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Abstract. In this paper, we consider the defocusing nonlinear Schrödinger equation in
space dimensions d≥4. We prove that if u is a radial solution which is priori bounded in
the critical Sobolev space, that is, u∈ L∞

t Ḣsc
x , then u is global and scatters. In practise,

we use weighted Strichartz space adapted for our setting which ultimately helps us
solve the problems in cases d≥ 4 and 0< sc <

1
2 . The results in this paper extend the

work of [27, Commun. PDEs, 40 (2015), 265–308] to higher dimensions.
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1 Introduction

We consider the Cauchy problem for the nonlinear Schrödinger equation (NLS) in Rt×Rd
x

with d≥4: {
(i∂t+∆)u=µ|u|pu,
u(0,x)=u0(x).

(1.1)

In particular, we call the Eq. (1.1) defocusing when µ=1, and focusing when µ=−1. In
this paper, we are dedicated to dealing with the defocusing case.
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The solutions of Eq. (1.1) are left invariant by the scaling transformation

u(t,x) 7→λ
2
p u(λ2t,λx) (1.2)

for λ> 0. This scaling invariance defines a notion of criticality. To be more specified, a
direct computation shows that the only homogeneous L2

x-based Sobolev space that is left
invariant by (1.2) is Ḣsc

x , where the critical regularity sc is given by sc := d
2−

2
p . We call the

problem mass-critical for sc = 0, energy-critical for sc = 1 and intercritical for 0< sc < 1.
With sc =

d
2−

2
p in mind, we will transfer from sc to p freely.

We proceed by make the notion of solution precise.

Definition 1.1 (Strong solution). A function u : I×Rd→C on a non-empty time interval

0 ∈ I is a strong solution to (1.1) if it belongs to CtḢsc
x (K×Rd)∩L

d+2
2 p

t,x (K×Rd) for any
compact interval K⊂ I and obeys the Duhamel formula

u(t)= eit∆u0−i
∫ t

0
ei(t−s)∆(|u|pu)(s)ds (1.3)

for each t∈ I. We call I the lifespan of u. We say that u is a maximal-lifespan solution if it
cannot be extended to any strictly larger interval. We say u is a global solution if I=R.

Let u be a maximal-lifespan solution to the problem (1.1), a standard technique shows
that the ‖u‖

L
d+2

2 p
t,x (I×Rd)

<∞ implies scattering. That is I=∞ and there exists u±∈ Ḣsc
x (R

d)

such that

lim
t→±∞

‖u(t)−eit∆u±‖Ḣsc
x (R×Rd)=0.

The above fact promotes us to define the notion of scattering size and blow up as
follows:

Definition 1.2 (Scattering size and blow up). We define the scattering size of a solution
u : I×Rd→C to (1.1) by

SI(u) :=
∫∫

I×Rd
|u(t,x)| d+2

2 pdxdt.

If there exists t0∈ I so that S[t0,sup I)(u)=∞, then we say u blows up forward in time, corre-
spondingly if there exists t0∈ I so that S(inf I,t0](u)=∞, then we say u blows up backward
in time.

The problem which we concern in this paper can be subsumed into the following
conjecture.
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Conjecture 1.1. Let d≥1, p≥ 4
d . Assume u : I×Rd→C is a maximal-lifespan solution to

(1.1) such that

u∈L∞
t Ḣsc

x (I×Rd), (1.4)

then u is global and scatters, with

SR(u)≤C(‖u‖L∞
t Ḣsc

x
) (1.5)

for some function C : [0,∞)→ [0,∞).

Remark 1.1. When sc = 0 or sc = 1, (1.4) is true as a direct consequence of conservation
law. In particular, when sc =0, u∈L∞

t L2
x is guaranteed by the mass conservation

M[u(t)]=
∫

Rd
|u(t,x)|2dx. (1.6)

When sc =1, u∈L∞
t Ḣ1

x follows from the energy conservation

E[u(t)]=
∫

Rd

1
2
|∇u(t,x)|2+ 1

p+2
|u(t,x)|p+2dx. (1.7)

For sc /∈{0,1}, (1.4) can not be deduced from any available conserved quantity and it is a
natural artificial assumption as a substitution of conservation law.

Before addressing our main results, we will make a brief review on the Conjecture
1.1. It is well known that in the critical case, the lifespan of solution depends not only on
the Sobolev norm but also the profile of the initial data, thus the fact that (1.4) implies the
solution u is global and scatters is not at all obvious.

In the energy-critical setting, the breakthrough was made by Bourgain’s monumental
work [1] in which he introduced the induction on energy method. Based on this method
and the space-localized Morawetz inequality, the spherically symmetric energy-critical
case was resolved in d=3,4. Subsequently, by using the same strategy and the modified
interaction Morawetz estimate, Colliander et al. [5] resolved the nonradial case in d= 3.
For further discussion about the defocusing energy-critical NLS, we refer to [13, 20, 28,
34–36]. For focusing case see [10, 15, 17].

For the mass-critical case, Conjecture 1.1 was primarily proved for spherically-
symmetric L2

x initial data in dimensions d ≥ 2, see [21, 31]. By introducing long-time
Strichartz estimate method, Dodson in [6–8] settled the nonradial case. The reader may
turn to [9, 21, 22] for focusing setting.

