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Abstract. Inspired by the Neumann problem of real special Lagrangian equations
with supercritical phase, we consider the Neumann problem of complex special La-
grangian equations with supercritical phase in this paper, and establish the global C2

estimates and the existence theorem by the method of continuity.
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1 Introduction

As we all know, the real special Lagrangian equation is

arctanD2u=Θ(x), (1.1)

where
arctanD2u :=arctanλ1+arctanλ2+···+arctanλn,

λ=(λ1,λ2,··· ,λn) are the eigenvalues of the Hessian matrix

D2u=
{ ∂2u

∂xi∂xj

}
1≤i,j≤n

,

and Θ is called the phase. In particular, Θ= (n−2)π
2 is the critical phase, and if (n−2)π

2 <
Θ(x)< nπ

2 , Eq. (1.1) is called special Lagrangian equations with supercritical phase.
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The special Lagrangian equation (1.1) was introduced by Harvey-Lawson [13] in the
study of calibrated geometries. Here Θ is a constant called the phase angle. In this case
the graph x 7→ (x,Du(x)) defines a calibrated, minimal submanifold of R2n. Since the
work of Harvey-Lawson, special Lagrangian manifolds have gained wide interest, due in
large part to their fundamental role in the Strominger-Yau-Zaslow description of mirror
symmetry [26].

For the special Lagrangian equations with supercritical phase, Yuan obtained the in-
terior C1 estimate with Warren in [29] and the interior C2 estimate with Wang in [28].
Recently Collins-Picard-Wu [8] obtained the existence theorem of the Dirichlet problem.

Moreover, for the Dirichlet problem of elliptic equations in Rn, many results are
known. For example, the Dirichlet problem of Laplace equation is studied in [7, 11],
Caffarelli-Nirenberg-Spruck [2] and Ivochkina [15] solved the Dirichlet problem of
Monge-Ampère equation, and Caffarelli-Nirenberg-Spruck [4] solved the Dirichlet prob-
lem of k-Hessian equation. After the pioneering works of Caffarelli et al., the Dirichlet
problem of the general Hessian quotient equation was solved by Trudinger in [27]. For
more information about the related subjects, we refer to the citations of [2, 4, 15].

Also, the Neumann or oblique derivative problem of partial differential equations
was widely studied. For a priori estimates and the existence theorem of Laplace equation
with Neumann boundary condition, we refer to the book [11]. Also, we can see the recent
book written by Lieberman [21] for the Neumann and the oblique derivative problems of
linear and quasilinear elliptic equations. In 1986, Lions-Trudinger-Urbas solved the Neu-
mann problem of Monge-Ampère equation in the celebrated paper [23]. Recently, Ma-
Qiu [24] solved the the Neumann problem of k-Hessian equations, and Chen-Zhang [6]
generalized the result to the the Neumann problem of Hessian quotient equations. For
the Neumann problem of special Lagrangian equations with supercritical phase, Chen-
Ma-Wei [5] got the existence theorem. In [16, 17], Jiang-Trudinger studied the general
oblique boundary value problems for augmented Hessian equations with some regular
condition and some concavity condition.

At the same time, the complex equations have attracted a variety of mathematicians
and many excellent works have been done. The complex Monge-Ampère equations are
definitely one of the most important equations in partial differential equation and the
geometry. In [1], Bedford and Taylor studied the Dirichlet problem of complex Monge-
Ampère equations by using the Perron-Bremermann family method, and got the exis-
tence and uniqueness of the weak solutions and a global Lipschitz regularity for pluri-
subharmonic solution when Ω is a bounded strictly pseudoconvex domain in Cn. In [3],
Caffarelli et al. studied the classical solution on strongly pseudoconvex domains. Their
work was extended to arbitrary bounded domains in Cn by Guan in [12] under some sub-
solution condition. Recently, Fu-Yau equation on compact Kähler manifolds arises much
attention, which was introduced in [10]. The Fu-Yau equation was solved in dimension
2 by Fu-Yau and was recently extended to higher dimensions in some cases in [25] by
Phong, Picard and Zhang. In high dimensions, the equation is actually a 2-Hessian type
equation. Complex Hessian equations have been studied extensively by many authors
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in recent years. On Cn, the Dirichlet problem of complex Hessian equation was studied
by Li [20] under some strict subsolution condition. On compact manifolds there were
the existence of admissible solution in [9, 14]. For the Neumann problem of complex
Monge-Ampère, Li proved the existence under some other conditions in [19].

