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Abstract. In this paper we extend the results of [12] to the borderline case s= 1
2 . We

obtain the classification of global bounded solutions with asymptotically flat level sets
for semilinear nonlocal equations of the type

∆
1
2 u=W ′(u) in Rn,

where W is a double well potential.
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1 Introduction

We continue the study initiated in [12] for the classification of global bounded solutions
with asymptotically flat level sets for nonlocal semilinear equations of the type

∆su=W ′(u) in Rn,

where W is a double well potential.
The case s∈( 1

2 ,1) was treated in [12] while s∈(0, 1
2 ) was considered by Dipierro, Serra

and Valdinoci in [5]. In this paper we obtain the classification of global minimizers with
asymptotically flat level sets in the remaining borderline case s= 1

2 . All these works were
motivated by the study of semilinear equations for the case of the classical Laplacian s=1,
and their connection with the theory of minimal surfaces, see [2,4,9,10]. It turns out that
when s∈ [ 1

2 ,1), the rescaled level sets of u still converge to a minimal surface while for
s∈ (0, 1

2 ) they converge to an s-nonlocal minimal surface, see [13].
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We consider the Ginzburg-Landau energy functional with nonlocal interactions cor-
responding to ∆1/2,

J(u,Ω)=
1
4

∫
Rn×Rn\(CΩ×CΩ)

(u(x)−u(y))2

|x−y|n+1 dxdy+
∫

Ω
W(u)dx,

with |u|≤1, and W a double-well potential with minima at 1 and −1 satisfying

W∈C2([−1,1]), W(−1)=W(1)=0, W>0 on (−1,1),
W ′(−1)=W ′(1)=0, W ′′(−1)>0, W ′′(1)>0.

Critical functions for the energy J satisfy the Euler-Lagrange equation

∆1/2u=W ′(u),

where ∆1/2u is defined as

∆1/2u(x)=PV
∫

Rn

u(y)−u(x)
|y−x|n+1 dy.

Our main result provides the classification of minimizers with asymptotically flat
level sets.

Theorem 1.1. Let u be a global minimizer of J in Rn. If the 0 level set {u=0} is asymp-
totically flat at ∞, then u is one-dimensional.

The hypothesis that {u=0} is asymptotically flat means that there exist sequences of
positive numbers θk, lk and unit vectors ξk with lk→∞, θkl−1

k →0 such that

{u=0}∩Blk⊂{|x ·ξk|< θk}.

By saying that u is one-dimensional we understand that u depends only on one di-
rection ξ, i.e., u= g(x ·ξ).

As in [12], we obtain several corollaries. We state two of them.

Theorem 1.2. A global minimizer of J is one-dimensional in dimension n≤7.

Theorem 1.3. Let u∈C2(Rn) be a solution of

∆1/2u=W ′(u), (1.1)

such that
|u|≤1, ∂nu>0, lim

xn→±∞
u(x′,xn)=±1. (1.2)

Then u is one-dimensional if n≤8.
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Theorem 1.2 and Theorem 1.3 without the limit assumption in (1.2), have been estab-
lished by Cabre and Cinti [1] in dimension n=3. Recently, Figalli and Serra [6] obtained
the same conclusion for all stable solutions in dimension n= 3. Their result, combined
with Theorem 1.2 above, implies the validity of Theorem 1.3 without the limit assump-
tion in (1.2), in dimension n=4.

We prove our result by making use of the extension property of ∆1/2. Let U(x,y) be
the harmonic extension of u(x) in Rn+1

+

∆U=0 in Rn+1
+ , U(x,0)=u(x),

then
∆1/2u(x)= cnUy(x,0),

with cn a dimensional constant. Global minimizers of J(u) in Rn with |u|≤1 correspond
to global minimizers of the extension energy J(U) with |U|≤1, where

J(U) :=
cn

2

∫
|∇U|2dxdy+

∫
W(u)dx.

After dividing by a constant and relabeling W we may fix cn to be 1.
We obtain Theorem 1.1 from an improvement of flatness property for the level sets

of minimizers of J, see Proposition 6.1. We follow the main steps from [11, 12], however
some technical modifications are required. The main difference when s = 1

2 is that at a
point of {u = 0} which has a large ball of radius R tangent from one side we can no
longer estimate its curvatures in terms of R−1. Instead we obtain an integral estimate
(see Lemma 3.3) which turns out to be sufficient for the key Harnack estimate of the level
sets.

The paper is organized as follows. In Sections 2 we introduce some notation and
then construct a family GR of axial supersolutions. In Sections 3 and 4 we provide vis-
cosity properties for the mean curvature of the level set {u= 0}. In Section 5 we obtain
the Harnack inequality of the level sets and in Section 6 we prove our main result by
compactness.

2 Supersolution profiles

We introduce the following notation.
We denote points in Rn as x=(x′,xn) with x′∈Rn−1. The ball of center z and radius r

is denoted by Br(z), and Br :=Br(0). Points in the extension variables Rn+1
+ are denoted

by X=(x,y) with y>0, and the ball of radius r as B+
r

B+
r :={(x,y)∈Rn+1

+ ||(x,y)|< r}⊂Rn+1.

Given a function U(x,y) we denote by u(x) its trace on {y=0}.
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Let J be the energy

J(U,B+
R ) :=

1
2

∫
B+

R

|∇U|2dxdy+
∫

Br

W(u)dx,

and a critical function U for J satisfies the Euler-Lagrange equation

∆U=0, Uy =W ′(u). (2.1)

In [8] it was established the existence and uniqueness up to translations of a global min-
imizer G of J in 2D which is increasing in the first variable and which has limits ±1 at
±∞:

a) G :R2
+→ (−1,1) solves the Eq. (2.1),

b) G(t,y) is increasing in the t variable and its trace g(t) :=G(t,0) satisfies

g(0)=0, lim
t→±∞

g(t)=±1.

Moreover, g and g′ have the following asymptotic behavior

1−|g|∼min{1,|t|−1}, g′∼min{1,|t|−2}, (2.2)

and
J(G,B+

R )=C∗ logR+O(1),

for some constant C∗.
Constants that depend on n, W, G are called universal constants, and we denote them

by C, c. In the course of the proofs the values of C, c may change from line to line when
there is no possibility of confusion. If the constants depend on other parameters, say θ, ρ,
then we denote them by C(θ,ρ) etc.