The first work dealing with Conjecture 1.1 at nonconserved critical regularity is at-
tributed to Kenig-Merle [16] at the case d = 3, sc =

1
2 by making use of their pioneered

concentration-compactness argument along with Lin-Strauss Morawetz inequality. Note
that no additional radial assumption is required in [16] due to the fact that Lin-Strauss
Morawetz inequality has a scale of 1

2 . Murphy in [26] extended the result to d≥4.
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Now we focus on the case 0<sc<
1
2 . In [27], under the radial assumption, Murphy han-

dled the case d=3, 0<sc<
1
2 by using long-time Strichartz estimate method and frequency-

localized Lin-Strauss Morawetz estimate. However,it seems not work in higher dimen-
sions, especially d≥5. To be more precise, following the approach in [27], one can obtain
the corresponding result of four dimensions effortlessly. To further generalize that to the
higher dimensions, however, is not at all trivial, since it’s tricky to establish long-time
Strichartz estimate due to the subquadratic property of the nonlinearity. To circumvent
the barrier, we exploit the spherical symmetry condition and adopt the strategy of using
weighted Strichartz norms as in [31]. The key observation is that one can formulate the
weighted Strichartz norm which scales exactly the same as the Strichartz norm of the crit-
ical regularity. In doing so, we are liberated from subtle technicality comes from nonlocal
nature of the fractional derivative thanks to the fact we place the weight and the deriva-
tive at the same height in the sense of scaling which can be exemplified by (3.12a), (3.12b).
It’s worth mentioning that by adapting the argument in this paper, one may recover the
result in [27] for 0<sc<

1
2 in dimension three. We shall clarify this issue at the appropriate

point.
For further discussion about Conjecture 1.1, we refer to [11, 18, 23, 24].
Now we are in a position to state our main results.

Theorem 1.1. Let d≥4, 0< sc <
1
2 . Assume that u : I×Rd is a spherically symmetric maximal-

lifespan solution to (1.1) such that u∈L∞
t Ḣsc

x (I×Rd). Then u is global and scatters, with

SR(u)≤C(‖u‖L∞
t Ḣsc

x
) (1.8)

for some function C : [0,∞)→ [0,∞).

Adapting the argument in [3], one can obtain the local-in-time theory which serves as
a basis for the proof of Theorem 1.1.

Theorem 1.2 (Local Well-posedness). Let d and sc be in the Theorem 1.1, for any u0∈Ḣsc(Rd)
and t0∈R, there exists a unique maximal-lifespan solution u : I×Rd→C to (1.1) with u(t0)=u0.
Furthermore

1. Local existence: I is an open neighborhood of t0.

2. Blow up: If sup I is finite, then u blows up forward in time. If infI is finite, then u blows
up backward in time.

3. Scattering and wave operators: If sup I=∞ and u does not blow up forward in time, then
u scatters forward in time. That is, there exists u+∈ Ḣsc(Rd), so that

lim
t→∞
‖u(t)−eit∆u+‖Ḣsc (Rd)=0. (1.9)

Conversely, for any u+∈Ḣsc(Rd), there exists a unique solution to (1.1) defined in a neigh-
borhood of t=∞, such that (1.9) holds. The analogous statements hold backward in time.
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4. Small data scattering: If ‖u0‖Ḣsc (Rd) is sufficiently small, then u is global and scatters, with

SR(u).‖u‖
d+2

2 p
Ḣsc (Rd)

.

Remark 1.2. To prove Theorem 1.2, one may first assume the initial data belongs to Hsc
x so

that the techniques in [3] applies and then establish Theorem 1.2 by using the following
stability lemma.

Lemma 1.1. Let d≥4, I be a compact interval, and ũ : I×Rd→C be a solution to the equation{
(i∂t+∆)ũ=F(ũ)+e,
ũ(0)= ũ0∈ Ḣsc

x .
(1.10)

Suppose
‖ũ‖L∞

t Ḣsc
x (I×Rd)≤E and ‖ũ‖

L
(d+2)p

2
t,x (I×Rd)

≤L,

for some E,L>0. There exists ε1(E,L) such that if u0∈ Ḣsc
x and

‖u0−ũ0‖Ḣsc
x
+‖|∇|sc e‖N(I)≤ ε, (1.11)

for some small 0< ε< ε1(E,L), then there exists a solution u to the Eq. (1.1) with the initial data
u0 and a constant 0< c(d) such that

‖|∇|sc(u−ũ)‖S(I)≤C(E,L)εc, (1.12a)

‖|∇|sc u‖S(I)≤C(E,L), (1.12b)

where the definition of S(I) and N(I) can be found in the appendix.

We present the details of the proof of Lemma 1.1 in the Appendix.
Now we can sketch the proof of Theorem 1.1.

1.1 Reduction to a critical solution

To prove Theorem 1.1, we argue by contradiction. Due to Theorem 1.2, we know small
initial data implies the theory of global existence and scattering. If Theorem 1.1 fails,
there exists a counterexample acting as a threshold. As a consequence of its criticality,
such counterexample must concentrate in frequency and physical space at the same time.
Further analysis shows that such special solution possesses a wealth of weird properties
that a solution should not have in general. Finally, we will show that such properties are
inconsistent with the structure of the Eq. (1.1).

Definition 1.3. For A>0, we define B(A) as follows

B(A)=
{

u0∈ Ḣsc
x , radial : u : I×Rd is a maximal-lifespan solution to (1.1) with

u(0)=u0∈ Ḣsc
x , then sup

t∈I
‖u‖Ḣsc

x
≤A

}
.
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Definition 1.4. We say SC(A) holds if for each u0 ∈B(A), then I = R and SI(u)< ∞.
Similarly, we say SC(A,u0) holds if u0∈B(A), then I=R and SI(u)<∞.

In view of (1.4), to prove Theorem 1.1, it suffices to show that SC(A) holds for each
A > 0. Note that Theorem 1.2 implies SC(A) holds whenever A is sufficiently small.
Consequently, if Proposition 1.1 fails, there exists a critical value Ac such that SC(A)
holds when A<Ac but fails when A>Ac. In particular, using concentration-compactness
method, we can obtain the following key proposition.

Proposition 1.1. Let d≥4, 0<sc<
1
2 , if Proposition 1.1 fails, there exists a critical value Ac

and a critical element u0,c ∈B(Ac) such that SC(Ac,u0,c) fails. Correspondingly, we call
uc : I×Rd the critical maximal-lifespan solution to (1.1) with uc(0)=u0,c.