Naturally, we want to know how about the problem of complex special Lagrangian
equations of the form {

arctan∂∂̄u=Θ(z) in Ω,
Dνu=−εu+ϕ(z) on ∂Ω,

(1.2)

where Ω is a strictly pseudo-convex domain in Cn, ε> 0 is constant, ν is the outer unit
normal vector of ∂Ω, u is a C2 and real valued function in Ω, Θ is a real valued function in
Ω, ∂∂̄u={ ∂2u

∂zi∂zj
}1≤i,j≤n, and arctan∂∂̄u :=: arctanλ1+arctanλ2+···+arctanλn, where λ=

(λ1,λ2,··· ,λn) are the eigenvalues of the complex Hessian matrix ∂∂̄u. In the following,
we denote

z=(z1,··· ,zn)∈Ω, zj = tj+
√
−1tn+j, t=(t1,··· ,tn,tn+1,··· ,t2n),

∂ju=
∂u
∂zj

=uzj , ∂ju=
∂u
∂zj

=uzj
, ∂u=(∂1u,··· ,∂nu),

Dku=
∂u
∂tk

, Du=(D1u,··· ,D2nu),

where
√
−1 is the imaginary unit. It is easy to know

∂ju=
1
2
[Dju−

√
−1Dn+ju], |∂u|2=

n

∑
j=1

∂ju∂ju=
1
4
|Du|2.

∂jju=
1
4
[Djju+Dn+jn+ju].

In this paper, we establish global C2 estimate of the Neumann problem of special La-
grangian equations with supercritical phase and obtain the existence theorem as follows:

Theorem 1.1. Suppose Ω⊂Cn is a C4 strictly pseudoconvex domain and ϕ ∈ C3(∂Ω). Let
Θ(z)∈C2(Ω) with (n−2)π

2 <Θ(z)< nπ
2 in Ω. Moreover, if the domain Ω satisfies a geometric

condition

2κmin+ε>0, (1.3)

where κmin is the smallest principal curvature of ∂Ω, then there exists a unique solution u ∈
C3,α(Ω) of the Neumann problem of special Lagrangian equation (1.2).

As Li mentioned in his paper [19], because the Neumann boundary condition is not
invariant under the holomorphic changes of variables, the strictly pesudoconvex domain
may not be enough and we need the extra curvature condition of the domain.

Furthermore, we can obtain the existence theorem of the classical Neumann problem
of complex special Lagrangian equation as below.
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Theorem 1.2. Suppose Ω⊂Cn is a C4 strictly convex domain and ν is outer unit normal vector
of ∂Ω. Let ϕ∈C3(∂Ω) and Θ(z)∈C2(Ω) with (n−2)π

2 <Θ(z)< nπ
2 in Ω. Then there exists a

unique constant β such that the Neumann problem of special Lagrangian equation{
arctan∂∂̄u=Θ(z) in Ω,
Dνu=β+ϕ(z) on ∂Ω,

(1.4)

has admissible solutions u∈C3,α(Ω), which are unique up to a constant.

The rest of the paper is organized as follows. In Section 2, we collect some properties
of the special Lagrangian equation and establish the C0 estimate for the Neumann prob-
lem of special Lagrangian equation. The C1 and C2 estimates are established in Section 3,
Section 4, respectively. At last, we prove Theorem 1.1 and Theorem 1.2 in Section 5.

2 Some properties and C0 estimate

In this section, we give some properties of the special Lagrangian equation with super-
critical phase and establish the C0 estimate.

2.1 Some properties

Property 2.1. Suppose Ω⊂Cn is a domain and Θ(z)∈C0(Ω) with (n−2)π
2 <Θ(z)< nπ

2 in
Ω. Let u∈C2(Ω) be a solution of special Lagrangian equation

arctan∂∂̄u=Θ(z) in Ω. (2.1)

We assume λ = (λ1,λ2,··· ,λn) are the eigenvalues of the Hessian matrix ∂∂̄u with λ1≥
λ2 ···≥λn, then we have some properties:

λ1≥···≥λn−1>0, (2.2a)
|λn|≤λn−1, (2.2b)

n

∑
i=1

λi >0, (2.2c)

|λn|<C0, (2.2d)

where

C0=max

{
tan
(
(n−1)π

2
−min

Ω
Θ
)

,tan
(

1
n

max
Ω

Θ
)}

.

Proof. For any i=1,2,··· ,n, we know arctanλi∈ (−π
2 , π

2 ). Then we can get

arctanλn−1+arctanλn =Θ−arctanλ1−arctanλ2 ···−arctanλn−2

≥Θ− (n−2)π
2

>0.
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So λn−1+λn >0, which implies (2.2a), (2.2b) and (2.2c) hold.
Moreover,

arctanλn =Θ−arctanλ1−arctanλ2−···−arctanλn−1>min
Ω

Θ− (n−1)π
2

and

arctanλn <
arctanλ1+arctanλ2+···+arctanλn

n
≤ 1

n
max

Ω
Θ,

so we can get

|λn|<max
{

tan
(
(n−1)π

2
−min

Ω
Θ
)

,tan
(

1
n

max
Ω

Θ
)}

.

