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Abstract. This paper is a continuation work of [26] and studies the propagation of
the high-order boundary regularities of the two-dimensional density patch for viscous
inhomogeneous incompressible flow. We assume the initial density po=7110,+#721ag,
where (#1,72) is any pair of positive constants and () is a bounded, simply connected
domain with W¥+2P(R?) boundary regularity. We prove that for any positive time
t, the density function p(t) = 1711 +721q 1), and the domain ()(t) preserves the
Wk+2P_boundary regularity.
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1 Introduction

We consider the two-dimensional density-dependent incompressible Navier-Stokes sys-
tem:

9;p+div(pv) =0, (t,x) ERT xR?,
9t (pv)+div(pv®v) —Av+Vr=0, (11)
divo=0, )

(0,9)|t=0=(po,v0)-

Here the unknowns (p,v) € R™ xR? represent the density and the velocity field of the
two-dimensional fluid at time ¢ and point x respectively, and 7t designates the unknown
pressure which ensures the incompressibility of the fluid.
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This system (1.1) can describe the dynamics of a viscous fluid which is incompressible
but with variable density, e.g., mixtures of incompressible and non-reactant components,
fluids containing a melted substance. In the simple case when pp =1, the system (1.1)
reduces to the classical incompressible Navier-Stokes system:

91v+div(v®v) —Av+Vr=0, divo=0, v|i—o=0p.

There is a substantial amount of literature devoted to the study of the well-posedness
issue of the system (1.1), e.g., [28,32] in the weak solution framework, [1-3,12,24,29] in
the strong solution framework. If the density function has a jump across some hyper-
surface which is of interest in this paper, [13, 14, 16,22, 30] have also established some
well-posedness results (see [26] for more detailed introduction to these references).

We are interested in the propagation of regularities of the interface between fluids
with different densities, for which we take the assumptions as follows. Let () be a simply
connected bounded domain with Wk+2¢ (]RZ)—boundary regularity, k>1, p€(2,4), that s,
we can parametrize d()y as

7:8' =00y via sry(s) with e (WK2P(sh))?
and 9sy(s) =Xo(y(s)), sesSh (1.2)
Here Xo(-) €R? is a vector field defined on IR? which is tangential to 9Q: if 9Qo=f; ' (0) is

the level set then Xo=(—0,01)" fo. We denote by dx,u=Xo-Vu, the directional derivative
of u along Xp. Then we easily calculate

937(s) =0s(Xo(7(s))) = Xo(7(s))- VXo(7(5)) = (0x,X0) (7(5)),

and repeating this calculation gives 8%y (s) = (ango) (7(s)). Hence the boundary regu-
larity assumption is equivalent to the following assumption on Xj:

%' Xo€ (WP (R?))?, =1,k divXo=0. (1.3)
For any 71,172 > 0, we take the initial density pg and the initial velocity vy as
po=mla,+mla:;, vo€(L*NBY(R?))? and 0%,00€ (L2NB3, (R?))?, (1.4)
for some
s0€(0,1), sy=so—06p¢ with some fixed 6p€(0,50/k), £=1,---,k, pe(2,2/(1—s¢)).

Here we have taken vy € (L?(IR?))? with finite (B;?l (IR?))2-Besov norm defined as follows
(seee.g., [5]):

Definition 1.1. Consider a smooth radial function ¢ on R, supported in [3/4,8/3] such
that ) ;cz ¢(27/7) =1 for any 7> 0. We denote

Aja=5""(p(277|¢)a(?)), jeZ.
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Let (p,r,x) € [1,+0]% and s € R. The Besov norms are defined as

o

def i def i
B, < H(ZJSHAjaHLp)].H”(Z) and HﬂHZI;(B;J,) = H(2]SHAJ"1HL;<([0,T];LP))»

(Z)
Similarly for /=1,---,k, we have taken 8?000 € (L*(R?))? with finite (B3, (R*))*-Besov

norm. When p =r =2, the Besov spaces B, coincide with the classical homogeneous

Sobolev spaces H*. Moreover, the embedding H® < L2 B;?l holds whenever 0 <sp <s.
Suppose that (p,v) with v € LL_(R™;(W??(R?))?) (and hence Lipschitzian in space

when averaged in time) is the solﬁition of the Cauchy problem (1.1)-(1.4). Let ¢(t,-) €
L (RT;(W*P(IR?))?) be the flow associated with the vector field v: L (t,x)=v(t,9(t,x)),
¥(0,x) =x and let Q(t) = (¢,0)o) be the domain transported by this flow with the W7~
boundary parametrization (t,7o(+)) : S' — 9Q(t). Then we deduce from the transport

density equation of (1.1) that

]

p(t,x) =mlay (x) +1mlame(x). (1.5)

The tangential vector field X(¢,-) of the boundary of the domain ()(t) is transported by
this flow in this following way

X(t(t,x)) = Xo(x)-Vp(t,x), (1.6)
or equivalently,

{ 0 X+0v-VX=X-Vo,

X(0,x) = Xo(x). (1.7)

Then the question below arises: whether or not the evolved boundary 9Q)(t) persists the
initial boundary regularity, that is, ¥(t,70(-)) € W*t2#(S!), k > 1 for any positive time
t? Or equivalently, by view of 8!y (t,v0(s)) = (35 ' X) (t,¢(t,70(s))) T, we ask ourselves
whether or not

(3% 1X) €L (RT; (WP (R?))?)  for £=1,-- k. (1.8)

The original question was proposed by P.-L. Lions in [28] with (#1,72) = (1,0). As a first
progress toward this question, we [25] confirmed the propagation of the boundary reg-
ularity of any order under the small jump condition: |71 —#32| is sufficiently small. For

TWe calculate directly

9s(¥(£,70(s))) = Xo(70(5))- Vip(£,70(s)) = X (£,9(£,70(5))),

and then recursively for any ¢>1,

A (p(t70(5)) =24 (@x ) (£70(5)) ) =+ = (B, ¥)(£70(5)) = (B X (E9(E70(5))).
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any positive numbers (171,12), we [26] considered the low regularity case k=1 and in this
paper we continue to study the high regularity case with k> 2.

Recently [17,19] studied the propagation of the low boundary regularity of Holder
type. Danchin and Mucha [15] investigated the vacuum case and hence the aforemen-
tioned question has a complete answer in the low regularity regime.

We consider this regularity propagation problem in the framework of conormal dis-
tributions or striated distributions (with respect to the regularities only in the tangential
direction in (1.3), (1.4), (1.8)). This idea was used by J.-Y. Chemin [8,9] to prove the global
regularities of the two-dimensional vortex patch for ideal flow (see also [6,7,10,11,18,20,
21,31]).