For simplicity of notation we assume that

W is uniformly convex outside the interval [g(−1),g(1)]. (2.3)

Since ∆Gt =0 and Gt≥0, we easily conclude that

|Gy|≤C
1

1+r
, C′

1+y
1+r2 ≥Gt≥ c′

1+y
1+r2 , (2.4)

where r denotes the distance to the origin in the (t,y)-plane. We also obtain

|G|≤1−cr−1, ∀r≥1.

Define in B+
R/8,

HR(t,y) :=G(t,y)+
C0

R

(
(y+C1)logR−ylog(y+1)+

1
R
(t2−y2)

)
, (2.5)
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for some C0, C1 universal, large to be made precise later.
Let H̄R denote the truncation of HR at level 1,

H̄R =min{HR,1}.

Since

(y+C1)logR−ylog(y+1)− 1
R

y2

is strictly increasing in the interval [0,R/8] we conclude that

HR≥G+2>1 if either y>CR/logR or |t|>R/16.

Hence H̄R = 1 outside B+
R/16, and we extend H̄R = 1 outside this ball in the whole R2

+.
Finally we define GR in R2

+ as

GR(t,y) := inf
l≥0

H̄R(t+l,y).

Next we collect some key properties of the function GR.

Lemma 2.1 (Supersolution profile). Then for all large R we have
1) GR =1 outside B+

R/8∪((−∞,0]×[0,R/8]),

2) GR(t,y) is nondecreasing in t, and ∂tGR =0 outside B+
R/8,

3) GR =HR in B+
R1/3 and

|GR−G|≤C
logR

R
in B+

4 ,

4)

∆GR+
2(n−1)

R
∂tGR≤0,

and on y=0:

∂yGR <W ′(GR)+χ[−1,1]
ClogR

R
.

The inequalities in 4) are understood in the viscosity sense.
Notice that by (2.4), property 3) implies that

GR(t,y)≤G
(

t+C′′
logR

R
,y
)

in B+
4 .

Proof. Properties 1) and 2) follow from the definition of GR since H̄R=1 outside B+
R/8. We

compute

∂tHR =Gt+
2tC0

R2 , (2.6)
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and use (2.4) to conclude that ∂tHR >0 if t≥−R1/2. In B+
R1/3 we have

|HR|≤ |G|+
C0

R
(R1/2+R−1/3)≤1−cR−1/3+CR−1/2<1,

hence
GR =HR in B+

R1/3 .

For property 4) we use that GR is the infimum over a family of left translations of HR,
hence it suffices to show the inequalities for HR in the region where HR<1 and ∂tHR>0.
This means that we can restrict to the region where 1+y≤ CR/logR, and |t| ≤ CR2/3.
From the definition (2.5) of HR we have

∆HR =−
C0

R

(
1

(1+y)2 +
1

1+y

)
≤−C0

R
1

1+y
,

and, by (2.6)

∂tHR≤C′
1+y
1+r2 +C0

r
R2 .

Since 1+y≤ CR/logR we easily obtain the first inequality in 4) by choosing C0 large
depending on C′. On y=0 we have

∂yHR =∂yG+C0
logR

R
=W ′(G)+C0

logR
R

,

HR =G+C0C1
logR

R
+C0

t2

R2 .

Then, by (2.3), W ′′(g)> c outside the interval [−1,1], and we find that

W ′(HR)≥W ′(G)+cC1C0
logR

R
>∂yHR,

which easily gives the desired conclusion.

3 Estimates for {u=0}

In this section we derive properties of the level sets of solutions to

∆U=0, ∂yU=W ′(U), (3.1)

which are defined in large domains.
In the next lemma we use the functions GR constructed in the previous section and

find axial approximations to (3.1).
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Lemma 3.1 (Axial approximations). Let GR : R2
+→ (−1,1] be the function constructed in

Lemma 2.1. Then its axial rotation in Rn+1

ΦR(x,y) :=GR(|x|−R,y)

satisfies
1) ΦR =1 outside B+

2R, and ΦR is constant in B+
R/2.

2)
∆ΦR≤0 in Rn+1

+ ,

and
∂yΦR <W ′(ΦR), when |x|−R /∈ [−1,1].

3) In the annular region |(|x|−R,y)|≤R
1
3 , we have

|∆ΦR|≤C
1
R

, |∂yΦR−W ′(ΦR)|≤C
logR

R
.

Let φR(x) = ΦR(x,0) denote the trace of ΦR on {y = 0}. Notice that φR is radially
increasing, and {φR =0} is a sphere which is in a ClogR/R-neighborhood of the sphere
of radius R.

Proof. We have

∆ΦR(x,y)=∆GR(s,y)+
n−1
R+s

∂sGR(s,y), s= |x|−R,

∂yΦR(x,0)=∂yGR(s,0).

The conclusion follows from Lemma 2.1 since ∂sGR = 0 when |s| ≥R/8 and R+s>R/2
when |s|<R/8.

Definition 3.1. We denote by ΦR,z the translation of ΦR by z i.e.,

ΦR,z(x,y) :=ΦR(x−z,y)=GR(|x−z|−R,y).

Sliding the graph of ΦR:
Assume that u is less than φR,x0 in B2R(x0). By the maximum principle we obtain that

U <ΦR,z with z= x0 in B2R(x0,0) (and therefore globally.) We translate the function ΦR
above by moving continuously the center z, and let’s assume that it touches U by above,
say for simplicity when z=0, i.e., the strict inequality becomes equality for some contact
point (x∗,y∗). From Lemma 3.1 we know that ΦR is a strict supersolution away from
{y = 0}, and moreover the contact point must satisfy y∗ = 0, |x∗|−R∈ [−1,1], that is it
belongs to the annular region BR+1\BR−1 in the n-dimensional subspace {y=0}.
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Lemma 3.2 (Estimates near a contact point). Assume that the graph of ΦR touches by above
the graph of U at a point (x∗,0,u(x∗)) with x∗∈BR+1\BR−1.

Then in B2(x∗,0) the level set {u=0} stays in a ClogR/R neighborhood of the sphere ∂BR=
{|x|=R}, and

‖u−φR‖C1,1(B2(x∗))≤C
logR

R
.