The derivation of Theorem 1.1 by now is standard. One can refer to [12, 14, 18, 25–27]
for more details.

The critical solution uc in Proposition 1.1 enjoys plenty of additional properties, espe-
cially among which is its compactness (modulo scaling), see [14, 25]. For brevity, in what
follows we abbreviate the critical solution uc as u.

Proposition 1.2. Let u : I×Rd be the critical spherically symmetric maximal-lifespan so-
lution to (1.1), for each η>0, there exists functions N : I→R+, C :R+→R+, such that∫

|x|≥ C(η)
N(t)

||∇|sc u(t,x)|2dx+
∫
|ξ|≥C(η)N(t)

|ξ|2sc |û(t,ξ)|2dξ<η, (1.13)

for all t∈ I. We call N(t) the frequency scale function, and C(η) the compactness modulus
function.

Remark 1.3. 1. This definition is adapted to the radial setting. In the general case, one
should also take into account the translation. If we consider mass-critical case, one
more parameter should be added in (1.13) due to Galilean invariance of (1.1).

2. By the Arzelà-Ascoli theorem, (1.13) can be rephrased as

{u(t) : t∈ I}⊂{λ
d−2sc

2 f (λx) : λ∈ (0,∞) and f ∈K}, (1.14)

where K is a precompact set in Ḣsc . By Ḣsc ↪→L
2d

d−2sc
x , we know that u is also compact

(modulo scaling) in L
2d

d−2sc
x , that is∫

|x|≥ C(η)
N(t)

|u(t,x)|
2d

d−2sc dx≤η. (1.15)

3. We claim that there is a constant c>0 such that

inf
t∈I
‖u(t)‖

L
2d

d−2sc
x

≥ c. (1.16)
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Otherwise, as L
2d

d−2sc norm is left invariant under scaling (1.2), there exists a sequence
{N(tn)

−d+2sc
2 u(tn, x

N(tn)
) : tn∈ I} such that

N(tn)
−d+2sc

2 u
(

tn,
x

N(tn)

)
→0 in L

2d
d−2sc
x . (1.17)

On the other hand, since N(tn)
−d+2sc

2 u
(

tn, x
N(tn)

)
is also compact in Ḣsc

x , we have

N(tn)
−d+2sc

2 u
(

tn,
x

N(tn)

)
→0 in Ḣsc

x , (1.18)

which contradicts the fact that u blows up.
We emphasize that (1.16) has its analogue in Section 6 of [5] which says the potential

part must have lower bound. Further, from the compactness property, we may choose
c(η) sufficiently small such that∫

|x|≤ c(η)
N(t)

||∇|sc u(t,x)|2dx+
∫
|ξ|≤c(η)N(t)

|ξ|2sc |û(t,ξ)|2dξ<η. (1.19)

Next we will record more properties of the critical solution which will be used in what
follows.

Lemma 1.2 (Local Constancy [21]). If u : I×Rd→C is the critical maximal-lifespan solution
to (1.1), then there exists δ=δ(u)>0 so that for all t0∈ I

[t0−δN(t0)
−2,t0+δN(t0)

−2]⊂ I. (1.20)

Moreover, N(t)∼u N(t0) for |t−t0|≤δN(t0)−2.

Due to Lemma 1.2, we can subdivide the lifespan interval I into several characteristic
subintervals Jk such that

I=∪k Jk, N(t)∼Nk when t∈ Jk with |Jk|∼N−2
k . (1.21)

The following result can be directly derived from Lemma 1.2.

Corollary 1.1. Let u : I×Rd→C be the critical maximal-lifespan solution to (1.1). If T is a
finite endpoint of I, then N(t)&u |T−t|−1/2. In particular, limt→T N(t)=∞.

Finally we relate the frequency function N(t) to spacetime norm by the following
lemma.

Lemma 1.3 (Spacetime Bound [21]). Let u: I×Rd→C be the critical maximal-lifespan solution
to (1.1), for each interval J⊂ I, we have∫

J
N(t)2dt.u ‖|∇|sc u‖2

L2
t L

2d
d−2
x (J×Rd)

.u 1+
∫

J
N(t)2dt. (1.22)
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Remark 1.4. Owing to (1.21),
∫

I N(t)2dt can be rewritten as follows:∫
I
N(t)2dt=∑

k
N2

k |Jk|∼#{Jk},

the above formula indicates that the integral of
∫

I N(t)2dt equals to counting the number
of the subintervals Jk⊂ I.

By rescaling argument, we can also ensure

N(t)≤1 (1.23)

at least on the interval J which is one direction of maximal lifespan of u, say [0,sup(I)).
For the sake of exposition, we may harmlessly identify J as I. For further discussion,
see [31].

To prove Theorem 1.1, it suffices to show that the critical solution in Theorem 1.1 does
not exist. To this end, the paper is organized as follows: In Section 2 we will present some
basic tools. In Section 3, we will introduce the weighted Strichartz norm and the asso-
ciated Strichartz estimate. In Section 4, we will establish frequency-localized Morawetz
estimate, as a result, we will show that the weighted Strichartz norm of high frequency
portion of the solution u will stay bounded, the fact which we will apply directly to rule
out the critical solution. In Section 5, we will show that the frequency scale function N(t)
can’t go to zero. Together with (1.23), ultimately we will preclude the critical solution in
Section 6.

2 Notation and some basic tools

We write X.Y or Y&X whenever X≤CY for some constant C>0 and use O(Y) to denote
any quantity X such that |X|.Y. If X.Y and Y.X hold simultaneously, we abbreviate
that by X∼Y. Without special clarification, the implicit constant C can vary from line to
line. We use Japanese bracket 〈x〉 to denote (1+|x|2) 1

2 . We denote by X± quantity of the
form X±ε for any ε>0.