In the remaining part of the introduction, we shall introduce

e The main result in Subsection 1.1,

o A series of equations in Subsection 1.2,

e Two useful lemmas in Subsection 1.3,

e The outline of the proof in Subsection 1.4,
and we will supply the detailed proofs in Section 2, following the outline in Subsection
1.4.
1.1 Main results

In order to show (1.8), we have to consider ag’;lx ’s evolutionary equation. For notational
simplicity, we first introduce the following notations:

Dt::at—i—v-V, 8X:XV, (19)

1,9 (110

pl:=0%p, vii=0kv, mhi=d%m, XL:=3%\X, (=0,1,-- and dy
then Eq. (1.7) implies that the two operators D; and dx commute:
[Dt,'aX] = DtX — aX'U =0.

Therefore we apply 9% to the transport density equation D;0=0in (1.1) to obtain D;p’=0.
Under the initial density patch assumption (1.4), Bg(opo =0 for any £>1 and hence

p' (1) = (3%0)(1) =0, VE>1. (1.11)
Similarly we apply 8?{1 to the transport equation (1.7) D;X = dxv to get the transport

equation for 95 1 X=X/ "1:

-1 yb=1 o oyl—1 ot
{DtX — X1 40.VX vl 112)

X1(0,0) = (% Xo) ().
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In order to show X/~1(t,-) € (W??)?2, we need v' € L'([0,t];(W??)?) and this can be ob-
tained from the H'-energy estimates for v' and (D;v') * &. To this end, we will consider
the /-th unknowns (Vé,Dtve,VDm[,Xf_l) together and aim to get the estimate for Ay(t)
defined below

T (-1
Ag(t):=|lv HZ?O(B;I)QZ%(BllJ{SK)—i_HX Lo (w2ry +An (8) +An(t), (1.13)

2,

where

1-s¢
Aél(t)iz||V€||L:°(L2)0L$(H1)+||U : vVEHL;’"(LZ)

+Ha# (atvélvzvé,vrrf) s (1.14a)
t
Agz(t) = HU’lf% (Dtvg,vzvé,v#) HL‘X’(LZ) + H0'17% VDtVZHL%(LZ)
t
3—s 3—s
+||UT‘thvf||L?o(L2)+Han(vaé,sztvf,VDt%) sy (1.14b)
t

correspond to the H!-estimates of v/, D;v' respectively. In the above and in the following,
the notations such as L/ (L7) will always mean L?([0,t];L7(R?)). The (L!(L7))"-norm
of the vector field (u1,---,u) € R™ will be simply denoted by || (u1,-,um)|[1p(q)- The
notation o =0 (t) denotes the time weight

oc=0(t)=min{1,t}. (1.15)

We [26] have studied the Cauchy problem (1.1)-(1.4) and proved (1.8) for k =1 by
considering the coupled system (1.1)-(1.7) (see also (1.26)-(1.27) below) with the initial
data (1.3)-(1.4) for k=1. Let us recall the global well-posedness and the low regularity
propagation results therein where the estimates for v also play an important role here:

Theorem 1.1. Let the initial data (po,vo,Xo) satisfy (1.3)-(1.4) for k=1. Then the coupled system
(1.1)-(1.7) has a unique global-in-time solution (p,v,V 1t,X) such that the density function p(t)
is still density patch (1.5) where the domain Q)(t) preserves the same boundary regularity (1.8),
and the velocity field v(t) € (L*N B3, (IR?))? together with its tangential derivative (9xv)(t) €
( LZ(\B;1 (IR?))? persist the initial reqularities and are (W>?(R?))? for any positive time.
Furthermore, for any r € [2,00) there exist some universal constant Co and some constant Cq
(depending on the initial data 11, 12, HUO”L%BZ‘{/ 1 Xo!l w2, ||aXoUO||Lsz§11) such that

t 1
AO(t)+</0 Bodt/)2 < Hvo||L2mB;?leXp(CoeXp(CoHvoH%z)), vt >0, (1.16)

TWe consider Dyv! instead of 9;v! since we would like to benefit from the density equation D;p =0 while
d;p = —v-Vp has singularities since the density p is discontinuous in space variable. The idea was used by
D. Hoff in [23] for the study of the compressible Navier-Stokes system.

SWe derive from H!-energy estimate for D;v’ and Sobolev embedding that Dyv’ € LllO . (L?) which controls

Vvl e Lll0 . (L?) up to lower order terms, see Eq. (1.29) below.
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where (recalling the time weight o(t) in (1.15))

50
Ao(t):= Wl + 10l ggpeagyy 10 2lipag + o200 e
+ o673 (Dtv 910,02 Vo, Vv, Vn) H
L°° L")
3 90
+ (VDw,D1Vo,Varo) H
et v oo H17 _7(Dw,Bw,v@VU,VZU,Vﬂ)||L?(L4), (1.17a)
t
s 2
Bo(t):= (Ivo()] +H 5])(atv,Vzv,Vn,Dtv,v@)Vv)(t)‘ )
m:2,4,p,p—f2 L
1-2 2 s 2 2
Vo ()Pt o Vo) |2 +H ¥ (Dyo,00 V0,9;0)(t )Hm
LeNLP-2

3—s 2
+ HUT" (va,VZDtv,DtVZU,VDtn,DtVn,U- (Vvt—}—DtV?)),DfU-VU) (t) HLZ

N

+Ha<%* 2‘?)(thv,th,mvzv,vmw,vatv)(t)H;), (1.17b)

and (recalling the definition (1.13) of A;)

Aq(t) <exp(exp(Ci(t)?)), (t):=max{1,t}. (1.18)
Here the notation a®b means: (a®b);;=a;b;j for a=(a;); and b= (b;);.

In this paper we will generalize k=1 in Theorem 1.1 to any positive integer and the
main result of this paper is the following;:

Theorem 1.2. Let k> 1 be any integer. Let the initial data (po,v0,Xo) be given by (1.3)-(1.4).
Then the coupled system (1.1)-(1.7) has a unique solution (p,v,V 7t,X) such that the density patch
(1.5) persists the initial boundary regularity (1.8).