Proof. Assume for simplicity that x∗ is on the positive xn axis, thus |x∗−Ren| ≤ 1. By
Lemma 3.1 we have

U≤ΦR≤G
(

xn−R+C
logR

R
,y
)
=: V in B3(Ren).

Both U and V solve the same equation (3.1), and

(V−U)(x∗,0)≤C
logR

R
.

Since V−U≥0 satisfies

∆(V−U)=0, ∂y(V−U)=b(x)(V−U),

b(x) :=
∫ 1

0
W ′′(tu(x)+(1−t)v(x))dt,

we obtain

|V−U|≤C
logR

R
in B5/2(Ren),

from the Harnack inequality with Neumann boundary condition. Moreover since b has
bounded C1,α norm, we obtain that U−V∈C2,α

x for some α>0, and

‖U−V‖C1,1(B2(Ren))≤C
logR

R
,

by local Schauder estimates. This easily implies the lemma.

Remark 3.1. If instead of ΦR being tangent by above to U, we only assume

ΦR≥U and (φR−u)(x∗)=: a≤ c

at some x∗∈BR+1\BR−1 then the Harnack inequality above gives

ca−C
logR

R
≤ΦR−U≤C

(
a+

logR
R

)
in B2(x∗,0),

for some C large, universal.
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Lemma 3.3. Assume that
a) BR(−Ren)⊂{u<0} is tangent to {u=0} at 0.
b) there is x0∈BR/2(−Ren) such that u(x0)≤−1+c for some c>0 small.

Denote by D the set
D :={u<0}\BR(−Ren).

Then ∫
Bc

1

χD(x)
|x|n+1 dx≤C

logR
R

, (3.2)

and
{u=0}∩BRσ⊂{|xn|≤R−3/4},

for some σ>0 small, universal.

We remark that in (3.2) we can integrate over whole Rn instead of Bc
1 since, by Lemma

3.2, the curvatures of ∂D in B1 are bounded by ClogR/R.

Proof. First we claim that

U≤ΦR/2,t0en , with t0=−
R
2
−K

logR
R

, (3.3)

for some K large universal.
Let’s assume first that ΦR/2,ten≥U when t=−R. We want to show that this inequality

remains valid as we increase t from −R till t0. By Lemma 3.1, the first contact point
between the graphs of U and ΦR,ten can occur only on y=0 and, by Lemma 3.2 near this
contact point the {u=0} and |x+ten|=R/2 must be at most ClogR/R apart. This is not
possible if K is chosen sufficiently large.

To prove that ΦR/2,−Ren≥U, one can argue similarly by using hypothesis b) and look-
ing at the continuous family Φr,−Ren and then increase r from C to R/2. This proves the
claim (3.3).

We write Φ=ΦR/2,t0en for simplicity of notation, and by φ the trace of Φ on y=0. We
have Φ≥U, and therefore φ≥u, and

∆1/2φ(0)≤W ′(φ(0))+C
logR

R
.

Using that
|φ(0)|≤C(K)logR/R, u(0)=0,

together with the equation for ∆1/2u at 0 we obtain that

∆1/2(φ−u)(0)≤C(K)
logR

R
.
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Since (φ−u)(0) and ‖φ−u‖C1,1(B1)
(by Lemma 3.2) are bounded by ClogR/R, we use the

integral representation for ∆1/2 and obtain∫
Bc

1

φ−u
|x|n+1 dx≤C

logR
R

. (3.4)

Next we show that we can replace φ−u in the integral above by χD̃ where

D̃ :={u<0}\{φ<0}⊃D.

For this it suffices to show that for any unit ball B1(z) with center z∈ D̃ we have

c1

∫
B1(z)

χD̃dx≤
∫

B1(z)
(φ−u)+C1

logR
R

dx,

for some c1>0 small, and C1 large universal.
Indeed, let a=(φ−u)(z). If a> c then, by the Lipschitz continuity of φ−u, the right

hand side above is bounded below by a universal constant and the inequality is obvious.
If a< c then we use Remark 3.1 and conclude that

|D̃∩B1(z)|≤C
(

a+
logR

R

)
,

and
φ−u≥ ca−C

logR
R

in B1(z),

which gives the desired inequality by choosing C1 sufficiently large.
Next we show that

ϕ−u≤R−4/5 in BRσ , (3.5)

for some small σ>0. Assume by contradiction that

(ϕ−u)(z)>R−4/5 for some z∈BRσ .

Let V :=Φ−U≥0. We have V(z,0)>R−3/4, and by part 3) of Lemma 3.1,

|∆V|≤ C
R

, |∂yV|≤CV+C
logR

R
in B2(z).

By Harnack inequality we obtain

V≥ cR−4/5 in B3/2(z).

This means that the left hand side in (3.4) is greater than cR−4/5R−(n+1)σ and we reach a
contradiction if we choose σ small depending only on n. Hence the claim (3.5) is proved.
This implies that in BRσ , the set {u=0} is in a CR−4/5 neighborhood of the 0 level set of
φ which gives the desired conclusion.
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Remark 3.2. In the proof above we obtain

|Φ−U|≤R−3/4 in BRσ . (3.6)

Indeed, in BRσ we have

V≥0, |∆V|≤ C
R

, |∂yV|≤CR−4/5,

where in the last inequality we used that on y=0, V≤R−4/5 by (3.5). Now (3.6) follows
from Harnack inequality provided that σ is sufficiently small.

As a consequence of Lemma 3.3 we obtain

Corollary 3.1. Assume that BR(−Ren)⊂{u< 0} is tangent to {u= 0} at 0. Then in the
cylinder {|x′|≤R

σ
6 } the set {u=0} cannot lie above the surface

xn =
1
R
(
Λ(x ·e′)2−|x′|2

)
,

where e′ is a unit direction with e′ ·en =0 and Λ is a large universal constant.

Proof. Indeed, otherwise the integral in (3.2) is greater than

∫ Rσ/6

1
c

Λ
R

rn

rn+1 dr≥ c(σ)Λ
logR

R
,

and we reach a contradiction if Λ is chosen sufficiently large.

4 A mean curvature estimate for {u=0}
In this section we refine some of the results of last section and we estimate the mean
curvature of a surface that touches {u = 0} by below at 0, in a neighborhood of size
l≥R1/3.

Proposition 4.1. Fix δ>0 small and let R, l be large with l∈ [R1/3,δ3R], and let θ denote

θ := l2R−1.