For any spacetime slab I×Rd, we use Lq
t Lr

x(I×Rd) to denote the Banach space of
functions u : I×Rd→C whose norm is

‖u‖Lq
t Lr

x(I×Rd) :=
(∫

I
‖u(t)‖q

Lr
x
dt
) 1

q

<∞,

with the appropriate modification for the case q or r equals to infinity. When q= r, for
brevity, sometimes we write it as Lq

t,x. One more thing to be noticed is that without ob-
scurity we will use Lq

t Lr
x with LqLr interchangeably.

We define the Fourier transform on Rd by

f̂ :=(2π)−
d
2

∫
Rd

e−ixξ f (x)dx,
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and the homogeneous Sobolev norm as

‖ f ‖Ḣs(Rd) :=‖|∇|s f ‖L2
x(R

d),

where

|̂∇|s f (ξ) := |ξ|s f̂ (ξ).

Next we will present the Littlewood-Paley decomposition.
Let φ(ξ) be a radial bump function supported in the ball {ξ∈Rd : |ξ|≤ 11

10} and equals
to 1 on the ball {ξ∈Rd : |ξ|≤1}. For each number N>0, we define

P̂≤N f (ξ) := ϕ
( ξ

N

)
f̂ (ξ),

P̂>N f (ξ) :=
(

1−ϕ
( ξ

N

))
f̂ (ξ),

P̂N f (ξ) :=
(

ϕ
( ξ

N

)
−ϕ
(2ξ

N

))
f̂ (ξ),

with similar definitions for P<N and P≥N . Moreover, we define

PM<·≤N :=P≤N−P≤M,

whenever M<N. Also there are the following Bernstein inequalities for the Littlewood-
Paley operators: 

‖|∇|sP≤N f ‖Lq.Ns‖P≤N f ‖Lq.Ns‖ f ‖Lq ,
‖P>N f ‖Lq.N−s‖|∇|sP>N f ‖Lq.N−s‖|∇|s f ‖Lq ,
‖|∇|±sPN f ‖Lq.N±s‖PN f ‖Lq.N±s‖ f ‖Lq ,

‖P≤N f ‖Lq.Nd( 1
p−

1
q )‖P≤N f ‖Lp ,

‖PN f ‖Lq.Nd( 1
p−

1
q )‖P≤N f ‖Lp ,

where 1≤ p≤q≤∞.

Lemma 2.1 (Fractional product rule [3]). Let s> 0 and 1< r,rj,qj <∞ satisfy 1
r =

1
rj
+ 1

qj
for

j=1,2, then

‖|∇|s( f g)‖Lr
x
.‖ f ‖Lr1

x
‖|∇|sg‖Lq1

x
+‖|∇|s f ‖Lr2

x
‖g‖Lq2

x
. (2.1)

We will also need the following chain rule for fractional order derivatives. One can
turn to [3] for more details.

Lemma 2.2 (Fractional chain rule). Suppose G∈C1(C) and s∈ (0,1]. Let 1< r< r2 <∞ and
1< r1≤∞ be such that 1

r =
1
r1
+ 1

r2
, then

‖|∇|sG(u)‖Lr
x
.‖G′(u)‖Lr1

x
‖|∇|su‖Lr2

x
. (2.2)
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When the function G is no longer C1, but merely Hölder continuous, we have the
following chain rule:

Lemma 2.3 (Fractional chain rule for Hölder continuous function [35]). Let G be a Hölder
continuous function of order 0< α< 1. Then for every 0< s< α, 1< p<∞, and s

α <σ< 1, we
have

‖|∇|sG(u)‖p.‖|u|α−
s
σ ‖p1‖|∇|σu‖

s
σ
s
σ p2

(2.3)

provided 1
p =

1
p1
+ 1

p2
and (1− s

ασ )p1>1.

The classical Hörmander-Mikhlin theorem concerns about the sufficient condition re-
quired for a function to be an Lp(1< p<∞) multiplier. We should adapt the usual one to
be suited for our case and present here the extension form with the power weights. One
can refer to [29] for further discussion.

Lemma 2.4. Let T be a Hörmander-Mikhlin multiplier defined on tempered function f i.e.,

T̂ f (ξ) :=m(ξ) f̂ (ξ),

with its symbol m(ξ) satisfying the following pointwise estimate

|∇αm(ξ)|.α |ξ|−|α|,

for every nonnegative multi-index α. Then for any 1< p<∞, and − d
p < s<d− d

p , we have

‖|x|sT f ‖Lp
x
.p,s ‖|x|s f ‖Lp

x
(2.4)

for all f such that right-hide side is finite.

Remark 2.1. In particular, the operator N−s|∇|sP<N and Ns|∇|−sP≥N are all Hörmander-
Mikhlin multiplier, as well as the frequency localized operator PN ,P≷N .

At the end of this section, we will record some fundamental tools. One can find details
in [31] and the materials therein.

Lemma 2.5 (Hardy-Littlewood-Sobolev Inequality). Let 1< p,q<∞, d≥ 1, 0< s< d, and
α,β∈R obey the condition

α>− d
p′

,

β>− d
q′

,

1≤ 1
p
+

1
q
≤1+s,
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and the scaling condition

α+β−d+s=− d
p′
− d

q′
.

