular, the BC (2.5) can be approximated by

uII(t)≈
∫ t

0
QT−

1
2 sin

[

T
1
2 (t−s)

]

ET
1 uI(s)ds. (2.12)

Here E1 has a similar block structure as Q: E1=[BT
0 00···0].

Despite the availability of the exact solution (2.5) and the reduction to the simpler
form (2.12), there are several remaining practical issues:

1. The force constant matrices that form the matrix A need to be computed a priori.
For artificial boundary with general geometry, this procedure can be quite cumber-
some.

2. The dimension of A, which is determined by the size of ΩII , is too large.

3. In order to implement (2.12), the history of uI has to be stored. The integral has to
be evaluated at every step. This leads to significant computational overhead.

Due to these issues, implementing (2.12) within an existing MD code would still re-
quire significant revision and additions. In the next section, we show a much simplified
implementation method.

3 An alternative implementation

3.1 The evaluation of the force constant matrices in the Krylov subspace

Here we propose an algorithm that can be easily implemented in existing MD code. First,
we notice that the force constant matrices (2.4) can be computed using a finite difference
approximation using existing force calculation routines, which is usually available in MD
packages. In particular, let f =−∇U, then we have

Kiα,jβ≈−
f jβ(X+ǫeiα)− f jβ(X−ǫeiα)

2ǫ
. (3.1)
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Here jβ labels the β-th component of the force on the j-th atom, and eiα is the unit vector
whose iα-th component is one and all other components are zero.

Using Eq. (3.1), one can compute the initial vector V. The Krylov subspace also in-
volves matrix multiplications, e.g., AY, with Y being any matrix. This can be approxi-
mated in the same way. Namely,

Ayi≈−
f(X+ǫyi)−f(X−ǫyi)

2ǫ
, (3.2)

where yi is the i-th column of the matrix Y.
Due to the short range interaction, the matrix entry Kiα,jβ is only non-zero for atoms

near the artificial boundary. Therefore, the perturbation of the ith atom only needs to be
introduced for atoms that are inside, but close to the boundary, i.e., that atoms in B−.

Thanks again to the short range of the interatomic potential, the matrix A will have
band structure with bandwidth consistent with the cut-off radius. As a result, the vectors
AℓV are only confined to a few layers outside the boundary. These atoms can be found
in the set

B+=
{

Xi∈ΩII , dist(Xi,ΩI)≤ ℓrcut.
}

. (3.3)

In our algorithm we only evaluate the forces on those atoms, which significantly reduces
the computational cost associated with the matrix vector multiplications.

We further comment that these calculations are performed prior to the simulation.
They only need to be done once.

3.2 An extended system with no memory

We now address the issue with the memory dependence. An important observation is
that when uII is approximated in the subspace (2.8),

uII =Qz(t), (3.4)

the second equation in (2.2) is reduced to

z̈=−ET
1 uI−Tz(t). (3.5)

Here z∈R
M is the coefficients of uII in the subspace.

Now we can simply solve the equation for z(t) and use (3.4) to reconstruct the po-
sition of the atoms outside the boundary. We also notice that: (1.) The dimension of
z equals the dimension of the subspace, which is typically very small compared to the
dimension of the entire problem; (2.) Since the matrix E1 has many zero entries, the in-
teraction term can be easily computed. More importantly, one can easily show that the
models (3.4) and (3.5) are equivalent to the approximate BC (2.12).

Next, to incorporate this observation to an existing MD code, we will replace the
equation (3.5) by a MD-like nonlinear model. To be more specific, we start from the fully
nonlinear model for the atoms outside,

üII = f II(uI ,uII), (3.6)
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whose linearization corresponds to the second equation in (2.2). We now bypass the
linearization step, which led to the second equation in (2.2), by projecting this nonlinear
equation to the Krylov subspace. Namely, we seek uII =Qz, such that

(

üII ,q
)

=
(

f II ,q
)

, (3.7)

for any q in the subspace, especially the columns of Q.
A direct substitution yields

z̈=QT f II(uI ,Qz). (3.8)

In the case when f II is linearized (cf. the second equation in (2.2)), we would have
arrived at Eq. (3.5), i.e., they are equivalent in the linearized case. But it is clear that (3.8)
is much easier to implement in an existing MD code. More importantly, since the basis
vectors in Q are localized and the support is confined to the boundary (the set B+), only
the components of f II that correspond to the forces on the atoms near the boundary need
to be computed (3.8). Another advantage is that the extended system (3.8) is again a
system of second-order differential equations with no memory.

Finally, the algorithm can be implemented as follows.

Algorithm 2. (Implementation).

1. Define the atoms outside (II) and inside (I) the boundary.

2. Use finite difference to generate the matrix V.

3. Use the Lanczos algorithm to generate the orthogonal basis Q.

4. Time integration: set z=0,η(= ż)=0. For n=0,1,··· ,

(a) vI→vI+ f I ∆t/2; η→η+QT f II ∆t/2;

(b) uI→uI+vI∆t; z→z+η∆t;

(c) uII =Qz;

(d) Compute the forces f (and separate f I and f II);

(e) vI→vI+ f I ∆t/2; η→η+QT f II ∆t/2.