Assume that in the ball Bl the surface

Γ :=

{
xn =

n−1

∑
1

ai

2
x2

i +b′ ·x′+b0

}
,

with
|ai|≤δR−1, |b′|≤δlR−1, |b0|≤ θ,
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is tangent to {u=0} at b0en.
Assume further that {u<0} contains the two balls BR(−t0en) and BRm(−tmen) of radii

R and Rm and passing through −θen and respectively −θmen with

t0= θ+R, tm = θm+Rm, Rm :=2
1
2 mR, θm :=2

3
2 mθ.

Then
n−1

∑
1

ai≤δ4R−1,

if m=m(δ) is chosen sufficiently large depending only on δ and the universal constants.

Proof. First we claim that at each point x0∈Γ∩Bl/3 we have a tangent ball of radius 1
16 R

by below which is included in the set {u<0}.
Indeed, the bounds on |ai|, |bi| imply that at x0, Γ has a quadratic polynomial

xn =−
8
R
|x′−z′0|2+cz0

tangent by below, with
|x′0−z′0|≤Cδl, cz0≤2θ.

It is straightforward to check that the quadratic surface above lies inside the ball BR(t0en)
in the region BR\Bl , and our claim easily follows.

As in the proof of Lemma 3.2, BRm(tmen)⊂{u<0} gives the bound

U≤ΦRm/2,ten ,

as long as the ball BRm/2(ten) lies inside the ball

B̃ :=BR̃(tmen), R̃ :=Rm−C
logRm

Rm
,

for some C large, universal. This gives the bound

U≤GRm/2(dm+ClogRm/Rm,y), (4.1)

where dm denotes the signed distance to the sphere ∂BRm(−tmen), with dm>0 outside the
ball.

Similarly, we use that at each point in Γ∩Bl/3 the tangent ball of radius 1
16 R by below

is included in {u<0} and we obtain

U≤GR/32(dΓ+ClogR/R) in Bl/4, (4.2)

where dΓ represents the signed distance to the the surface Γ.
We assume by contradiction that the conclusion is not satisfied i.e.,

∑ai >δ4R−1.
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Since on Γ∩Bl the slope of Γ (viewed as a graph in the en direction) is bounded by
C(n)δlR−1≤δ2 and |ai|≤δR−1 we obtain

HΓ≥∑ai−Cδ4max|ai|≥
1
2

δ4R−1,

where HΓ represents the mean curvature of Γ. Moreover, the curvatures of Γ are bounded
by 2δR−1, which easily gives that in Bl all parallel surfaces to Γ satisfy a similar mean
curvature bound:

HΓ(x)≥∑ai−Cl(δR−1)2≥ 1
2

δ4R−1, ∀x∈Bl , (4.3)

where we have used the hypothesis lR−1≤ δ3. Here HΓ(x) denotes the mean curvature
of the parallel surface to Γ passing through x.

Next we use (4.3) to construct a supersolution with 0 level set sufficiently close to Γ.
Then we make use of (4.1), (4.2) and reach a contradiction by showing that this superso-
lution touches U by above at an interior point.

For the construction of the supersolution we first introduce a 2D profile in the (t,y)
variables which is a perturbation of G. It is similar to the profile HR defined in (2.5).
Precisely we define H∗ in R2

+ as

H∗(t,y) :=G+
c(δ)

R
h(t,y) (4.4)

with

h(t,y) := c1ϕ(2r)ylogr+ϕ(r)
t2−y2

r
, (4.5)

where r= |(t,y)| is the distance from (t,y) to the origin, and ϕ is a cutoff function with
ϕ = 0 in [0,1] and ϕ = 1 in [2,∞). The constant c1 is small, universal, and the constant
c(δ)>0 depends also on δ will be made precise below. Outside B+

4 , the function h has the
property that
a) ∆h is homogenous of degree −1 and
b) on y=0, h= |t| and hy = c1 log|t|.

The following properties hold provided that c1 is sufficiently small:
1) h is superharmonic in an angular region near the t axis

∆h<0 in the region {y< |t|/2}\B+
4 ,

2) Outside this region we have the bounds (see (2.4))

∆h≤Cmin{1,r−1}, ∂tH∗≥ cmin{1,r−1},

3) On y=0, we have h(t,0)≥0 and

hy =h=0 in [−1,1] and hy≤ ch outside [−1,1],
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for some c>0 universal, smaller than the minimum of W ′′ outside the interval [g(−1),g(1)]
(see (2.3)).

These properties imply that in the region where ∂tH∗≥0 we have

∆H∗− δ4

8
1
R

∂tH∗≤0,

provided that c(δ) is chosen sufficiently small, and

∂yH∗≤W ′(H∗) on y=0.

Next we modify the 2D profile H∗ by cutting at level 1 and making it increasing in the
t variable. We define G∗ as the infimum over left translations in a similar fashion as we
did for HR. Precisely, we define

H̄∗ :=min{H∗,1}, G∗ := inf
l≥0

H̄∗(t+l,y),

and then ∂tG∗≥ 0 by construction. Moreover, G∗ satisfies the inequalities above (in the
viscosity sense):

∆G∗− δ4

8
1
R

∂tG∗≤0, (4.6)

and
∂yG∗≤W ′(G∗) on y=0. (4.7)

In the next lemma we compare the profiles G∗ with appropriate translations of GR/32
respectively GRm/2.

Lemma 4.1. We have the following inequalities:
a) on y=0

G∗(t,0)≥GR/32(t−R−1/2,0), (4.8a)

G∗(t,0)≥GR/32(t+R−1/2,0), if |t|>R1/4. (4.8b)

b) in R2
+ we have

G∗(t,y)≥GR/32(t+KlogR/R,y)−C(K)
logR

R
(y+1), (4.9a)

G∗(t,y)≥GRm/2(t+2θm,y)+c1(δ)
logR

R
y, if y≥ l(logR)−

1
3 , (4.9b)

provided that k= k(δ) is chosen sufficiently large.