Then for any spherically symmetric u :Rd→C, we have

‖|x|βu‖Lq′ (Rd).α,β,p,q,s ‖|x|−α|∇|su‖Lp(Rd). (2.5)

Lemma 2.6. If f :Rd→C,1< p<∞,0<α< d
p , and N>0, then

‖|x|−αP<N f ‖Lp(Rd).α,p 〈N〉α‖〈x〉−α f ‖Lp(Rd). (2.6)

3 Weighted Strichartz inequality

Motivated by the work of [31] which handled the mass-critical case, we adapt the argu-
ment to tackle the case without conserved quantities. In practice, we introduce weighted
Strichartz norm suited for our case. To be more precise, we define ‖u‖S(I×Rd) and
‖u‖N(I×Rd) respectively as follows:

‖u‖S(I×Rd)=‖|x|−
1+ε

2 |∇| 1−ε
2 +sc u‖L2

t,x(I×Rd)+‖|∇|sc u‖L∞
t L2

x(I×Rd),

‖u‖N(I×Rd)=‖|x|
1+ε

2 |∇|− 1−ε
2 +sc u‖L2

t,x(I×Rd),

where ε > 0 is a sufficiently small constant depending on d and sc. By Lemma 2.4, we
obtain that corresponding Bernstein inequalities with respect to the norms ‖u‖S(I×Rd)

and ‖u‖N(I×Rd).

Lemma 3.1. For any s>0 and dyadic number N>0, we have

‖|∇|su<N‖S(I×Rd).Ns‖u<N‖S(I×Rd), (3.1a)

‖|∇|−su>N‖S(I×Rd).N−s‖u>N‖S(I×Rd), (3.1b)

‖|∇|su<N‖N(I×Rd).Ns‖u<N‖N(I×Rd), (3.1c)

‖|∇|−su>N‖N(I×Rd).N−s‖u>N‖N(I×Rd). (3.1d)

The association of ‖u‖S(I×Rd) and ‖u‖N(I×Rd) with Eq. (1.1) is illuminated by the fol-
lowing weighted Strichartz estimate and radial Sobolev embedding.

Proposition 3.1 (Weighted Strichartz estimate [33]). Let u,G:I×Rd→C satisfy (i∂t+∆)u=
G in the sense of distributions, then we have

‖u‖S(I×Rd).‖u(t0)‖Ḣsc (Rd)+‖G‖N(I×Rd), (3.2)

for all t0∈ I.
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Using (2.5), we will get the following radial Sobolev embedding.

Lemma 3.2 (Radial Sobolev embedding). Let u be spherically symmetric and d≥ 4, then we
have

‖|∇|sc u‖
L2

t L
2d

d−2
x

.‖u‖S. (3.3)

Lemma 3.3. If u,v : I×Rd→C are spherically symmetric and d≥4, then

‖|u|
4

d−2sc v‖N.‖|∇|sc u‖
4

d−2sc
L∞

t L2
x
‖|∇|sc v‖

L2
t L

2d
d−2
x

.‖|∇|sc u‖
4

d−2sc
L∞

t L2
x
‖v‖S. (3.4)

Proof. Case I: d=4, p= 2
2−sc

>1
By (2.5), we obtain

‖|x| 1+ε
2 u‖L2

t,x
.‖|∇| 1−ε

2 u‖
L2

t L
4
3
x

. (3.5)

By the definition of N, (3.5) implies

‖|u|
2

2−sc v‖N.‖|∇|sc(|u|
2

2−sc v)‖
L2

t L
4
3
x

. (3.6)

Continuing from (3.6), by Lemma 2.1, Lemma 2.2 and (3.3) we have

RHS of(3.6).‖|∇|sc |u|
2

2−sc ‖
L∞

t L
4

2+sc
x

‖v‖
L2

t L
4

1−sc
x

+‖|u|
2

2−sc ‖L∞
t L2

x
‖|∇|sc v‖L2

t L4
x

.‖|∇|sc u‖
2

2−sc
L∞

t L2
x
‖|∇|sc v‖L2

t L4
x

.‖|∇|sc u‖
2

2−sc
L∞

t L2
x
‖v‖S.

Case II: d≥5, p= 4
d−2sc

<1
If 0< sc <

d−2
2(d−1) , by the definition of N, (2.5) implies

‖|u|
4

d−2sc v‖N.‖|u|
4

d−2sc v‖
L2

t L
2d

d+2−2sc
x

. (3.7)

Continuing from (3.7), by the Hölder inequality and (3.3) we have

.‖u‖
4

d−2sc

L∞
t L

2d
d−2sc
x

‖v‖
L2

t L
2d

d−2(1+sc)
x

.‖|∇|sc u‖
4

d−2sc
L∞

t L2
x
‖v‖S.
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When d−2
2(d−1)≤ sc <

1
2 , denoting s̄=(sc− d−2

2(d−1) )+, similarly by (2.5) we have

‖|u|
4

d−2sc v‖N.‖|∇|s̄(|u|
4

d−2sc v)‖
L2

t L
2d

d+2−2(sc−s̄)
x

. (3.8)

Continuing from (3.8), by Lemma 2.1 we have

RHS of (3.8)

.‖|∇|s̄|u|
4

d−2sc ‖
L∞

t L
d

2+s̄
x

‖v‖
L2

t L
2d

d−2−2sc
x

+‖|u|
4

d−2sc ‖
L∞

t L
d
2
x

‖|∇|s̄v‖
L2

t L
2d

d−2−2(sc−s̄)
x

.‖|∇|s̄|u|
4

d−2sc ‖
L∞

t L
d

2+s̄
x

‖|∇|sc v‖
L2

t L
2d

d−2
x

+‖|∇|sc u‖
4

d−2sc
L∞

t L2
x
‖|∇|sc v‖

L2
t L

2d
d−2
x

.

To complete the proof, it suffices to show that

‖|∇|s̄|u|
4

d−2sc ‖
L∞

t L
d

2+s̄
x

.‖|∇|sc u‖
4

d−2sc
L∞

t L2
x
. (3.9)

To this end, setting σ= s̄
p + ε̃, where ε̃ is a sufficiently small positive constant (say, ε̃= 1

210 ).