Meanwhile, since our primary interest is in the variable uI and the information out-
side ΩI is only designed as absorbing boundary conditions, we can practically introduce
a damping term in the equation of z to avoid a delayed spurious reflection at bound-
ary due to the inaccuracy of Krylov subspace approximation and the outmost boundary
condition of ΩI I . We introduce a damping term in the equation of z, namely,

z̈=QT f II(uI ,Qz)−γη.

We change step 4(a) and 4(e) to

vI→vI+ f I ∆t/2; η→η+QT f II∆t/2−γη∆t/2.
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4 Numerical examples

In this section we will give two numerical examples to test the new MD boundary con-
ditions. The first example is an implementation of the BCs for lattice waves generated
by an edge dislocation, and the second is for the waves around a crack. In both cases
we could see that the reflected wave at the boundary can be well absorbed by our new
boundary condition.

4.1 An example for a dislocation

In this example we consider the dislocation dipole problem in a face-centered-cubic (fcc)
crystal of aluminum. We use the embedded atom potential in [3] as the atomic potential
U.

We study a rectangular system with the three axes along [110],[001],[1̄10] directions
respectively, which contains 100×60 primitive cells on the plane with periodic boundary
condition in the third direction to model a plain strain condition. ΩI contains 7872 atoms,
and the remain few layers of atoms in the surrounding area are identified as ΩII . To
initialize the dislocation, we use the analytical solution of the linear elasticity equation
for an edge dislocation [35] and prescribe the displacement as follows,























ux(x,y)=b/2π
[

θ(x,y)+
xy

2(1−v)(x2+y2)

]

,

uy(x,y)=−b/2π
[ 1−2v

4(1−v)
ln(x2+y2)+

x2−y2

4(1−v)(x2+y2)

]

,

uz(x,y)=0,

(4.1)

where the dislocation line direction is ez and the Burgers vector is b=bex. Notice that the
(x,y) here refers to the position relative to the dislocation core and the θ(x,y) is the angle
between ex and (x,y,0).

For comparison purposes, we also implemented a fixed boundary condition, where
we simply hold that atoms at the boundary according to (4.1). As shown in Fig. 2, the
new boundary condition with the Krylov subspace may indeed eliminate the reflected
wave at the artificial boundary, and as we have mentioned, the complexity of updating
has been largely decreased since we project a much higher dimensional vector uII to the
Krylov subspace. Here, we choose ℓ=2. The dimension of the Krylov subspace is 2676.

4.2 An example for an elliptic crack

For the second test, we keep all the numerical setup mentioned in the previous case,
except we would displace the atoms according to the displacement given by [36]:
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(fixed BC, t=0.795ps) (new BC, t=0.795ps)

(fixed BC, t=1.06ps) (new BC, t=1.06ps)

(fixed BC, t=1.325ps) (new BC, t=1.325ps)

(fixed BC, t=1.59ps) (new BC, t=1.59ps)

Figure 2: Fixed boundary condition and new boundary condition with Krylov subspace for dislocation dipole.
We could see the dislocation waves are reflected at the boundary if we use fixed boundary condition, while the
wave could be well absorbed with our new boundary condition.
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ux(x,y)=KI

(2r

π

)1/2
Re

{ 1

s1−s2
[s1 p2(cosθ+s2 sinθ)1/2

−s2 p1(cosθ+s1sinθ)1/2]
}

,

uy(x,y)=KI

(2r

π

)1/2
Re

{ 1

s1−s2
[s1q2(cosθ+s2 sinθ)1/2

−s2q1(cosθ+s1 sinθ)1/2]
}

,

uz(x,y)=0,

(4.2)

where r and θ are the polar coordinates and functions pi and qi are defined as



































p1= a11s2
1+a12−a16s1,

p2= a11s2
2+a12−a16s2,

q1=
a12s2

1+a22−a26s1

s1
,

q2=
a12s2

2+a22−a26s2

s2
.

(4.3)

Further, si are two conjugate roots of a characteristic equation [36] and aij are related to
the elastic compliance constants of the material.

For the Krylov subspace, we choose ℓ=2 again and the dimension of the Krylov space
is still 2676. From Fig. 3, we observe that the crack propagates toward the boundary, and
after the waves reached the boundary, they are reflected when the fixed BC is used. More
reflections are observed from the top and bottom boundaries. On the other hand, with
the new BC, the waves coming from the crack tip have been well absorbed.

5 Conclusions

We have presented a new approach to formulate approximate boundary conditions for
molecular dynamics simulations in solids. The particular emphasis has been placed on
the effort of the implementation: All the steps have been designed so that they can be
implemented within an MD code. For instance, the matrix multiplication in the Lanczos
algorithm can be achieved by using the force calculation routines in MD. In addition, the
boundary condition is reformulated into a second order ODE, which has the same form
as the full MD model. Therefore, the time integration can be implemented using Verlet-
like algorithms. Compared to existing methods, this current formulation is much more
accessible. An important effort would be to include this method to a MD software, such
as LAMMPS [37]. This will be done in our future works, which also include the extension
to finite temperature boundary conditions [33, 38].
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(fixed BC, t=1.484ps) (new BC, t=1.484ps)

(fixed BC, t=1.802ps) (new BC, t=1.802ps)

(fixed BC, t=2.12ps) (new BC, t=2.12ps)

(fixed BC, t=2.438ps) (new BC, t=2.438ps)

Figure 3: Numerical results for the crack propagation. Left: fixed BC; Right: the new BC.
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