Thus, we complete the proof.

Property 2.2. Suppose Ω⊂Cn is a domain and Θ(z)∈C2(Ω) with (n−2)π
2 <Θ(z)< nπ

2 in
Ω. Let u∈C4(Ω) be a solution of complex special Lagrangian equation (2.1). Then for
any ξ∈S2n−1, we have

n

∑
ij=1

FijDξξ∂iju≥DξξΘ−A|DξΘ|2 in Ω, (2.3)

where

Fij =
∂arctan∂∂̄u

∂uij
and A=

2

tan
(

min
Ω

Θ− (n−2)π
2

) .

Proof. For any z∈Ω, we can assume ∂∂̄u is diagonal with λi =uii, since (2.3) is invariant
under rotating the coordinates. Then we have

Fij =:
∂arctan∂∂̄u

∂uij
=


1

1+λ2
i

, if i= j,

0, if i 6= j,

and

Fij,kl =:
∂2arctan∂∂̄u

∂uij∂ukl
=


− 2λi

(1+λ2
i )

2
, if i= j= k= l,

−
λi+λj

(1+λ2
i )(1+λ2

j )
, if i= l, j= k, i 6= j,

0, otherwise.
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From the complex special Lagrangian equation (2.1), we know

n

∑
ij=1

FijDξ∂iju=DξΘ

and
n

∑
ij=1

FijDξξ∂iju=DξξΘ−
n

∑
ijkl=1

Fij,kl Dξ∂ijuDξ∂klu

=DξξΘ−
n

∑
i=1

Fii,ii(Dξ∂iiu)
2−∑

i 6=j
Fij,ji|Dξ∂iju|

2

≥DξξΘ−
n

∑
i=1

Fii,ii(Dξ∂iiu)
2. (2.4)

From the concavity lemma (Lemma 2.2 in [8]), we know

−
n

∑
i=1

Fii,ii(Dξ∂iiu)
2≥− 2

tan
(

min
Ω

Θ− (n−2)π
2

)( n

∑
i=1

FiiDξ∂iiu
)2

=− 2

tan
(

min
Ω

Θ− (n−2)π
2

) |DξΘ|2. (2.5)

Hence (2.3) holds.

2.2 C0 estimate

The C0 estimate is easy. For completeness, we produce a proof here following the idea of
Lions-Trudinger-Urbas [23] and Ma-Qiu [24].

Theorem 2.3. Suppose Ω⊂Cn is a C1 bounded domain and ϕ∈C0(∂Ω). Let Θ(z)∈C0(Ω) with
(n−2)π

2 <Θ(z)< nπ
2 in Ω and u∈C2(Ω)∩C1(Ω) be the solution of complex special Lagrangian

equation (1.2), then we have

−M0≤u(z)≤ 1
ε

max
∂Ω
|ϕ| in Ω, (2.6)

where

M0=
1
ε

max
∂Ω
|ϕ|+ 2B

ε
diam(Ω)+Bdiam(Ω)2 and B= tan

(
1
n

max
Ω

Θ
)
<+∞.

Proof. From (2.2c), we know u is subharmonic. So the maximum of u is attained at a
boundary point z0∈∂Ω. Then we can get

0≤Dνu(z0)=−εu(z0)+ϕ(z0). (2.7)
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Hence

max
Ω

u=u(z0)≤
ϕ(z0)

ε
≤ 1

ε
max

∂Ω
|ϕ|. (2.8)

Without loss of generality, we assume 0∈Ω and denote

B= tan
( 1

n
max

Ω
Θ
)
<+∞.

Then we have

arctan∂∂̄u=Θ≤max
Ω

Θ=arctan∂∂̄(B|z|2). (2.9)

By the comparison principle, we know u−B|z|2 attains its minimum at a boundary point
z1∈∂Ω. Then

0≥Dν(u−B|z|2)|z=z1 =Dνu(z1)−BDν(|z|2)|z=z1

=−εu(z1)+ϕ(z1)−2B·t·ν|z=z1

≥−εu(z1)−max
∂Ω
|ϕ|−2Bdiam(Ω). (2.10)

Hence

min
Ω

u≥min
Ω

(u−B|z|2)=u(z1)−B|z1|2

≥− 1
ε

max
∂Ω
|ϕ|− 2B

ε
diam(Ω)−Bdiam(Ω)2. (2.11)

Thus, we complete the proof.

3 Global gradient estimate

In this section, we prove the global gradient estimate by following the idea of Li [19].