Using Lemma 2.3 with α being replaced by 4
d−2sc

, we have

‖|∇|s̄|u|
4

d−2sc ‖
L∞

t L
d

2+s̄
x

.‖|u|p− s̄
σ ‖

L∞
t L

2dσ
(d−2sc)pε̃
x

‖|∇|σu‖
s̄
σ

L∞
t L p̄

x
, (3.10)

where p̄= 2ds̄
2(2+s̄)σ−(d−2sc)pε̃

, using Sobolev inequality we have (3.9).

By the local well-posed theory, for example see [2], one has

‖|∇|sc u‖
L2

t L
2d

d−2
x (J×Rd)

<∞ (3.11)

for any compact interval J contained in the maximal lifespan interval I. As a direct ap-
plication of (3.4), we obtain the following result which, in some sense, can be viewed as
an extension of (3.11) in the weighted norm.

Corollary 3.1. Let u : I×Rd→C be a spherically symmetric maximal-lifespan solution to
(1.1) then

‖u‖S(J×Rd)<∞ for all compact set J⊂⊂ I.

Proof. Using (1.4), (3.2) (3.4) and (3.11), we obtain

‖u‖S(J×Rd).1+‖|u|
4

d−2sc u‖N

.‖|∇|sc u‖
4

d−2sc
L∞

t L2
x
‖|∇|sc u‖

L2
t L

2d
d−2
x

<∞.

Thus, we complete the proof.
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Next, we will give some refined nonlinear estimates which will be used to control the
nonlinear interaction.

Proposition 3.2 (Refined nonlinear estimate). Let u,v : I×Rd→C be spherically symmet-
ric, then we have

‖|∇| 1−ε
2 −scO(|u|

4
d−2sc v)‖N.‖|∇|(

d
2−

(d−2sc)(1+sc+ε)
4 )−u‖

4
d−2sc
L∞

t L2
x
‖|∇|(− 1−ε

2 )+v‖S, (3.12a)

‖|∇| 1−ε
2 −scO(|u|

4
d−2sc v)‖N.‖|∇|

1+ε
2 u‖

4
d−2sc
L∞

t L2
x
‖|∇| 1−ε

2 −sc+p(sc− 1+ε
2 )v‖S. (3.12b)

Proof. By the definition of N and the Hölder inequality and Lemma 2.5, we estimate
(3.12a) as

‖|∇| 1−ε
2 −scO(|u|

4
d−2sc v)‖N

.‖|x| 1+ε
2 O(|u|

4
d−2sc v)‖L2

t,x

.‖|x|1+ε+sc |u|
4

d−2sc ‖L∞
t L∞−

x
‖|x|− 1+ε

2 −sc v‖L2
t L2+

x

.‖|∇|( d
2−

(d−2sc)(1+sc+ε)
4 )−u‖

4
d−2sc
L∞

t L2
x
‖|∇|(− 1−ε

2 )+v‖S.

Similarly for (3.12b), we have

‖|∇| 1−ε
2 −scO(|u|

4
d−2sc v)‖N

.‖|x| 1+ε
2 O(|u|

4
d−2sc v)‖L2

t,x

.‖u‖
4

d−2sc

L∞
t L

2d
(d−1−ε))
x

‖|x| 1+ε
2 v‖

L2
t L

2d
d−(d−1−ε)p
x

.‖|∇| 1+ε
2 u‖

4
d−2sc
L∞

t L2
x
‖|∇| 1−ε

2 −sc+p(sc− 1+ε
2 )v‖S.

Thus, we complete the proof.

Remark 3.1. (3.12a) is very useful when u is low frequency and v is high frequency, as it
transfers plenty of derivatives from high frequency to low frequency via the appropriate
distribution of weight.

4 Frequency-localized Morawetz estimate

In this part we will primarily establish the following frequency-localized Morawetz in-
equality.
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Proposition 4.1 (Frequency-localized Morawetz estimate). Let d≥ 4 and u : I×Rd→C

be the critical spherically symmetric maximal-lifespan solution to (1.1) which obeys (1.4),
(1.23), then we have

lim
N→∞

N2sc

∫
I

∫
Rd

|∇u<N(t,x)|2
|Nx|1+ε

dxdt=0. (4.1)

To prove Proposition 4.1, we will first exploit some nontrivial facts about the critical
solution u.

Lemma 4.1. Let u : I×Rd→C be the critical spherically symmetric maximal-lifespan solution to
(1.1) which obeys (1.4), (1.23). Then for each θ>0, we have

lim
N→∞

(
‖|∇|sc u≥N‖L∞

t L2
x(I×Rd)+

1
Nθ
‖|∇|θ+sc u<N‖L∞

t L2
x(I×Rd)

)
=0. (4.2)

Proof. By (1.13) and (1.23), we have that

lim
N→∞

‖|∇|sc u>N‖L∞
t L2

x
=0.

Now we turn to proving the second term, we split u<N as u<N :=u<
√

N+u√N≤.<N then
by Bernstein inequality, we have

1
Nθ
‖|∇|θ+sc u<N‖L∞

t L2
x

.
1

Nθ
‖|∇|θ+sc u<

√
N‖L∞

t L2
x
+

1
Nθ
‖|∇|θ+sc u√N≤.<N‖L∞

t L2
x

.
1

N
θ
2
‖|∇|sc u<

√
N‖L∞

t L2
x
+‖|∇|sc u√N≤.<N‖L∞

t L2
x

→0 as N→∞.

Thus, we complete the proof of the lemma.