Furthermore, there exists a constant Cy (depending on the initial data (1.3)-(1.4)) such that
(recalling the definition (1.13) of Ay and (t) =max{1,t})

Ag(t) <3, (t):=expexpexp---exp (Co (1)) with (£+1)—times exp, (=1,-- k. (1.19)
Remark 1.1. The initial density assumption in (1.4) can be relaxed to more general case:

0<p.<po<p*, 0%p0ELZ(R?), (=1, k. (1.20)

1.2 A series of equations

Let (p,v,V,X) be the solution of the Cauchy problem (1.1)-(1.7) and (1.3)-(1.4) given by
Theorem 1.1. Recall the notations D;,v!, V7!, X! defined in (1.9). In this subsection we
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will derive the system satisfied by (VE,VTEZ), which will be of the following form:

poiu+pv-Vu—Au+VII=f, (tx) eRT xR?,
divu=divg, (1.21)
u ’ t=0 = U,
where (1,VII) are the unknowns and (f,g,uo) are known data. While (D;v’,VD;m")
satisfies a linear system reading as below
oDi(Dyw)—A(Dw)+Vq=F, (t,x) ERT xR?,
divDyw=diva and divD;(D;w)=divb,
where (Dyw,Vq) are the unknowns and (F,a,b) are known data. Indeed, we will derive
below the precise formulations for

(1.22)

(f,g):(fg,gg) when (1, VII)= (v/,!), see (1.28)-(1.29) below,
and (F,a,b)z(Fg,ag,bg> when (Dyw,Vq) = (Div!, VD), see (1.31)-(1.32) below.

And we will make use of Lemmas 1.1, 1.2 below to get the energy estimates for v/, D;v"
respectively and finally derive (1.8) for X1 which satisfies the transport equation (1.12).

We first deduce from the transport equation (1.7) and divo =0 that X’s divergence
div X satisfies also the free transport equation 9;(divX)+v-V(divX)=0. We then con-
clude from the initial assumption (1.3) on Xy that the divergence-free condition always
holds true for the vector field X(t):

divX(t,-)=0, Vt>0. (1.23)
It is hence convenient to define the operator
Px=(0x—(VX)""), (1.24)

such that due to divX =0,
div Pxu =div (dxu—u-VX) =dxdivu =div(Xdivu), YucR>.
1.2.1 Equations for (v,V ) & (Dv,VD;71)

It is straightforward to see from (1.1) that (v, V) satisfies (1.21) with (f,g,u0) = (0,0,v9).
We apply D; to the momentum equation in (1.1) to get the Eq. (1.22) for (Dv, VD, )

with the data (F,a,b) = (Fo(v,n),ao,b0> T (see also [26])
pD?0—AD;v+V Dyt =Fy(v,) with
Fo(u,11) =—2V0,-9,Vu—Av-Vu+Vv,0,I1,

divDyo=divay, ap=v-Vo,
divD?v=divby, bp=v-(Vv;+D;Vv)+Dsv-Vo.

Here and in what follows, repeated indices of « means summation of « from 1 to 2.

(1.25)

TThe formulae for ay,b; come from the facts that div X =divo =0 and [Dt;9x]=0.
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1.2.2 Equations for (v!,V7!) & (Dyv!,VD;mt!)

We apply dx to the v-equation in (1.1) to get the Eq. (1.21) for v! with data (f,¢1) (see
also [26])
v +00-Vv! - AV 4 V7l = fi (v,1)  with
fi(v,m) =—(AX-V0+420,X-V0,0)+ VX", (1.26)

divvlzdivgl with ¢1=0v-VX, Vllt:():axovo.

We apply the operator D; to the v! equation of (1.26) to get (see also [26])

pD?v! —AD!' +V Dyt =Fy (v, )+ D f1(v,7t) :=Fy,
divDyv!=a; with ay:=D;v-VX+Px(v-Vo), (1.27)
divD?v!=b; with by:=D2v- VX Pyby,

where Fy(+,-), f1(+,-) and Px are given in (1.25), (1.26) and (1.24) respectively.

1.2.3 Equations for (v/,V7') & (D;v!,VD;n') with general £>2

Recall the definition of the operator Px in (1.24). Recall the definition of g1 in (1.26). We
derive g, by induction:

divg, =divv! =div(dxv’ 1) =div (VH VX4 Xdiv gH), (1.28a)

=1 )
with g:=v/"1VX+Pxg1=) Px(v"17.VX). (1.28b)
i=0

We apply 95 ! to (1.26) to get inductively the Eq. (1.21) for (v, Vn') with data (f;,g/):
pdv! +00- Vv — AV + V' = (v L Y v ax froi (v,7) = fo (v, 7T), (1.29)
where by induction f;(v,77) =Y.\ 9% f1(v/~1~/,n’~1-7) and more precisely

-1 , o ,
fo(o,m) =Y Y- Cl(—2053uX -9 Vav' 1
i=0j=0

— A AX-B IV LA VX -9 TR ) (1.30)

Inductively, we deduce from diva, = divD;v’ = div(dxD;v'~1), divb, = divD>v' =
div (9xD?v'~1) and the definitions of Py, (ag,bg) in (1.24), (1.25) respectively that

a;:=Dv' "1 VX+Pxay_1 =Y Py (D' VX)+Pg(v- Vo), (1.31a)
i=0
by=DHv' - VX+Pxb,_ =Y Pi(DF' T VX)+ Pgby. (1.31b)

i=0
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We apply the operator D; to (1.29) to get the Eq. (1.22) for (Dyv',VDyr!) with data
(Fflafrbé):
oD?v' —ADw'+ VD! =Fo(v!, ")+ D fy(v,7) :=F,, (1.32)

where Fy(+,) is given by (1.25) and hence

=1 i .
Fy=—20,0-V,v' —Av-Vv! +Vo-Va'+ Y Y !
i=0j=0

x (D1 (2050, X 85 Va1 ok aX 2y T 1

~o VX 9y V1)), (1.33)

1.3 Two useful lemmas

In this subsection we recall two useful lemmas in [26], which give the H 1 estimates for u,
Dyw of the linear equations (1.21), (1.22) respectively.

Lemma 1.1. Let (p,v) be the solution of (1.1)-(1.4). Let (u, VII) be a smooth enough solution of
(1.21) with initial data ug=0. Then for any s € (0,1) and é € (s,1), one has

(a?w ’ +Ha%‘“(atu,v2u,vn) :
Ly (L2) LE(L?)
<eo( L1501y, + | (o Vet o),
+H <0*_%Vg,o*1T 0;g,Vdivg, f ) . > (1.34)

Here o =min{1,t}, (t) =max{1,t} and Cy=(1+ ||vo||Lsz;0])Zexp(Coexp(Co||vo||‘iz)).

Lemma 1.2. Let (p,v) be the solution of (1.1)-(1.4). Let (w,Vq) be a smooth enough solution of
the system (1.22). Then for any s € (0,1), we have

3—s
o Dew 2 2y 2y 1077 T Dew| B+l (DPw, V2Diw, V) [ 2,

_ _ 2
<Cexp (Cllvo|32) (aT(th,a),(T _EVa,(TaT(Vdiva,b,F)) H , (1.35)

13(12)

and in particular, for any € >0, there exists C; such that

1—
|0t ZVDtWHLz <£Ha z thw||L2 12)+Ce o2 (Dyw,a)

2
L?) HL?(LZ)

+C; ||0' 7 (E, leV“)HLz 12)- (1.36)
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1.4 Outline of the proof

We prove Theorem 1.2 by an inductive argument: By Theorem 1.1, we can assume induc-
tively that
Aj(t) <H;(t) forany I</—1 and (<k, (1.37)

and it suffices to show (1.19) A,(t) <H,(t). Recall the definition (1.13) of A; and

3 (t) =expexpexp---exp (C/(t)?) with (I+1)-times exp,
and the constant €¢;depending on the initial data (1.3)-(1.4) until /-th order.