Theorem 3.1. Suppose Ω⊂Cn is a C3 bounded domain satisfying (1.3) and ϕ∈C2(∂Ω). Let
Θ(z)∈C1(Ω) with (n−2)π

2 <Θ(z)< nπ
2 in Ω and u∈C3(Ω)∩C2(Ω) be a solution of complex

special Lagrangian equation (1.2), then we have

sup
Ω
|Du|≤M1, (3.1)

where M1 depends on n, Ω, κmin+ε, |u|C0 , maxΩ Θ, minΩ Θ and |ϕ|C2 .
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Proof. In order to prove (3.1), it suffices to prove

Dξu(z)≤M1, ∀(z,ξ)∈Ω×S2n−1. (3.2)

For any (z,ξ)∈Ω×S2n−1, denote

W(z,ξ)=Dξu(z)−〈ν,ξ〉(−εu+ϕ(z))+K0u2+K1|z|2, (3.3)

where K0 and K1 are large constants to be determined later, and ν is a C2(Ω) extension of
the outer unit normal vector field on ∂Ω. We still use ϕ(z) to denote a C2 extension of ϕ
from ∂Ω to Ω. Assume W achieves its maximum at (z0,ξ0)∈Ω×S2n−1. It is easy to know
Dξ0 u(z0)>0. We claim z0∈ ∂Ω. Otherwise, if z0∈Ω, we rotate the coordinates such that
{∂i j̄u(z0)} is diagonal with λi =uiī and λ1≥λ2≥···≥λn. Then we have

Fi j̄ =:
∂arctan∂∂̄u

∂ui j̄
=


1

1+λ2
i

, if i= j,

0, if i 6= j.

Hence we can get from Property 2.1

F11̄≤F22̄≤···≤Fnn̄,

Fnn̄ =
1

1+λ2
n
≥ c0>0,

Fiīuiī =
λi

1+λ2
i
∈
(
− 1

2
,
1
2

)
,

where
c0=

1

1+ max{tan
( (n−1)π

2 −min
Ω

Θ
)
,tan

( 1
n max

Ω
Θ
)
}2

.

For fixed ξ=ξ0, W(z,ξ0) achieves its maximum at the same point z0∈Ω and we can easily
get that at z0,

0≥Fi j̄∂i j̄W=Fiī[∂iīDξ0 u−〈ν,ξ0〉iī(−εu+ϕ)−〈ν,ξ0〉(−εuiī+ϕiī)

−〈ν,ξ0〉i(−εuī+ϕī)−〈ν,ξ0〉ī(−εui+ϕi)

+2K0uiuī+2K0uuiī+K1
]

≥Dξ0 Θ+(2K0−C1)
n

∑
i=1

Fiīuiuī

+[2K0u+ε〈ν,ξ0〉]
n

∑
i=1

Fiīuiī+(K1−C1)
n

∑
i=1

Fiī, (3.4)

where C1 is a positive constant depending only on n, ε, |u|C0 , |ϕ|C2 and |ν|C2 .



152 C. Q. Chen, X. N. Ma and W. Wei / Anal. Theory Appl., 35 (2019), pp. 144-162

Take K0=
C1
2 and K1=2C1+

2|DΘ|+n[2K0|u|+ε]
c0

. Using

n

∑
i=1

Fiīuiī∈
(
− n

2
,
n
2

)
,

n

∑
i=1

Fiī >Fnn̄≥ c0,

we can get

0≥Fi j̄∂i j̄W

≥−|Dξ0 Θ|− n
2
[2K0|u|+ε]+(2K0−C1)

n

∑
i=1

Fiīuiuī+(K1−C1)
n

∑
i=1

Fiī

>0. (3.5)

This is a contradiction. So z0 ∈ ∂Ω. Then we continue our proof in the following three
cases.
(a) If ξ0 is normal at z0∈∂Ω, then

W(z0,ξ0)=K0u2+K1|z0|2≤C2.

Then we can easily get (3.2).
(b) If ξ0 is non-tangential at z0 ∈ ∂Ω, then we can write ξ0 = ατ+βν, where τ ∈ S2n−1 is
tangential at z0, that is 〈τ,ν〉= 0, α= 〈ξ0,τ〉> 0, β= 〈ξ0,ν〉< 1, and α2+β2 = 1. Then we
have

W(z0,ξ0)=βDτu+K0u2+K1|z0|2

≤βW(z0,ξ0)+(1−β)(K0u2+K1|z0|2), (3.6)

so

W(z0,ξ0)≤K0u2+K1|z0|2≤C3.