In view of this Lemma 4.1, we can reformulate Proposition 4.1 as follows

Theorem 4.1 (Frequency-localized Morawetz estimate I). Let d≥4, 0<η<1, and u:I×Rd be
the critical spherically symmetric maximal-lifespan solution to (1.1) which satisfies (1.4), (1.23).
Then there exits δ>0 with the following property: given any N>0 such that

‖|∇|sc u≥N‖L∞
t L2

x(I×Rd)+
1

Nθ
‖|∇|θ+sc u<N‖L∞

t L2
x(I×Rd)≤δ, (4.3)

we have

N2sc

∫
I

∫
Rd

|∇u<N(t,x)|2
|Nx|1+ε

dxdt≤η. (4.4)
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By scaling invariance of the Eq. (1.1), we may choose N=1. By a limiting argument,
we may then take I to be compact. Indeed, observe that by Corollary 3.1, the left-hand
side of (4.4) varies continuously on I and goes to zero when I shrinks to a point. Thus,
by standard continuity argument, it suffices to show the following bootstrap version of
Proposition 4.1.

Proposition 4.2 (Frequency-localized Morawetz estimate II). Let d≥ 4, 0 < η < 1, and
u : I×Rd be the critical symmetric solution to (1.1) which satisfies (1.4), (1.23). Then there
exits δ>0 with the following property:

‖|∇|sc uhi‖L∞
t L2

x(I×Rd)+‖|∇|θ+sc ulo‖L∞
t L2

x(I×Rd)≤δ, (4.5)

where uhi :=u≥1 and ulo :=u<1, such that we also have bootstrap hypothesis: if

QI :=
∫

I

∫
Rd

|∇ulo(t,x)|2
|x|1+ε

dxdt≤2η, (4.6)

then we have
QI≤η.

In order to prove Proposition 4.2, we will primarily establish the corresponding esti-
mate for low and high frequency portion of the solution u.

Lemma 4.2 (Low and high frequency bound). Under the conditions of Proposition 4.2, we
have the following estimates:

‖|∇| 1+ε
2 ulo‖S(I×Rd).η1/2, (4.7a)

‖∇ulo‖
L2

t L
2d

d−2(1−ε0)
x (I×Rd)

.η1/2, (4.7b)

‖uhi‖S(I×Rd).δ+δ
4

d−2sc , (4.7c)

where ε0(d)>0 is sufficiently small.

Proof. From the definition of S, Lemmas 3.1 (4.5) and (4.6) we derive (4.7a) by choosing δ
sufficiently small. (4.7b) comes from (4.7a) and (2.5). Indeed, by Lemma 3.1 and choosing
ε0 sufficiently small, we have

‖∇ulo‖
L2

t L
2d

d−2(1−ε0)
x

.‖|∇| 1+ε
2 +sc+ε0 ulo‖

L2
t L

2d
d−2(1−ε0)
x

.

By (4.7a) and (2.5), we get (4.7b).
Now it suffices to prove (4.7c). We denote Phi :=P≥1. Obviously

(i∂t+∆)Phiu=PhiF(u).
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By Strichartz estimate (3.2), (4.5) and splitting PhiF(u) into

PhiF(u)=PhiF(ulo)+Phi(F(u)−F(ulo)),

we have

‖uhi‖S.δ+‖PhiF(u)‖N
.δ+‖Phi(|ulo|

4
d−2sc |∇ulo|)‖N+‖Phi(|ulo|

4
d−2sc |uhi|)‖N+‖|uhi|

4
d−2sc |uhi|‖N. (4.8)

For the fourth term of (4.8), from Proposition 3.4 and (4.5) we have

‖|uhi|
4

d−2sc |uhi|‖N.‖|∇|sc uhi‖
4

d−2sc
L∞

t L2
x
‖uhi‖S.δ

4
d−2sc ‖uhi‖S.

For the third term of (4.8), by Lemma 3.1, (3.12a) and (4.5), we have

‖Phi(|ulo|
4

d−2sc |uhi|)‖N
.‖|∇| 1−ε

2 −sc(|ulo|
4

d−2sc |uhi|)‖N

.‖|∇|( d
2−

(d−2sc)(1+sc+ε)
4 )−ulo‖

4
d−2sc
L∞

t L2
x
‖|∇|(− 1−ε

2 )+uhi‖S

.δ
4

d−2sc ‖uhi‖S.

For the remained term of (4.8), by Lemma 3.1, (3.12a), (4.5) and (4.7a) we have

‖Phi(|ulo|
4

d−2sc |∇ulo|)‖N
.‖|x| 1+ε

2 (|ulo|
4

d−2sc |∇ulo|)‖L2
t,x

.‖|∇|(− 1−ε
2 )+∇ulo‖S‖|∇|(

d
2−

(d−2sc)(1+sc+ε)
4 )−ulo‖

4
d−2sc
L∞

t L2
x

.η
1
2 δ

4
d−2sc .

Putting all these together, we obtain

‖uhi‖S. (δ+δ
4

d−2sc )(1+‖uhi‖S), (4.9)

by Corollary 3.1, we know ‖uhi‖S<∞, after reorganizing the term, we finally derive that

‖uhi‖S(I×Rd).δ+δ
4

d−2sc .

Thus, we complete the proof.

With the above preparation, we are now ready to prove Proposition 4.2. First we need
the following particular form of Morawetz inequality which can be found in [31].
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Lemma 4.3 (Morawetz inequality). Let J be an interval, let d≥3 and let φ,G : J×Rd→C solve
the equation

i∂tφ+∆φ=F(φ)+G.

Let ε>0. If ε is sufficiently small depending on d, then we have∫
J

∫
Rd

(
|φ(t,x)|2
〈x〉3+ε

+
|φ|p+2

〈x〉 +
|∇φ(t,x)|2
〈x〉1+ε

)
dxdt

.ε sup
t∈J
‖|∇| 12 φ(t,x)‖2

L2
x

(4.10)

+
∫

J

∫
Rd

G(t,x)||∇φ(t,x)|dxdt (4.11)

+
∫

J

∫
Rd

1
〈x〉 |G(t,x)||φ(t,x)|dxt. (4.12)

Proof of Proposition 4.2. Let Plo :=P<1, we substitute φ with φ=ulo, then the corresponding
G equals

G :=PloF(u)−F(Plou).