Proof. It suffices to show the inequalities for H∗ and HR in the regions where {∂tH∗ >
0}∩{H∗< 1} and then the desired results for G∗ and GR follow by taking the infimum
over left translations. First we check that

{∂tH∗>0}∩{H∗<1}⊂{r≤R(logR)−1/3}. (4.10)
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We notice from (4.4) that

h(t,y)≥ c(ylogr+r) outside B+
C . (4.11)

This means that if y>CR/logR then H∗>1. In the two regions where y<CR/logR and
r>R(logR)−1/3 we have
a) either t> r/2 and then we easily obtain H∗>1 by using (see (2.4))

G≥1−C
1+y

r
,

b) or t<−r/2 and we obtain H∗t <0 by using

Gt≤C(1+y)r−2, and ht≤−c,

and (4.10) is proved.
To prove a) we have (see (4.5), (2.5))

H∗(t,0)≥ g(t)+
(

1−χ[−2,2]

) c(δ)|t|
R

,

HR/32(t±R−1/2,0)≤ g(t±R−1/2)+C
logR

R
+C

(
t
R

)2

.

The two inequalities follow easily since |t|/R= o(1) by (4.10), and by (2.2) we have

g(t−R−1/2,0)≤ g(t)−c
R−1/2

1+t2 , and g(t+R−1/2,0)≤ g(t)+C
R−1/2

1+t2 .

For part b) we estimate translations of HR as

HR(t+σ,y)≤G(t+σ,y)+C
logR

R
(y+1)+C

t2+σ2

R2

and using that Gt≤C/(y+1) we have

HR(t+σ,y)≤G(t,y)+C
σ

y+1
+C

logR
R

(y+1)+C
(

t
R

)2

.

The third inequality is easily verified by taking σ=KlogR/R, C(K) sufficiently large and
then using (4.11) to estimate H∗.

Finally, for (4.9b) we take σ=2θm =2
3
2 m+1θ and replace R with 1

2 Rm =2
1
2 m−1R. in the

inequality above.
We restrict to the region y≥ l(logR)−1/3≥R1/4, thus we have r≥R1/4. We first choose

m large such that
c
3

logr
R

y≥C
logRm

Rm
(y+1),
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and then
c
3

logr
R

y≥C
2θm

y+1
,

for all large R’s, and the lemma is proved.

In the ball Bl/4 we define the function

Ψ :=G∗(dΓ̃,y),

where dΓ̃ is the signed distance to the surface

Γ̃=

{
xn =

n−1

∑
1

ai

2
x2

i −
δ4

4nR
|x′|2+b′ ·x′

}
.

From the properties of G∗ we find that Ψ is a supersolution, which is increasing in the
en direction. Indeed, at a point (x,y)∈Bl/4 we have (as in (4.3))

HΓ̃(x)>
1
8

δ4R−1,

and we compute (see (4.6), (4.7))

∆Ψ(x,y)=∆G∗(s,y)−HΓ̃(x)∂sG∗(s,y)<0,

where s=dΓ̃. Also, on {y=0}

∂yΨ=∂yG∗(s,0)≤W ′(G∗)=W ′(Ψ).

We claim that on {y=0} we have

Ψ>U outside Bl/8. (4.12)

To prove this, in view of (4.2), it suffices to show that

G∗(dΓ̃,0)>GR/32(d1,0), d1 :=dΓ+ClogR/R.

Indeed in Bl/4\Bl/8 we either have
a) dΓ̃ >dΓ+cl2R−1>d1+R−1/2 or,
b) |dΓ̃|≥ l/16>R1/4 and dΓ̃≥dΓ >d1−R−1/2.

The claim follows then from part a) of Lemma 4.1 above.
Moreover, in Bl/4 we have dΓ̃≥dΓ hence by (4.9a)

Ψ>U−C
logR

R
(y+1).

Since
dΓ̃+2θm≥dm+ClogRm/Rm,
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(recall (4.1) for the definition of dk) we find by (4.9b), (4.1), that

Ψ>U+c
logR

R
y if y> l(logR)−

1
3 =: lεR.

Thus on ∂Bl/4 we have

Ψ>U−Cγ if y< l(2εR), and Ψ>U+cγ otherwise,

where
γ :=

logR
R

(lεR).

Next we translate the graph of Ψ in the −en direction till, on y=0 it becomes tangent by
above to the graph of U. Indeed, since Ψ(0)=U(0) and Ψ>U outside Bl/8×{0}, we can
translate Ψ so that Ψ0(X) :=Ψ(X+t1en), for some t1≥0, becomes tangent by above to U
on y=0 at some point (x∗,0)∈Bl/8.

Now we see that V :=Ψ0−U≥Ψ−U satisfies in Bl/4:

∆V≤0, V≥0 on {y=0}, V(x∗,0)=0,

and on ∂Bl/4,

V≥−Cγ if y< l(2εR), and V≥ cγ otherwise.

Since εR can be taken arbitrarily small we find V≥0 in B3l/8 and therefore we also obtain
Vy(x∗,0)>0. This means

Uy <∂yΨ0≤W ′(Ψ0)=W ′(U) at (x∗,0),

and we reached a contradiction.

5 Harnack inequality

In this section we prove a Harnack inequality property for flat level sets, see Proposition
5.1 below. We will make use of Lemma 3.3 and Corollary 3.1 together with a standard
Γ-convergence result for minimizers, see Lemma 5.2.
Notation: We denote by C(l,θ) the cylinder

C(l,θ) :={|x′|≤ l, |xn|≤ θ}.

Proposition 5.1 (Harnack inequality for minimizers). Let U be a minimizer of J and as-
sume that

{u=0}∩C(l,l)⊂C(l,θ),

and that the balls of radius C′l2θ−1 (with C′ universal) which are tangent to C(l,θ) at±θen
by below and above are included in {u<0} respectively {u>0}.
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Given θ0>0, there exist ε0(θ0)>0 depending on θ0, such that if

θl−1≤ ε0(θ0), θ0≤ θ, (5.1)

then

{u=0}∩C
( l

4
,

l
4

)
is either included in {xn≤(1−ω0)θ} or in {xn≥−(1−ω0)θ}, with ω0>0 small universal.

After a translation in the en direction, the conclusion can be stated as

{u=0}∩C(l̄, l̄)⊂C(l̄, θ̄) with l̄ :=
l
4

, θ̄ :=
(

1−ω0

2

)
θ.

We remark that if (5.1) is satisfied again for θ̄, l̄, then we can apply Proposition 5.1 again
since the hypothesis that the tangent ball of radius C′ l̄2θ̄−1 tangent by below to C(l̄, θ̄) is
included in {u<0} is clearly satisfied.