We apply Lemmas 1.1, 1.2 to the Egs. (1.29), (1.32) respectively to get H' estimates
for v¢, Dyv! where we take use of the inductive assumption (1.37) to control the /-th data
(fe,8¢), (Fe,a0,b4). More precisely we follow the following procedure to prove (1.19) and
detailed proofs are provided in Section 2:

e We derive more estimates from the inductive assumption (1.37) in Subsection 1.4.1,
e We derive the estimates for the data (f;,g,) in Subsection 1.4.2,

e We derive the H' estimate for v/ and then some consequent estimates for D;v’ in
Subsection 1.4.3,

e We derive the estimates for the data (Fy,a,,b/) in Subsection 1.4.4,

e We derive H' energy estimate of D;v’ and finally (1.19) in Subsection 1.4.5.

1.4.1 Deductive estimates from inductive assumptions

Observe from Subsection 1.2.3 that for />1,0<i</—1,i1+---+1i, =1,

e f; contains terms such as V2Xi@Vvi-1-1 vXi.V2yti-1-1 gXi.Ynt~1-1 and gy con-
tains terms such as v/~ 171. VX ... YXFr;

e F, contains terms such as
Vo- V2!, Vo- V!, V20- Vvl Dy(V2X- Vv 1), Dy (VX V210,
a, contains terms such as (Dyv'~171,8% 7 (0-Vv))- VX ... VX", and by contains terms
such as (vafflff,aigi (U-DtVU,DtU- VU,U-V(U-VU))) VXh .. VX
Since the operators dx,D; do not commute with V,0;:
[0x;V]|=—VX%,, [0x;0¢{]=—0:X"0y, [Dy;V]|=—=V0*0y, [Dt;0¢]=—0:0"9y,

in order to control the ¢-th data (f;,g/),(Fy,as,b¢), we have to derive more gener_al induc-
tive assumptions from (1.37) which contain terms of more general form such as &, Vo VX/,
BJXVBI}‘(VVI, GJXVDtVZ,- -
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Lemma 1.3 (Inductive assumptions). Let (p,v,V7t,X) be the solution of the coupled system
(1.1)-(1.7) with the initial data (1.3)-(1.4), such that the inductive assumption (1.37) holds. Then
one has

Ri(t)+2(1) /%l VdE <F(H) for 1<1<0—1. (1.38)

In the above, for £>1,

Ret)i= % (0% VXl + 0% VO VX 100 )- (1.39)
m+n+x<l—1
For
rn€{2,2p/(p—2),+}, re{2,p}, (1.40a)
rne{2p/(p—2),+c0}, and r3€{2,2p/(p—2)}, (1.40b)

and 0 < &g <min (sk/Z, (p/Z—l) (1—50)), we denote

. i 15 i I¥eg=sy i aym
OE I (g PR L I L a2 S T

i+j+l=t P
m+n=~—1
1-s
o = AEVaX] o+ | @k HDIVX 102

1—L1_% _1_ %
0DV i) + e DD VX )

+Ha<%—%—%“)( VY, D 35V ) (1.41)
and
Y I (%_7_ )al ]al j 2 (%-Fl—szi) 2
By(t):= Y (o2 % 2/ (@5 VD, 05Dy V) (1) |7+ 0277~ 2 D! (1) |2 =
i+j=t
—sp .. . . .. . 2
+) o2 (DX, 9 Dy Vv, Vol V Dyvi, 9, D, V) (1) HLZ) (1.42)
and
HEY 9 and By (t () + Y. B(t) (1.43)
1<t 1<?

where By(t) is given by (1.17b).
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1.4.2 Estimates for (f,g/)
We derive in this step the estimates for the data (fy,g/) from those estimates (1.38).

Lemma 1.4 (Estimates for fy). Let {=2,---,k, and r € {2,p}. Under the same hypotheses in
Lemma 1.3, there hold

o G250 (£, Vdive) (1)1 SHa (D AHIVX T ), (Ldda)

<CllelE= =)D () [1r+3¢ 1 (8) (14 19X (1) s ) (1.44b)

Lemma 1.5 (Estimates for g). Under the same hypotheses in Lemma 1.3, one has

1-s

Ige(B)lli2+o ()2 [Vge() 2 <361 (8) (14 VX ) ), (1.452)

(1= —
I9ige ()2 < 0]l Vv 124301 (e ()"0 (14 VXA ()l )- (145D)
1.4.3 H' energy estimate of v’
In this step we derive the time-weighted H! estimate of v’. We first decompose (v¢,Vrt‘)
as

VKZVgl—i—ng and V#szgl—kVpgz, (1.46)

where (v, Vpy1) solves the linear system (1.21) with the data (f,g) =(0,0):

divvy; =0, (1.47)

{ patVﬂ +pv- Vvp—Avp+ vpgl =0,
Vo1 li=0=0%, o,

and (v, Vpyo) solves the linear system (1.21) with zero-initial data:

divvy, =divygy, (1.48)

{ pathz +p0- Vvp—Avp+ vpgz :fg(v, 7'(),
Vi li=0=0.

It follows the Besov estimate and H' estimate for v directly from Theorem 1.1 (notic-
ing that (v, V) and (v, Vps) both satisfy the linear system (1.21) with data (f,g) =

(0,0)):

1y 1y >
|’Vél||zgo(ngl)+HVVeleg(B;gl)JFHU 2 VV£1||Lg°(L2)+HU 7 (0rvi, Vv, Vpn) 22

<e,. (1.49)
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Then we apply Lemma 1.1 to bound the time-weighted H!-norm of v, by

€u(X)=Cexp (€alt) +96 2 (1) (14 [ T oX @) B,ar),  as0)

where 6)=s;,—s,_1 be some constant in (0,1). Hence we can bound A?, by ¢,(X):

Proposition 1.1 (The bound for Ay). Let Ay (t) be given by (1.14a). Let €/(X) be given
by (1.50). Under the assumptions of Lemma 1.3, we have

A% (1) < €(X). (1.51)

We also get some consequent estimates from the bound A% < €,(X) which will be
useful in getting the H! estimate for D;v,:

Corollary 1.1 (Preliminary estimates for D;v’). Under the assumptions of Proposition 1.1,
one has

1-s
lo 7 V2 o 4o 2t (D, Va4 Vo, Didls AX)|2 )
)
- ||c7 P (Vv §Vo,DRYIVX)? a <E(X). (1.52)
L2(LP2)
1.4.4 Estimates for (Fy,ay,b))
We now get the estimates for the ¢-th data (F,,a,,by) defined in Subsection 1.2.3.