Then we can easily get (3.2).
(c) If ξ0 is tangential at z0∈∂Ω, we may assume that the outer normal direction of Ω at z0
is (0,··· ,0,1). By a rotation, we assume that ξ0=(1,··· ,0)= e1. Then we have

0≤DνW(z0,ξ0)=DνD1u−Dν〈ν,ξ0〉(−εu+ϕ)+2K0u·Dνu+K1Dν|z|2

≤DνD1u+C4

=D1Dνu−D1νkDku+C4. (3.7)

By the boundary condition, we know

D1Dνu=D1(−εu+ϕ)≤−εW(z0,ξ0)+C5. (3.8)
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Following the argument of [19], we can get

−D1νkDku≤−κminW(z0,ξ0)+C6. (3.9)

From (1.3), it holds κmin+ε>0. So

W(z0,ξ0)≤
C4+C5+C6

κmin+ε
. (3.10)

Then we can easily get (3.2).

Remark 3.1. To prove Theorem 1.2, we need to consider the complex special Lagrangian
equation (1.2) with ε→0. Under the assumptions of Theorem 1.2, that is, Ω⊂Cn is a C4

strictly convex domain, ϕ∈C3(∂Ω), Θ(z)∈C2(Ω) and (n−2)π
2 <Θ(z)< nπ

2 in Ω, and for
any sufficiently small ε, we can obtain the following proof of Theorem 2.3

sup
Ω

ε|uε|≤ M̃0, (3.11)

for the solution uε of (1.2), where M̃0 depends on n, diam(Ω), max
Ω

Θ, and |ϕ|C0 . Moreover,

we can choose test function

W(z,ξ)=Dξuε(z)−〈ν,ξ〉(−εuε+ϕ(z))+K0(εuε)2+K1|z|2,

and following the proof of Theorem 3.1, we can choose K0 and K1 independent of ε, and
obtain the global gradient estimate

sup
Ω
|Duε|≤ M̃1, (3.12)

where M̃1 depends on n, Ω, max
Ω

Θ, min
Ω

Θ, |Θ|C1 and |ϕ|C2 , and is independent of ε. It is

easy to know

sup
Ω

∣∣∣uε− 1
|Ω|

∫
Ω

uε
∣∣∣≤ M̃1. (3.13)

4 Global second derivatives estimate

We now come to the a priori estimate of global second derivatives. Firstly, we prove the
estimate of double normal second derivatives on boundary, and then we complete the
proof of global second derivatives estimate.



154 C. Q. Chen, X. N. Ma and W. Wei / Anal. Theory Appl., 35 (2019), pp. 144-162

4.1 Estimate of double normal second derivatives on boundary

Theorem 4.1. Suppose Ω⊂Cn is a C4 strictly pseudoconvex domain and ϕ ∈ C3(∂Ω). Let
Θ(z)∈C2(Ω) with (n−2)π

2 <Θ(z)< nπ
2 in Ω and u∈C4(Ω)∩C3(Ω) be the solution of complex

special Lagrangian equation (1.2), then we have

max
∂Ω
|Dννu|≤M2, (4.1)

where M2 depends on n, Ω, max
Ω

Θ, |u|C1 , min
Ω

Θ, |Θ|C2 and |ϕ|C3 .

Proof. Since Ω is a C4 strictly pseudoconvex domain, there is a strictly plurisubharmonic
defining function r∈C4(Ω) such that

|Dr|=1 on ∂Ω, (4.2a)

∂∂̄r≥ k0 In in Ω, (4.2b)

where k0 is a positive constant depending only on Ω and In is the n×n identity matrix.
Let z0 ∈ ∂Ω be an arbitrary point. By a shift and a rotation of the coordinates

{z1,··· ,zn}, we can assume that z0=0, ∂zi r(0)=0 for i<n, and Dtn r(0)=−1, Dt2n r(0)=0.
In B(0,δ)

⋂
Ω, a sufficiently small neighborhood of z0, we can get by the Taylor expansion

of r up to second order

r(z)=−Re
(

zn−
n

∑
ij=1

aijzizj

)
+

n

∑
ij=1

bi j̄zizj+O(|z|3), (4.3)

where {bi j̄}= ∂∂̄r(0) is positive definite. We now introduce new coordinates z′=ψ(z) of
the form

z′i = zi for i<n, z′n = zn−
n

∑
ij=1

aijzizj. (4.4)

In ψ(B(0,δ)
⋂

Ω), we have

r(z)|z=ψ−1(z′)=−Rez′n+
n

∑
ij=1

bi j̄z
′
iz′j+O(|z′|3), (4.5)

Denote

r0(z′)=−Rez′n+
n

∑
ij=1

bi j̄z
′
iz′j,

Bj(z′)=
( n

∑
i=1

[aij+aji]zi

)∣∣∣
z=ψ−1(z′)

, j=1,··· ,n,

Aj(z′)=Bj(1−Bn)
−1 ∂r0(z′)

∂z′n
, j=1,··· ,n−1.
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It is easy to know |Bj|=O(|z′|) for j=1,··· ,n, and Aj is holomorphic in z′∈ψ(B(0,δ)
⋂

Ω).
Following the calculations in [19], we know the Neumann boundary condition in z′ co-
ordinates

4Re

(
〈∂z′u,∂z′r0〉−

n−1

∑
j=1

Aj∂z′j
u

)
=φ(z′,u)+O(|z′|3), (4.6)

where
φ(z′,u)= |1−Bn(z′)|−2(−εu+ϕ(z))|z=ψ−1(z′).