Recall that G(t,y) has the property

J(G,B+
R )=C∗ logR+O(1), (5.2)

for some constant C∗> 0. Moreover, G is a minimizer of J in B+
R among functions with

values between −1 and 1 which agree with G on ∂B+
R \{y=0}.

Before we proceed with the proof of Proposition 5.1 we need some energy bounds for
functions defined in half-squares

Ql :=[−l,l]×[0,l].

Lemma 5.1. a) Assume that V is Lipschitz, defined in Ql+1⊂R2
+, |V|≤1 and

V(t,0)≤−1+γ2 if t≤− l
2 , and V(t,0)≥1−γ2 if t≥ l

2 , (5.3)

for some small γ. Then for all sufficiently large l we have

J(V,Ql)≥ (C∗−γ)logl. (5.4)

b) Moreover, if we assume that there exist two points s1, s2 in [−l/2.l/2] with |s1−s2|≥ θ0,
such that

|V(t+si,y)−G(t,y)|≤ c(θ0) in B+
lσ ,

for some given σ>0 small and c(θ0) sufficiently small, then

J(V,Ql)≥ (C∗+c0(σ))logl, (5.5)

for some constant c0(σ)>0.
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The proof of Lemma 5.1 is postponed till the end of this section.
Proof of Proposition 5.1. First we remark that l≥ θ0ε−1

0 →∞ as ε0→0.
Let A be the rescaling of the 0 level set of u given by

(x′,xn)∈{u=0} 7→ (z′,zn)∈A,

z=Tx, (z′,zn)=T(x′,xn) :=(x′ l−1,xnθ−1).

Our hypothesis is that A⊂C(1,1) and we want to show that in the cylinder |z′|≤ 1
4 the set

A is included either in zn≤1−ω0 or in zn≥−1+ω0.
We view A as a multivalued graph over z′∈B′1.
Let us assume that we touch A by below at a point z0∈A with the graph of a quadratic

polynomial Pµ
p′ of opening −µ and vertex p′∈B′1/3

zn =Pµ
p′(z

′) :=−µ

2
|z′−p′|2+cp′ for some constant cp′≤−1+

µ

8
,

and µ∈ [ω0,1] with ω0 a small universal constant to be specified later.
We claim that Lemma 3.3 and Corollary 3.1 imply that A satisfies the following two

properties:
a) A contains a graph which is fully included in the cylinder z0+C(lσ−1,2µ).
b) A cannot be touched at z0 in a Br0(z0) neighborhood with

r0 := lσ/2−1,

by the graph {
zn =Pµ

p′+4µΛ((z′−z′0)·e′)2, |z′−z′0|≤ r0

}
,

with e′∈Rn−1 a unit direction. Here σ and Λ represent the universal constants that appear
in Lemma 3.2 and Corollary 3.1.

Indeed, the restrictions on p′ and cp′ imply that |z′0| ≤ 5/6 and z0 ·en ≤−1+ µ
8 . The

corresponding point

x0 :=T−1z0, then satisfies |x′0|≤5l/6, x0 ·en≤ (−1+ µ
8 )θ.

Moreover, if the constant C′ in our hypothesis is chosen large depending on ω0, then the
ball of radius

q= l2(2µθ)−1,

which is tangent to {u = 0} at x0 by below is globally included in {u < 0}. The outer
normal ν to this ball at x0 satisfies |ν−en|≤µθl−1 and Lemma 3.3 implies that

{u=0}∩Bqσ(x0)⊂{|(x−x0)·ν|≤q−3/4}. (5.6)

We use that q≥ clε−1
0 ≥Cl provided that ε0 is chosen small, and

q−3/4≤ l−3/4≤ω0θ0≤µθ,
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and property a) above follows by rescaling back (5.6) to the z variable.
Property b) holds since otherwise, as above, we end up at the point x0 with a surface

as in Corollary 3.1 tangent to {u = 0} by below in a 1
2 lσ/2- neighborhood of x0. This

neighborhood includes Bqσ/6(x0) since l3≥Cl2≥Cq and we reach a contradiction and the
claim is proved.

By Remark 3.2 we obtain in (5.6) also information on the whole profile U

|U−G((x−x0)·ν,y)|≤q−3/4 in B+
qσ(x0).

This implies that for each x∈Blσ(x0)∩{u=0} we have

|U(x+ten,y)−G(t,y)|≤Cl−3/4+Cθl−1≤ρ(ε0), (5.7)

if |(t,y)|≤ lσ, and ρ(ε0)→0 as ε0→0. In the inequality above, we used

|(x+ten−x0)·ν−t|≤ |(x−x0)·ν|+|ν−en||t|≤q−3/4+θl−1|t|,

and (2.4).
Properties a) and b) above state that A satisfies the hypotheses for the general version

of Weak Harnack Inequality proved in [3]. Indeed, by property b) the set A cannot be
touched by below with the family of surfaces P

µ
8Λ(r0), µ ∈ [ω0,1], in an neighborhood

that contains at least a ball of radius r0 around the contact point. On the other hand, by
property a) Harnack inequality already holds in a C∗(n,Λ)r0≤ lσ−1 neighborhood of a
contact point, with C∗(n,Λ) the universal constant depending only on n and Λ which
appears in Theorem 2.4 in [3]. Now we can apply the Theorem 2.4 of [3] and conclude
that if

A∩{|z′|≤1/4, zn≤−1+ω0} 6=∅,

then A contains a graph A⊂A with

A⊂B′1/4×[−1,−1+Kω0],

with K=K(n,Λ) universal, such that

Hn−1(πn(A))≥
(

1− 1
4

)
Hn−1(B′1/4), (5.8)

where πn denotes the projection in the z′ variable.
We choose ω0 small, depending on K such that Kω0≤1/2 hence

A⊂
{

zn≤−
1
2

}
.

Similarly, if in the cylinder z′ ∈ B′1/4 the set A intersects zn≥ 1−ω0, then we can find a
graph A⊂A∩{zn≥1/2} which satisfies (5.8) as well.
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We will reach a contradiction by estimating the energy J(U,Al/2) where

Al :=C(l,l)×[0,l]⊂Rn+1.