Lemma 1.6 (Estimate for F,). Under the assumptions of Lemma 1.3, we have the following
estimates for By, {=2,--- ,k:

o7 Bl z) <36 1(6) (S0 [ (Bo(t)+o(1) 0= 1) [VX (1) e,

for By(t) given by (1.17b).
Lemma 1.7 (Estimate for ay). Under the hypotheses of Lemma 1.6, we have the following esti-
mates for ag, {=2,---k,

1-s

lo ZgaéHig(LZ)“‘H‘T ZVC‘ZHLZ 12) ‘|‘H‘7 3 leVaEHLz <€ﬁ(X) (1.53)

Here and in all that follows, for B,(t) determined by (1.43), we always designate

Tcg(X)::}cﬁ_l(t)(eg+/ot(%g_1(t’)+a(t’)<1"z°>)|\vx“( NZppdt).  (154)

Lemma 1.8 (Estimate for by). Under the hypotheses of Lemma 1.7, for any € >0, there exists a
constant C, such that for by, {=2,--- ,k we have

3—sy 3— ~
o= 00|25 12y < Cello =" DIV |2 12y +Ci(X), (1.55)

with €;(X) given by (1.54).
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1.4.5 Proof of (1.19)

We apply Lemma 1.2 and the estimates for the data in Lemmas 1.6-1.7-1.8 to the equation
(1.32) to get the H'-estimate for Dyv!, which will be used to get the W2P-estimate for
X1

Proposition 1.2 (Bounds for A, Ap, X ™1). Let Ay (t),An(t) be given by (1.14a). Then
under the assumptions of Lemma 1.6, we have

An(B)+An(8) 41X o wany I (H). (1.56)

With Proposition 1.2 in hand, to complete the proof of the bound (1.19) Ay (t) <H,(t),
it remains to show the B »1 estimate for vt

v g sy + IV sy ) < Fe(B)- (1.57)

The proof of (1.57) follows exactly the same argument as those in proofs of the Besov
estimates in Theorem 1.1 (see [26]). It is delicate but does not contain substantial new
ideas. We skip the details here.

2 Proofs

We follow the procedure in Subsection 1.4 to prove the estimate (1.19) A,(t) <3,(t) from
the inductive assumption (1.37) A;(t) <H;(t), VI</—1.

2.1 Deductive estimates from the inductive assumption

In this subsection we shall derive more estimates (1.38) from the inductive assumption
(1.37), which will be used constantly in the following context.
First of all, we state the lemma concerning the commutator estimates:

Lemma 2.1 (Commutator estimates). Let £ € {1,---,k} and (i,j) be any pair of nonnegative
integers with i+j < {. Then for rq,r,r3 satisfying (1.40), there exists a positive constant C such
that

9% VX = VX | 2o iy + 0% VI, VX — VX | 1o (1) SCR (1), (2.1a)
o) @v o + |G =) @i - v
Lp(L) L (L)
+Ha %*%*T’)(aggvaf;(vvf—f—f—vzvf)u <CRy(HA1 (1), (2.1b)

Lp (L)
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and
S¢— . . . . 2
Ha(t)@_%_%)( (VD' =D 9DV = VD) (1) (2.2a)
3
3—sy_ . . . . 2
+H0(t) ! (a’XDtvzvé_l—VZDth,VBZXVDtvf_Z—Vthvé)(t)HLZ (2.2b)

+H(T(t)352“(a§<DtV7r€i—VDtrrg)(t)HizSCR%(t)SBg_l(t)—kCQl‘,f(t)a(1s‘). (2.2¢)

This lemma follows from the same argument as that in the proof of Lemma 4.1 of [25].
It is elementary and we skip the details. Interested readers are referred to Appendix A
of [27] for detalils.

We derive (1.38) for £ =1 immediately from Theorem 1.1 and the proof can be found
in Section 5.2 [27]:

Proposition 2.1. Under the hypotheses of Theorem 1.1, we have (1.38) for [ =1:

t
VX | iy +20 (1) + /O By (F)dE < H, (1) 2.3)

By view of (2.3) we can derive more general inductive assumptions (1.38) in Lemma
1.3 by an inductive argument.

Proof of Lemma 1.3. By (2.3), we can assume that
t
RK(t)+QlK(t)+/ By ()t <He(t), 1<x<I-1. (2.4)
0

We shall show the estimate (2.4) for x+1. Indeed, it follows from (1.37) that
IVXP Lo wiry SHpa(t), VB<I-1,
which together with the commutator estimate (2.1) for x and (2.4) ensures that
Ryet1(t) <Hea (). (2.5)

Similarly, due to the estimate (2.5) and the commutator estimates (2.1b)-(2.2a), we can
prove (2.4) for k41 from the assumption (1.37). We skip the details and interested readers
may check the proof of Lemma 6.2 in [27] for details. ]

2.2 Estimates for (f;,g/)

In this subsection we prove the estimates (1.44)-(1.45a) in Lemmas 1.4-1.5 for the data
(fe,8¢) defined in Subsection 1.2.3 respectively, by use of the general inductive assump-
tion (1.38).
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Proof of Lemma 1.4. Recall the definition of f; in (1.29). For r=2 or p, we deduce
| filler SC(Rea (1) + 85 VX 1o+ 35 AX 1)

< Y (10w 872 2T+ 29V ),
i+j<t-1

which together with (2.1) ensures that forr=2 orr=p

I feller <C(Rea()) +REL(D+IVX s Jom G, 6)
As a result, we deduce from (1.38) that forr=2orr=p
feller <3 a (Do () G772 (149Xl ). 2.7)

Recall in Subsection 1.2.3 that
-1 4 . =1 ,
divv’ =divg,= Z diVP;((VZ_l_Z VX)= 2 ddiv (Vg_l_l -VX)
i=0 i=0

-1 .
=Y 9 (3uv' 1 VXY), (2.8)
i=0
and hence
-1 i , o
Vdivy! =Y Y- CIv (3o 9k v xe),
i=0;=0

from which, we infer forr=2 orr=p
IV divv!|| 1 §C(Rg_1(t)+ 95 VX = + ||va§;1vaLp)

< Y (Vo v+ VVI| ).
i+j<t—1 Lr

Then we deduce from the commutator estimate (2.1) that for r=2,p,
|Vdivv! | <C (Rg_l(t) FRZ (B[ VX? ||W1,,,)f<%*%*%)m4_l(t).