Following the idea of [19], we choose the auxiliary function

h(z′)=4Re
[
〈∂z′u,∂z′r0〉−

n−1

∑
j=1

Aj∂z′j
u
]
−φ(z′,u)+Kr(z)|z=ψ−1(z′)−K1Re(z′n), (4.7)

where K1>0 is sufficiently large so that

h<0 on ψ
(
∂(B(0,δ))−∂Ω

)
,

and
h=−K1Re(z′n)+O(|z′|2)≤0 on ψ

(
∂(B(0,δ))∩∂Ω

)
.

Let

Fi j̄ =
∂arctan∂z∂zu

∂uzizj

, Gi j̄ =
∂arctan∂z∂zu

∂uz′iz
′
j

.

It is easy to know

Gi j̄ =Fpq̄
( ∂z′i

∂zp

)( ∂z′j
∂zq

)
.

For any z′∈ψ(B(0,δ)
⋂

Ω), we can get

Gi j̄∂z′iz
′
j
h=2Gi j̄∂z′iz

′
j

(
∂z′k

u∂z′k
r0+∂z′k

u∂z′k
r0
)
−2Gi j̄∂z′iz

′
j

(n−1

∑
k=1

Ak∂z′k
u+Ak∂z′k

u
)

−Gi j̄∂z′iz
′
j
φ+KGi j̄∂z′iz

′
j
r

=2Gi j̄(∂z′k
uz′iz

′
j
∂z′k

r0+∂z′k
uz′iz

′
j
∂z′k

r0+uz′kz′j
∂z′iz

′
k
r0+uz′kz′i

∂z′kz′j
r0
)

−2
n−1

∑
k=1

Gi j̄(Ak∂z′k
uz′iz

′
j
+Ak∂z′k

uz′iz
′
j
+∂z′i

Akuz′kz′j
+∂z′j

Akuz′iz
′
k

)
−Gi j̄[|1−Bn(z′)|−2(−εuz′iz

′
j
+ϕz′iz

′
j
)+∂z′iz

′
j
(|1−Bn(z′)|−2)(−εu+ϕ)]

+KGi j̄∂z′iz
′
j
r
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=2[∂z′k
Θ∂z′k

r0+∂z′k
Θ∂z′k

r0]+2Fpq̄(uz′kzq ∂zpz′k
r0+uz′kzp

∂z′kzq r0
)

−2
n−1

∑
k=1

[Ak∂z′k
Θ+Ak∂z′k

Θ+Fpq̄(∂zp Akuz′kzq +∂zq Akuzpz′k

)
]

−Fpq̄[|1−Bn(z′)|−2(−εuzpzq +ϕzpzq)+∂zpzq(|1−Bn(z′)|−2)(−εu+ϕ)]

+KFpq̄∂zpzq r

≥Kk0

n

∑
p=1

Fpp̄−C7, (4.8)

where Fpq̄uz′kzq = Fpq̄uzmzq
∂zm
∂z′k

and Fpq̄uzpz′k
= Fpq̄uzpzm

(
∂zm
∂z′k

)
are bounded by rotating the

coordinates {z1,··· ,zn} such that ∂z∂zu is diagonal. From (2.2d), we know

n

∑
p=1

Fpp̄≥ c0, (4.9)

where
c0=

1

1+max{tan
( (n−1)π

2 −min
Ω

Θ
)
,tan

( 1
n max

Ω
Θ
)
}2

.

Taking K = C7
k0c0

, we can have Gi j̄∂z′iz
′
j
h≥ 0 in ψ(B(0,δ)

⋂
Ω). By the maximum principle,

we know h(z′) achieves its maximum at z′=0. Hence h(z′)|z′=ψ(z) achieves its maximum
at z0=0. Thus

0≤Dνh(0)≤Dννu(z0)+C8. (4.10)

So we have Dννu(z0)≥−C8.
The same argument for

h1(z′)=4Re
[
〈∂z′u,∂z′r0〉−

n−1

∑
j=1

Aj∂z′j
u
]
−φ(z′,u)−Kr(z)|z=ψ−1(z′)+K1Re(z′n) (4.11)

can give

Dννu(z0)≤C9. (4.12)

This completes the estimates of the double normal derivative on the boundary.