Notice that in C( l
2 , l

2 ) the function U(x,0) is sufficiently close to ±1 away from a thin
strip around xn =0. Indeed, we can use barrier functions as in Lemma 3.2 (see (3.3)) and
bound U by above and below in terms of the functions Gl/2(xn±θ,y). This implies that,
for any constant γ small, we have

|U(x,0)|≥1−γ2 in C( l
2 , l

2 ) if |xn|≥C(γ)+θ. (5.9)

For each x′ ∈ B′l/2 we denote by Ql(x′) the 2D half square of size l in the (xn,y)-
variables centered at (x′,0)∈Rn as

Ql(x′) :={(x′,t,y)||t|≤ l, y∈ [0,l]}.

Now we can apply Lemma 5.1 part a) and obtain

J(U(x′,·),Ql/2(x′))≥ (C∗−γ)logl.

On the other hand, if
x′l−1= z′∈πn(A)∩πn(A),

then by (5.7), we satisfy the hypotheses of part b) of Lemma 5.1 and obtain

J(U(x′,·),Ql/2(x′))≥ (C∗+c0(σ))logl.

In conclusion, after integrating in x′∈B′l/2 the inequalities above, and using (5.8) for
A, A, we obtain that

J(U,Al/2)≥ (C∗+c1)loglHn−1(B‘l/2),

for some c1>0 universal, provided that we choose the constant γ sufficiently small.
This contradicts Lemma 5.2 below if ε0 is sufficiently small.

Lemma 5.2.
J(U,Al/2)≤C∗ logl

(
Hn−1(B′l/2)+η(ε0)ln−1

)
. (5.10)

with η(ε0)→0 as ε0→0.

Proof. We interpolate between U and V(x,y) :=G(xn,y) as

H=(1−ϕ)U+ϕV.

Here ϕ is a cutoff Lipschitz function such that ϕ=0 outside Al/2, ϕ=1 in R and |∇ϕ|≤
8/(1+y) in Al/2\R, where R is the cone

R :={(x,y)|max{|x′|,|xn|}≤ l/2−1−2y}.
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By minimality of U we have

J(U,Al/2)≤J(H,Al/2)=J(V,R)+J(H,Al/2\R).

By (5.2),
J(V,R)≤J(V,Al/2)≤ (C∗ logl+O(1))Hn−1(B′l/2),

and we need to show that
J(H,Al/2\R)≤η ln−1 logl (5.11)

with η arbitrarily small. We have

J(H,Al/2\R)≤4
∫

Al/2\R
|∇ϕ|2(V−U)2+|∇(V−U)|2dxdy

+
∫

D
W(u)+W(v)+C(v−u)2dx (5.12)

with D :=C( l
2 , l

2 )\C(
l
2−1, l

2−1). The second integral is bounded by Cln−1.
Next we bound the first integral. As in (5.9), u and v are sufficiently close to ±1 in

C( l
2 , l

2 ) away from a thin strip around xn =0,

|v−u|≤γ2 in C(l/2,l/2) if |xn|≥C(γ)+θ

with C(γ) large, depending on the universal constants and γ. Then in the region

S :={1≤y≤γ2(|xn|−C(γ)−θ)},

the extensions U and V satisfy

|V−U|≤Cγ2, |∇(V−U)|≤Cγ2y−1. (5.13)

At all other points we use that |U|,|V|≤1, |∇U|,|∇V|≤C/(1+y) and we see from (5.12)
that

J(H,Al/2\R)≤Cln−1+C
∫

γ2y−2χ(Al/2\R)∩S+(1+y)−2χ(Al/2\R)\S dxdy

≤C(γ)ln−1+Cγ2ln−1 logl≤ηln−1 logl

for all l large, provided that γ is chosen small, and (5.11) is proved.

We conclude this section with the proof of the Lemma 5.1.
Proof of Lemma 5.1. The proof of (5.4) follows by the same argument of Lemma 5.2 above
restricted to the case n = 1 (now we denote xn by t). First we may assume that V is
minimizing the energy among functions which have prescribed boundary data on ∂Ql+1\
{y=0} and are constrained to (5.3) on y=0. We interpolate between V and G

H=(1−ϕ)G+ϕV,
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with ϕ defined as above and obtain

J(H,Ql)=J(V,R)+J(H,Ql\R).

As in (5.12) we can use that in the region

S :={1≤y≤γ2(|t|−l/2)}

the functions V and G satisfy the estimate (5.13) and obtain

J(H,Ql)≤C(γ)+Cγ2 logl≤ γ

2
logl.

Thus,
J(V,R)≥J(H,Ql)−

γ

2
logl≥J(G,Ql)−

γ

2
logl,

and (5.4) follows by (5.2). Above we used that H=G on ∂Ql\{y=0} and the fact that G
is a minimizer of J in Ql .

For the second part we use V̄, the monotone increasing rearrangement in the t direc-
tion of V. Denote by

Γ(D) :={z=V(t,y)|(t,y)∈D}⊂R3

the graph of V over the set D, and let T be the angular region

T :={y≥|t−x1|}∩Blσ/2.

Notice that our hypotheses imply that |s1−s2|≥lσ provided that c(θ0) is sufficiently small.
This means that that the projection of Γ(T) along the t direction is included in the projec-
tion of Γ(Ql\T).

From the theory of monotone increasing rearrangements (see [7]) we obtain that

J(V,Ql)≥J(V̄,Ql)+
∫

T
V2

t dtdy.

On each horizontal segment `y of T at height y∈ [1,lσ/4], we use that V(t,y) and G(t−
x1,y) are sufficiently close and obtain ∫

`y

V2
t dt≥ c

y
,

hence ∫
T

V2
t dtdy≥2c0(σ)logl.

Notice that the rearrangement V̄ still satisfies the hypothesis in part a), and then the
conclusion follows from a).
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6 Improvement of flatness

We state the improvement of flatness property of minimizers.

Theorem 6.1 (Improvement of flatness). Let U be a minimizer of J and assume

0∈{u=0}∩C(l,l)⊂C(l,θ), (6.1)

and
the balls of radius C′l2θ−1 (C′ universal), (6.2)

which are tangent to C(l,θ) by below and above at ±θen are included in {u < 0} respectively
{u>0}.