By virtue of (1.38) and (2.7), we obtain the first inequality of (1.44).
On the other hand, we rewrite the v'-equation (1.29) as

—A(Ve — VAfldivve) + V' =Vdivv! —thvg + fo(v, ),
so that for any r € (1,00), it follows from classical estimates for Stokes operator that
12!, ) 1 <C ([ Ve’ [+ D! [+ I el ), (2.9)

which together with the first inequality of (1.44) gives rise to the second one of (1.44). [
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Proof of Lemma 1.5. Recall the definition of g, in Subsection 1.2.3:

(-1

=y, (ax— (VX)T')i(VE_l_i'VX)
i=0

=Y Y (v VX)-0R(—VX)h 9y (VX"

=014 +i,=i
It is obvious to observe from Lemmas 2.1 and 1.3 that

- i I —
Igelliz <[l ' VX[ + Y [V allox VXIS
[<0-2,i<l-1

<X IVl (1105 X = +RETH (1)
i<f—1
<H_ () (1+VXTH ).
While by taking 9, with k =0,1,2 (here d d:efat) to (2.10), we write

aKgé :g%,K—I_g%,K’

where
-1 ‘ . ‘ ' ,
o=y % (al;( (aKX.vagg(vf*l*l.vx)) A (T X)
=1y tiy=i—1
—I—Bi)l((ve_l_i-VX) .. .aéf’{l (akx.vaéf'((—VX)iHl) ---8’;{1 (—VX)i’
FOR (v VX) 0 (- VX) 3 (— V) (- VX)),
and

(-1

Se=Y, Y 050 (v VX) 0% (—VX)R - dy (- VX)P.

=014 +iy=i

179

(2.10)

(2.11)

(2.12)

Notice that the indices i1,1,- - -, i, satisfy i1 +---1, <{—2in gé/K. We thus get from (1.38)

that forx=1,2,

1-s

Ighiliz<C L a0 (ITV i+ V] 2 ) SCHa (o F 2 (e),

i+j<l—2
To handle g7, we separate the case when iy =i=/{—1 from others to get

g7 /1.2 <[IVoll 2|05 VX | + Ioll 2, 0% V2X] |1

+C ¥ Ha® (15 + IV 2 ),
irj<i-1 Ly
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from which and the commutator estimate (2.1), we infer
. _ ]75471
187, cll2 < C(Hea () + VX s )™ 7 21 (1),

Combining the above estimates of g}rk and g%lk, x =1,2 with Lemma 1.3, we obtain the
first estimate of (1.45a).
Along the same line, we deduce from (2.12) that
(1 St—1 1 1-sp_ 1 . .
lgkolliz <3 (e C7) 3 (lotakaiXles (llo 2 9k Vv/]|pa
i+j<(-2
1<(-2

1-sp 4 i 1-sp 4 1 1 i
oV )+l VX |tV i), (2.13)
Lr—

from which and Lemma 1.3, we infer that
Ighollie <31 (B (=598 (1) <3¢,y (e (17721, (2.14)

While by separating the case when iy =i=/—1 from others and taking into account of the
fact that: ;X =—v-VX+v! one has

I820ll2 /19035 VX 2+ 0351V (09 X) 2+ o35 TV
¢ r (19 VRV ), @15)
i+j<l—1

I+m<l—1m<l-2

which yields
Igfollie < (1| @00 Vo) 12+ lowoll 2, ) (105 VX s+ (25 X )

ozt Y (lo@dVville+loavl z )Ria()
i+j<l—1 Lr=2
_ 81

+C%g_1(t)a’(1 2 )(Qle—l(t)JFQl%ﬂ(t))/

that is

1— S¢—1

I830lli2 <2l 99! 24301 (o™ 05 (149X ).

The above estimates for g%/o, g%/o imply the second estimate of (1.45a). O

2.3 H' energy estimate of v'

In this subsection, we prove the time-weighted H' estimate of v’ in Proposition 1.1 and
the consequent estimates for D;v’ in Corollary 1.1.
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Proof of Proposition 1.1. We first apply Lemma 1.1 to the v ,-equation (1.48) that

1y > 1y >
o7 Ve lfe2)+ (072 (9vi2, V Vi, Vi)

LF(L2)
_% 2 _ 1=(sp=sy)
<Co(t) (IlgeO) g+ @gafo)[, o )
+lo” ZVgﬁHLz 12) +Hff 7 (01, Vdivgy, fr) L2)> (2.16)

In view of the formulation (2.10) of gy, we get, by applying the law of product in Besov
spaces (see [5] for instance), that

186l <C Yo V(O g2 195, VXl 5
21 . z
i,j1<(—1 B,1

<C ) V(0 HBSMHa )V Xol s
i,j<l-1

<C ([0l 2+ 105 o0l o1, Xollwes, - 195, Kollwer ) S €5 (2:17)

While it follows from Lemma 1.4 and 6y =s,_1 —s, that

w7

Ha sz T levgg,fg)H .
<3, (1) | tcf(l 9)(1+||V><4 2y )t (2.18)

And Lemma 1.5 ensures that

1—
+H(7_

s 2
HO'_T[atgf 1(12) +lo ng“ 2(12) +HU : atgéHLz L?)

1(L2
t s 1-s 1-s
<C{B)lle ol [ H“f”(||anva1||%2+||0-wa||%2)dt'

+Jf§_1(t)/0ta<1 9)(1+Hvx’ Ry ) (2.19)

Inserting the above estimates together with the H! estimate (1.49) for v; into (2.16) and
applying Gronwall’s inequality results in

1-s 1-s 2
o7 Vv e+ 07 (3rve2, VP2, Vi) <€y(X), (2.20)
t( ) L%(LZ)

for €;(X) given by (1.50).
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This above estimate implies the L2 energy estimate of v,. Indeed, we take L2(IR?)

inner product of (1.48) with v, to get
1d
S qlVevellt Vel = [ (fi-Vpa) viads

S /tgasw
L2(L2) 0

<H (f,Vpe)

Hence we apply Gronwall’s inequality to get

HV82||2;>°(L2)+ HVV€2|’%§(L2) <& (X).

ngH%de.

(2.21)

(2.22)

We sum up the above H'! estimates for v, and the H! estimate (1.49) for v, to get A%l (1<

Co(X).

O]

Proof of Corollary 1.1. We will derive the estimates (1.52) from the bound (1.16) in Theo-
rem 1.1, the bound A%l < ¢€y(X), the commutator estimates in Lemma 2.1 and the induc-

tive assumptions in Lemma 1.3.

We first deduce from the bound A%, < ¢,(X) and Gagliardo-Nirenberg’s inequality

that
02 ¢ ¢ 2
0TV s <OV Iyl T s ) <50,

LP(LP~2)

and

o2 D Baqgzy < 072 00 [ oy 013 gyl = 8 B g2y S €0(X).