4.2 Estimate of global second derivatives

Theorem 4.2. Suppose Ω⊂Cn is a C4 strictly pseudoconvex domain satisfying (1.3) and ϕ∈
C3(∂Ω). Let Θ(z)∈C2(Ω) with (n−2)π

2 <Θ(z)< nπ
2 in Ω and u∈C4(Ω)∩C3(Ω) be a solution
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of special Lagrangian equation (1.2), then we have

sup
Ω
|D2u|≤M2, (4.13)

where M2 depends on n, Ω, 2κmin+ε, max
Ω

Θ, min
Ω

Θ, |u|C1 , |Θ|C2 and |ϕ|C3 .

Proof. From (2.2c), we know

∆u=4
n

∑
i=1

uiī =4(λ1+···+λn)>0.

By the argument in Li’s [19], we know that we only need to prove that

Dζζu(z)≤M2, ∀(z,ζ)∈ Ω̄×S2n−1. (4.14)

As the real case in [23], we use the auxiliary function

Q(z,ζ)=Dζζu−v(z,ζ)+K1|z|2+|Du|2, (4.15)

where v(z,ζ) = 2〈ζ,ν〉〈ζ ′,Dϕ−εDu−DluDνl〉= al Dlu+b, ν = (ν1,ν2,··· ,ν2n)∈ S2n−1 is a
C3(Ω) extension of the outer unit normal vector field on ∂Ω

ζ ′= ζ−〈ζ,ν〉ν, al =−2〈ζ,ν〉〈ζ ′,Dνl〉−2ε〈ζ,ν〉(ζ ′)l , b=2〈ζ,ν〉〈ζ ′,Dϕ〉,

and K1>0 is to be determined later.
For any z∈Ω, we rotate the coordinates such that {∂i j̄u(z)} is diagonal with λi =uiī

and λ1≥λ2≥···≥λn. Then we have

Fi j̄ =:
∂arctan∂∂̄u

∂ui j̄
=


1

1+λ2
i

, if i= j,

0, if i 6= j.

Hence we can get from Property 2.1

F11̄≤F22̄≤···≤Fnn̄,

Fnn̄ =
1

1+λ2
n
≥ c0>0,

Fiīuiī =
λi

1+λ2
i
∈
(
− 1

2
,
1
2

)
,

where c0=
1

1+ max
{

tan
(

(n−1)π
2 −min

Ω
Θ
)

,tan
(

1
n max

Ω
Θ
)}2 .
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For any fixed ζ∈Sn−1, we have

Fi j̄∂i j̄Q(z,ζ)=Fi j̄∂i j̄Dζζu−Fiī[∂iīakDku+∂īak∂iDku+∂iak∂īDku+ak∂iīDku+∂iīb]

+2Fiī∂iDku∂īDku+2DkΘDku+K1

n

∑
i=1

Fiī

≥DζζΘ−A|DζΘ|2−[|D2ak||Du|+|D2b|]
n

∑
i=1

Fiī−Fiī(∂īak∂iDku+∂iak∂īDku)

−|akDkΘ|+2Fiī∂iDku∂īDku−2|DkΘDku|+K1

n

∑
i=1

Fiī. (4.16)

It is easy to know

n

∑
i=1

Fiī >Fnn̄≥ c0,

2Fiī∂iDku∂īDku−Fiī(∂īak∂iDku+∂iak∂īDku)≥−Fiī∂iak∂īak.

Choose

K1=2[|D2ak||Du|+|D2b|]+ 2[|D2Θ|+A|DΘ|2+|ak||DΘ|+2|DΘ||Du|]
c0

,

then we can get

Fi j̄∂i j̄Q(z,ζ)≥0. (4.17)

So max
Ω

Q(z,ζ) attains its maximum on ∂Ω. Hence max
Ω×S2n−1

Q(z,ζ) attains its maximum at

some point z0∈∂Ω and some direction ζ0∈S2n−1.
Then we continue our proof in the following two cases following the idea of [19].