There exists universal integers m0≥1, m1≥0 such that if the balls of radius

Rm := l2
mθ−1

m , lm :=2ml, θm :=2
3
2 mθ, m :=0,1,··· ,m1,

tangent to C(lm,θm) by below and above at ±θmen are included in {u<0} respectively {u>0},
and if

θl−1=: ε≤ ε1(θ0), θ≥ θ0,

with ε1(θ0) sufficiently small, then (6.1), (6.2) hold for l̄, θ̄ after a rotation with

{u=0}∩Cξ(l̄, l̄)⊂Cξ(l̄, θ̄), l̄ :=2−m0 l, θ̄ :=2−
3
2 m0 θ.

Here ξ∈Rn is a unit vector and Cξ(l̄, θ̄) represents the cylinder with axis ξ, base l̄ and
height θ̄.

As a consequence of this flatness theorem we obtain our main theorem.

Theorem 6.2. Let U be a global minimizer of J. Suppose that the 0 level set {u=0} is asymp-
totically flat at ∞. Then the 0 level set is a hyperplane and u is one-dimensional.

Proof. Without loss of generality assume u(0) = 0. Fix θ0 > 0, and ε� ε1(θ0). From the
hypotheses we can find l, θ large such that θl−1 = ε and, after eventually a rotation, con-
ditions (6.1), (6.2) hold for all lm, θm

lm :=2ml, θm :=2
3
2 mθ, with m∈{m1,m1−1,··· ,1−m0}.

Then, by Theorem 6.1, (6.1), (6.2) hold also for m =−m0 after a rotation. It is easy to
check that we can apply Theorem 6.1 repeatedly till the height of the cylinder becomes
less than θ0. We conclude that {u= 0} is trapped in a cylinder with flatness less than ε

and height between 2−
3
2 θ0 and θ0. We let first ε→0 and then θ0→0 and obtain the desired

conclusion.
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Proof of Theorem 6.1. The proof is by compactness and it follows from Proposition 5.1 and
Proposition 4.1. Assume by contradiction that there exist Uk, θk, lk such that
a) Uk is a minimizer of J, and satisfies (6.1), (6.2) for lk, θk, together with the second
hypothesis for lk,m, θk,m and m∈{0,1,··· ,m1,k},
b) θk≥ θ0, θkl−1

k = εk→0, m1,k→∞, as k→∞,
c) the conclusion of Theorem 6.1 does not hold for uk with a constant m0 depending only
on n and C′ which we will specify later.

Let Ak be the rescaling of the 0 level sets given by

(x′,xn)∈{uk =0} 7→ (z′,zn)∈Ak,

z′= x′l−1
k , zn = xnθ−1

k .

Claim 1: Ak has a subsequence that converges uniformly on |z′| ≤ 1/2 to a set A∞ =
{(z′,w(z′)), |z′|≤1/2} where w is a Holder continuous function.
Proof. Fix z′0, |z′0| ≤ 1/2. We apply Proposition 5.1 for the function uk in the cylinder of
base B′l/2(lkz′0) and height 2θk in which the set {uk = 0} is trapped. Thus, there exist an
increasing function ε0(θ)>0, ε0(θ)→0 as θ→0, such that {uk=0} is trapped in the cylinder
of base B′l/2(lkz′0) and height 2(1−ω0

2 )θk provided that 4θkl−1
k ≤ε0(2θk). Rescaling back we

find that the oscillation of Ak in the zn variable in B′1/8(z
′
0) is bounded by 2(1− ω0

2 ). It is
not difficult to see that we can apply the Harnack inequality repeatedly and we find that
the oscillation of Ak in the zn variable in B′2−2m−1(z′0) is bounded by 2(1− ω0

2 )m provided
that

εk≤4−m−1ε0

(
2
(

1−ω0

2

)m
θk

)
.

Since these inequalities are satisfied for all k large, the claim follows from a version of
Arzela-Ascoli Theorem. �

Claim 2. The function w is harmonic (in the viscosity sense).
Proof. The proof is by contradiction. Fix a quadratic polynomial

zn =P(z′)=
1
2

z′T Mz′+ξ ·z′, ‖M‖<δ−1, 2|ξ|<δ−1,

such that trM> δ, P(z′)+δ|z′|2 touches the graph of w, say, at 0 for simplicity, and stays
below w in |z′|<δ, for some small δ.

Thus, for all k large we find points (zk
′,zkn) close to 0 such that P(z′)+const touches

Ak by below at (zk
′,zkn) and stays below it in |z′−zk

′|<δ/2.
This implies that, after eventually a translation, there exists a surface

Γ :=

{
xn =

θk

l2
k
∑

ai

2
x2

i +
θk

lk
ξk ·x′

}
, |ξk|≤δ−1, |ai|≤δ−1,

with
∑ai >δ
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that touches {uk =0} at the origin and stays below it in the cylinder C( 1
2 δlk,θk).

Now we apply Proposition 4.1 with

l̄ :=δ3lk, θ̄ := θk, R̄ := l̄2θ̄−1, δ̄ :=δ2, āi :=
θk

l2
k

ai =
δ̄3

R̄
ai, b̄′=

θk

lk
ξk.

The hypotheses are satisfied since

l̄≤ c(δ)εkR̄≤ δ̄3R̄, l̄≥ c(θ0)R̄1/2≥ R̄1/3,

and
|āi|,|b′|l̄−1≤δ2R̄−1= δ̄R̄−1.

Moreover, by property a) above the balls of radius

R̄m = l̄2
m θ̄−1

m , with l̄m :=2m l̄, θ̄m :=2
3
2 mθ, m∈{0,1,··· ,mk,1},

and tangent to C(l̄m, θ̄m) are included in {u<0} and respectively {u>0}. By Proposition
4.1 we conclude that

∑ āi≤ δ̄4R̄−1=⇒∑ai≤ δ̄=δ2,

and we reached a contradiction, and Claim 2 is proved. �
Since w is harmonic, and w(0)=0,

|w−ξ ′ ·z′|≤C(n)|z′|2, |ξ ′|≤C(n),

with C(n) a constant depending only on n. We choose 2−m0 = η sufficiently small such
that

C(n)η2≤ 1
2

η3/2, 4C(n)C′η
1
2 ≤1.

Now it is easy to check that after rescaling back, and using the fact that Ak converge
uniformly to the graph of w, the sets {uk = 0} satisfy the conclusion of the Theorem 6.1
for all k large enough, and we reached a contradiction. �
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Poincare Anal. Non Linéaire, 29 (2012), 479–500.