In order to estimate Vo' Vv, we consider its difference from V2v':
-1 . S B ‘
VB%VU_ VZ 0 \V4 Zalx [aX;v]Véflfl - _ Z VazX(VX vvéfle)‘
i=0 i=0

Indeed, we know

lo =" (Val, Vo —v2v!)
5(\\01"%)”2

HLZ L2

o+ VR0 )
LP?)
t
></0 0’(1’90)<||Va§{1VXH%p+||8€’1VX||%w>dt’

0 T (VX RVIE

1<0-2,i+j<l—1 LE(LP=2)

_S-1 i i
05V X [ 1ol VATV 12 ),
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and hence we derive from Lemmas 2.1 and 1.3, and Proposition 1.1 that
ﬂ
o= VA Vol 1) < €(X). (2.23)
Similarly we derive the bound H(Tl_TS[ D% 1AX|[? ) < ¢¢(X): Due to DX =v/, we

L3(12
calculate the difference

-2 .
DY IAX = AV =D; ¥ 9 [9x; AIX 27 4 DiAX! T - ADXE !
i=0
-2 ’ '
——Y D3y (AX VX2 +2a,xx-va,xxf*2ﬂ)
i=0

_ <A0~VX£71+230¢U'V80¢XK71>/

and estimate the difference by
1-s)

{4 —
lo™=" (Ded ' AX = AVH)|[22 2

<ct)y L (10" DA un) 15X [ e
m+n+x+1<l—2 !
sp_ t
DT Bl DREVXE oy ) [ W UX R, .
' Le(LP=2) 0
On the other hand, we get from the bound A%l < ¢&y(X) and Gagliardo-Nirenberg’s in-
equality that

P T
- )§C(HVv I lle= V2 |\Lmz)) <€y(X). (2.24)

ﬂ
lo 7 w2,
12 2

1-s
Then, a similar analysis as to get (2.23) gives also HO’T[ o Vol?
2

L2(LP2)
< €&y(X): since for the difference

< &y(X). Finally

1-sp
the same estimate holds || #

DRIIVX|?
L3 (LP72)
-2 '
D4 VX - Vv =D, Y 0k [0x; VIX T2+ D, VX T - VD X!
i=0

(-2 ) )
=—Y Dy (VX -VX27) - Vo VX,
i=0
we have the estimate

ﬂ
lo 7 (DR VX=VV)|?
LF(LP72)

t 5
< [T OX fadt ot RV,
0 Lp(L772)
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+(t) Y [Ciasn o athvxnuz o ||0% Vxluzw ) S€(X). (225
m+n+x+1<0-2 L&(LP-2)

Thus, we complete the proof. O

2.4 Estimates for (Fy,ay,by)

In this subsection we show the estimates for the data (Fy,a,,by) in Lemmas 1.6-1.7-1.8, by
use of the known estimates (1.16)-(1.38)-(1.51)-(1.52).

Proof of Lemma 1.6. Recall the definition of F; in (1.32). We denote

F, 2R, 429,0- Vauv! + Av- Vvl — Vo Vit
+2D4(3% 19, X-V3,0) + Dy (0% 1AX-Vv) —Di(8 'VX V), (2.26)

such that
Fl<c Y (IDAVI+1kDivX| (9 V2| + [0} V] )

ij<l—1,1<0-2

+19% ny(|al Dy Vv |+ |0 DNT:H)HB’ D;AX||9% va|+|a§(AXHa§<Dthfy>.
Hence we derive from (1.38) that

IEellf2 <3G 1 (t) ), (||(D?ViIH%DtVZV’}E’%DtVﬂj)Hiz+Ha%DtVVjHi%)

i+j<t—1

+C Y, (%DiVX,05VVY) ||| (95 VAV],05 V9% DiAX )72
i+j<t-1,1<0-2

<36, (1) (0(5) BB,y (1) +o () 20).

As a result, we deduce from (1.38) again that

o= “Follfaz) <3G ()+CHUV0HLw L) o 2 (V3 v il X))

+Cllo? "7 (V2o V) e 1) o (Vv DR VX I
LZ(LP-2)

t
+C [ (105 VX +]135 AXI )

% (|l (D?o,Di V20, DV ) |3+l thnzi) dr’
2

By virtue of (1.38)-(1.51)-(1.52), we complete the proof of Lemma 1.6. O
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Proof of Lemma 1.7. Recall the formulation of a; in Subsection 1.2.3: ag:Zfz_Ol Pi(Dyv! 11
VX)+ P4 (v-Vov). Then we calculate

-1 . _ . .
w=Y Y L(Dw'TVX)92(—VX)B. 3 (~VX)
=014+ +iy=i

+ Y (0-V0) L~ VX)E A (VX 43k (v- Vo), (227)
it i= i #L

and by virtue of (1.24) such that div (Pxu) =0xdivu,

dlvaé—ZG div(Div 1.V X) +04div (v- Vo)
i=0

= EaiX(VDtvﬁ—l—i :VX)+0%(Vo:Vo).
i=0
Let
sei=a,—v' - Vo—0-9%Vo. (2.28)
Then we deduce from (1.38) and the formulation (2.27) of a, above that

lae(®)l12 < (Hea () +1195 VX =)o (t)~(-5)

_Sp—q . 1 1*5@7 .
x Y (Hal T D |2+ o2V o 218]XV0HL2), (2.29)
i+j<t—1
and hence
1-sp
lo =" 0() |22 <36 (1)) (14| VXL, ) (2.30)

To handle the estimate of V3, we write

Vie=301+302+303+ ) V(vi-a&Vv),
i+j=t
i, A
where
01 , ‘ .
=Y, Y (04(VX-Va DV X)) dk (- X)),

i=lig+-+i,=i—1
+a§(Dtvé_1_i-VX)---ai)'é"l (vx‘vaé?(_vx)iWIJr]) alr 1( VX)
_’_az;((Dtvéflfi‘VX)‘aézg(_vx)is...aé?V(_VX) alr 1( VX) )

3= Y (a@(vx.vag(v-w))---ag"gl(—vx)ﬁ
it ti=t-1

+l(v- Vo)l (vx.vagg(—vxym) AL (— VX
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+8§(U-Vv)-aéﬁ(—VX)Jé---a’;gV(—VX)---aél(‘l(—VX)fl>,
(-1 . ) )
30=Y. Y AV(D T VX) 9% (- VX)R -0 (- VX)"
=01+ +ip=i
+ Y 9iV(0-Vo)-ak(— VX))l (~ VX)L,
jiteti=tn#L

This gives rise to

93002 <HaOA+IVX ) Y (107Dl + D] 2

i+j1<t-1
3—
+o(t) STV sl Vol o s )
Lp—
3—sy_ Sp_ . .
Fo(t) T ||orv | ||o *%aggvafxvpnm), (2.31)

from which and (1.38), we infer that
0% Ta(1) 32 <3 (A VX T Bny) (Bea (D +0(5) ). (232)