(a) If ζ0 is non-tangential at z0 ∈ ∂Ω, then we can write ζ0 = ατ+βν, where τ ∈ S2n−1 is
tangential at z0, that is 〈τ,ν〉=0, α= 〈ζ0,τ〉, β= 〈ζ0,ν〉 6=0, and α2+β2=1. Then we have

Dζ0ζ0 u(z0)

=α2Dττu(z0)+β2Dννu(z0)+2αβDτνu(z0)

=α2Dττu(z0)+β2Dννu(z0)+2(ξ0 ·ν)[ξ0−(ξ0 ·ν)ν]·[Dϕ−εDu−DluDνl ], (4.18)

hence

Q(z0,ζ0)=α2Q(z0,τ)+β2Q(z0,ν). (4.19)

From the definition of Q(z0,ζ0), we know

Q(z0,ζ0)≤Q(z0,ν)≤C10 (4.20)
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and we can prove (4.14).
(b) If ξ0 is tangential at z0∈∂Ω, then we have

0≤DνQ(z0,ζ0)=DνDζ0ζ0 u−Dνal Dlu−al DνDlu−Dνb+2DkuDνDku+K1Dν|z|2

≤DνDζ0ζ0 u+[2Dku−ak]DνDku+C11. (4.21)

By the boundary condition, we know

DνDζ0ζ0 u=Dζ0ζ0 Dνu−(Dζ0ζ0 νk)Dku−2(Dζ0 νk)Dζ0 Dku

=Dζ0ζ0(−εu+ϕ)−(Dζ0ζ0 νk)Dku−2(Dζ0 νk)Dζ0 Dku

≤−εQ(z0,ζ0)+C12−2(Dζ0 νk)Dζ0 Dku. (4.22)

Following the argument of [19], we can get

|DνDku|≤C13,

−2(Dζ0 νk)Dζ0 Dku≤−2κminQ(z0,ζ0)+C14.

From (1.3), it holds 2κmin+ε>0. So

Q(z0,ζ0)≤
C11+C12+(2|Du|+|ak|)C13+C14

2κmin+ε
. (4.23)

Then we can easily get (4.14).

Remark 4.1. As the discussions in Remark 3.1, to prove Theorem 1.2, we need to consider
the complex special Lagrangian equation (1.2) with ε→0. Under the assumptions of The-
orem 1.2, and for any sufficiently small ε, we can obtain the following proof of Theorem
4.1 and Theorem 4.2,

sup
Ω
|D2uε|=sup

Ω

∣∣∣D2
(

uε− 1
|Ω|

∫
Ω

uε
)∣∣∣≤ M̃2, (4.24)

where M̃2 depends on n, Ω, max
Ω

Θ, min
Ω

Θ, |Θ|C2 and |ϕ|C3 , and is independent of ε.

5 Existence of the boundary problems

In this section we complete the proofs of the Theorem 1.1 and Theorem 1.2.

5.1 Proof of Theorem 1.1

For the Neumann problem of complex special Lagrangian equation (1.2), we have estab-
lished the C0, C1 and C2 estimates in Section 2, Section 3, Section 4, respectively. By the
global C2 priori estimate, the special Lagrangian equation (1.2) is uniformly elliptic in Ω.
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From the concavity Lemma (Lemma 2.2 in [8]), we know −e−Aarctan∂∂̄u is concave with
respect to ∂∂̄u, where A is defined in Property 2.2. Following the discussions in [22], we
can get the global Hölder estimates of second derivative,

|u|C2,α(Ω)≤C, (5.1)

where C and α depend on n, Ω, max
Ω

Θ, min
Ω

Θ, |Θ|C2 and |ϕ|C3 . From (5.1), one also

obtains C3,α(Ω) estimates by differentiating Eq. (1.2) and applies the Schauder theory for
linear uniformly elliptic equations.

Applying the method of continuity (see [21]), the existence of the classical solution
holds. By the standard regularity theory of uniformly elliptic partial differential equa-
tions, we can obtain the higher regularity.

5.2 Proof of Theorem 1.2

By a similar proof of Theorem 1.1, we know there exists a unique solution uε∈C3,α(Ω) to
(1.2) for any small ε>0. Let vε =uε− 1

|Ω|
∫

Ω uε, and it is easy to know that vε satisfies


arctan∂∂̄vε =Θ(z) in Ω,

Dν(vε)=−εvε− 1
|Ω|

∫
Ω

εuε+ϕ(z) on ∂Ω.
(5.2)

By the global gradient estimate (3.12), it is easy to know εsup
Ω
|Duε|→0. Hence there is a

constant β and a function v∈C2(Ω), such that

−εuε→β, −εvε→0, − 1
|Ω|

∫
Ω

εuε→β, vε→v,

uniformly in C2(Ω) as ε→0. It is easy to verify that v is a solution of{
arctan∂∂̄v=Θ(z) in Ω,
Dνv=β+ϕ(z) on ∂Ω.

(5.3)

If there is another function v1∈C2(Ω) and another constant β1 such that{
arctan∂∂̄v1=Θ(z) in Ω,
Dν(v1)=β1+ϕ(z) on ∂Ω.

(5.4)

Applying the maximum principle and Hopf Lemma, we can know β= β1 and v−v1 is
a constant. By the standard regularity theory of uniformly elliptic partial differential
equations, we can obtain the higher regularity.
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