Taking into account of (2.28), we deduce from (2.30) and (2.32) that

=5y

s 1_1_% /¢
o 2" 0l ) <[P 0% VUHZ(% [ L P [t v
() (15 [ o) X ) ),
_% % 1—1_%
s zVafH%mz)snm (VWY oy ot 2 V0 Ry
L3 (LP~2)
/ s 1 1-
IV 124 g 10~ E V201 + 00l o o= VO V02 o)

t
9G4 (0) (14 [ (Bea (1) +0(#) 070 [TX W) By,
Together with (1.16)-(1.51)-(1.52), we conclude

Ly 3
o = a2 gyl % Vel

<3¢, () e+ /O t (B () +o () D) XU B, dr). 239)
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Finally let us turn to the estimate of Vdiva,:

i/
||0’ 2 VdIVCl[HL%(LZ)

Nl

t 3—sy 3—s,
<( [ (lo= V2Dl + o VDl 5, ) 195 VX[,
LP—

e 9! j ?a D.v/
+CR(t) Y, (Nl = VO VD |z + o 8y VDyv I, 2)
i+j<l—1 )
S G o P A L%)+r|aw|\L¢o<Lw>Ha%va%wmz)
3_1_% ; 141 _1-6
+ Y et Va YV o1y llo? 70 VUH 2 (o772 |20,
ij<t—1 L (LP—2)

Then, by virtue of Egs. (1.16), (1.38), (1.51), (1.52) and (2.33), we complete the proof of
(1.53). O

Proof of Lemma 1.8. Recall the formulation by given in Subsection 1.2.3:
=1 )
by=Y Py (D' VX)+Pybg

i=0

-1 ) ] ; . .
Sy ¥ BONRVX) A (VX Y dgd (),
i=0iy+-+iy=i it ti=t

where
bp=v-(Vo+D;Vv)+Dyw-Vo=2v-DiVo—v-V(v-Vv)+Dsv-Vo.

We calculate directly
2
HU 2 WHL%(LZ)
t 3—s 2
g/ o= (DFobo) | 10X 2t
0
1 _%
+2]|azv]|2?°(Lw)Hal 294D Vo2, 2(12) —I—HUVUHZW 1) Ha ' Dyvt HLZ 2)

1 Q,,,
+ClVIE o T (DY, Y (0@ V) B )

LE(Lr=2)
3_1_%
HIF AV 1077 00V, D0) s
L L?
_S=1 i ]
+C(1+R1 (1)) ij§_1(<t>||al 2 D 1) 09 Vol 1o

=t D2y ij2 =% (3l V(v-Vo), Do V) |12 234
0 DBy o 0V Byl (05T (0-90), DGO B ). (239
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Noticing the commutator

-1 ‘
95Dy Vu— VD! =05 [Dy; V]o+ Y ok [0x; VD 1,

=0
we obtain
.
lo"~ 204Dy Vol |22

171

S 1
<[lo*F VD[ 212y +2]l 07 0% wu )Ha V0|l 1)

= '“

t s
“( ||al-%vav||2zuvxf-1||%oodt)

1-6y
+ ), ook Vo[ (1) ||f7 G xVOllre)llo™ 2 (2o
ij<i—1

+C(Rea(H+RE (1) Y o 2% VD 1212,
i+j<0-1

from which, (1.16), (1.38) and (1.52), we infer
o2 35Dy Vo2 1
<[l VD2 g2y (X +/ |~ VDw|% | VXY 2adr.  (2.35)
Recall the estimate (1.36) in Lemma 1.2, we know from the Dyv* -equation (1.32) that
lo' = VD' |2

3-sy _%
<e|lo2 D} éHLz 12) +C (HU = (D' a”)HLZ L2) +[o! 2vWH%?(U)

o2t (B, Vdivay) ”%%(U))' (2.36)
Inserting the above estimate into (2.35) and using Lemmas 1.6 and 1.7, we achieve
s 3—s ~
o'~ 2% Ds V0|2 o) <elle 2 DIV |72 1) +Ce€i(X) (2.37)

with ¢;(X) defined in (1.54).
Finally, we notice that

Y. lo' = $ 34V (- Vo)l 212
j<t-1

1 1 _q/;l
<t 8 (loviligas ot = 0 Vol
i+1<0-1

S 1
+ 0T VOl 1) 20 Vol 2 )-

Substituting the above inequality and (2.37) into (2.34) and using (1.16), (1.38) and (1.52),
we conclude the proof of (1.55). O
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2.5 Proof of Proposition 1.2
We prove in this subsection Proposition 1.2.

Proof of Proposition 1.2. Recall the definition of A/, in (1.14a). We first get, by applying
Lemma 1.2 to the linear system (1.32), that

A3 (1) <o ([l (D) 23 )+ 10~ F Va2 )+l 2 (Vivay by, F) [ )
from which, Proposition 1.1, Corollary 1.1 and Lemmas 1.6, 1.7 and 1.8, we infer
A3y (1) + A% (1) < Cello 2 DRV!|[23 ) + Ceo(X),

for ¢;(X) given by (1.54). Taking ¢ so small that Ce < 1 ensures A2 (t)+ A% (t) < (X)),
and hence by Gagliardo-Nirenberg’s inequality

sy ~1
o' F Dt o <E(X), (238)
L2 (L)

which together with the fact: p<2/(1—s;), ensures that
~1
<€ (X). (2.39)

14
1D [y 1y =l D' 2 e ),

o
LF () Lr+

([04])

Recall the Eq. (1.12): DX "1 =v’=X.Vv/~1. We first get the L? type energy estimate for
xt-1

- — _f -
X <[10%, Xoller + (O IX (e ™7 VY (1) S @31 (8).
We then apply A to (1.12) to obtain the L? type estimate for AX‘~!
t
IAXH (Bl < HAa?(;lXoHLPJr/O (180]lp + [ Voll=) [ VX [y At + AV 3 1)
We sum up the above two inequalities and then apply Gronwall’s inequality to obtain
X ) S exp (Cot ) (€431 () + 1AVl yur)),

which together with the second inequality of (1.44) ensures that

Xl e <9 (8) (€ 1D gy + [ 0~ B OX ),

1

t t 1
-(3-3- 0~ -
Lo GO e < ([ o B OX R, ),



190 X. Liao and P. Zhang / Anal. Theory Appl., 35 (2019), pp. 163-191

we infer ||X/~! sz( ) < €;(X). Taking into account of the definition of €,(X) given by
t

w2
(1.54), we get, by applying Gronwall’s inequality and (1.38), that

X1 [ Lo w2y < 3o (£).

Hence ¢;(X) <H,(t) and (1.56) follows. O
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