Using Bernstein inequality and (4.5), we conclude that∫
I

∫
Rd

|∇ulo(t,x)|2
〈x〉1+ε

dxdt.ε δ+
∫

I

∫
Rd
|G(t,x)|

(
|∇ulo(t,x)|+

|ulo(t,x)|
〈x〉

)
dxdt. (4.13)

Note that by Lemma 2.6∫
I

∫
Rd

|∇ulo(t,x)|2
|x|1+ε

dxdt.
∫

I

∫
Rd

|∇ulo(t,x)|2
〈x〉1+ε

dxdt,

it suffices to estimate∫
I

∫
Rd
|G(t,x)|

(
|∇ulo(t,x)|+

|ulo(t,x)|
〈x〉

)
dxdt.δc,

where c is a given constant to be chosen later. By the Hölder inequality and (4.7b), we
estimate ∫

I

∫
Rd
|G(t,x)||∇ulo(t,x)|dxdt

.‖G‖
L2

t L
2d

d+2(1−ε0)
x

‖∇ulo‖
L2

t L
2d

d−2(1−ε0)
x

.η
1
2 ‖G‖

L2
t L

2d
d+2(1−ε0)
x

.
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In dimension d≥4, by the Hölder inequality, (2.5) and (4.7b) we have∫
I

∫
Rd
|G(t,x)| |ulo(t,x)|

〈x〉 dxdt.‖G‖
L2

t L
2d

d+2(1−ε0)
x

∥∥∥∥ ulo

〈x〉

∥∥∥∥
L2

t L
2d

d−2(1−ε0)
x

.η
1
2 ‖G‖

L2
t L

2d
d+2(1−ε0)
x

. (4.14)

Thus it is reduced to show

‖G‖
L2

t L
2d

d+2(1−ε0)
x

.η δc. (4.15)

We split G into

G :=Plo[F(u)−F(ulo)]−Phi(F(ulo)).

We can show (4.15) via

‖PloO(|uhi||ulo|
4

d−2sc +|uhi|1+
4

d−2sc )‖
L2

t L
2d

d+2(1−ε0)
x

+‖PhiF(ulo)‖
L2

t L
2d

d+2(1−ε0)
x

.‖PloO(|uhi||ulo|
4

d−2sc +|uhi|1+
4

d−2sc )‖
L2

t L
2d

d+2(1−ε0)
x

(4.16)

+‖∇PhiF(ulo)‖
L2

t L
2d

d+2(1−ε0)
x

. (4.17)

For (4.16), by (1.4), Sobolev embedding, Lemma 3.1, (4.7c), Bernstein, we estimate as

(4.16).‖O(|uhi||ulo|
4

d−2sc +|uhi|1+
4

d−2sc )‖
L2

t L
2d

d+2(1−ε0)
x

.‖|∇|sc u‖
4

d−2sc
L∞

t L2
x
‖uhi‖

L2
t L

2d
d−2
x

.δ+δ
4

d−2sc .

Hence, it is remained to prove

‖|∇ulo||ulo|
4

d−2sc ‖
L2

t L
2d

d+2(1−ε0)
x

.δc.

From (4.6) we have

‖|x|− 1+ε
2 ∇ulo‖L2

t,x
.η

1
2 , (4.18)

and by radial Sobolev embedding (2.5)

‖|∇|s∇ulo‖L2
t Lq

x
.‖|x|− 1+ε

2 ∇ulo‖L2
t,x
.η

1
2 , (4.19)
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for some q=( 2(d−1)
d−2−ε )+, s=( d

q−
d
2 +

1+ε
2 )−. By Bernstein we conclude that

‖∇ulo‖L2
t Lq

x
.η

1
2 . (4.20)

By the Hölder inequality, we get

‖|∇ulo||ulo|
4

d−2sc ‖
L2

t L
2d

d+2(1−ε0)
x

.‖∇ulo‖L2
t Lq

x
‖ulo‖

4
d−2sc
L∞

t Lr
x
,

for some r= 2d(d−1)p
2(1−ε0)(d−1)+d(1−ε)

−> 2d
d−2sc

. By (4.5), we have

‖ulo‖L∞
t Lr

x
.δ.

Combining the estimate for (4.16) and (4.17) we have

‖G‖
L2

t L
2d

d+2(1−ε0)
x

.η δ+δ
4

d−2sc . (4.21)

Now we can choose c=min{1, 4
d−2sc
} and δ(η) sufficiently small, then we complete the

proof. �

Remark 4.1. In order to use (2.5) in (4.14), we should ensure that 2d
d−2(1−ε0)

< d which
requires d≥ 4. For d= 3, one can adapt the argument in [31] to bypass the obstacle, we
omit the details here.

Corollary 4.1. Let d≥4, and u : I×Rd→C be the spherically symmetric maximal-lifespan
solution to (1.1) which obeys (1.4), (1.23) then

lim
N→∞

[
‖u≥N‖S+

1

N
1+ε

2
‖|∇|− 1−ε

2 ∇u<N‖S
]
=0. (4.22)

In particular, for any N>0 being a dyadic integer, we have

‖u≥N‖S+
1

N
1+ε

2
‖|∇|− 1−ε

2 ∇u<N‖S<∞ for all N>0. (4.23)

Proof. (4.22) comes from (4.7a), (4.7c) and the scaling invariance of the equation. Now we
use (4.22) to prove (4.23). Since (4.22) implies (4.23) for N is sufficiently large, it suffices
to show that (4.23) also holds for N is small. We may assume N0 such that N≥N0

‖u≥N‖S+
1

N
1+ε

2
‖|∇|− 1−ε

2 ∇u<N‖S<1. (4.24)
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For any N<N0, we have

‖u>N‖S=‖u≥N0‖S+‖uN<.<N0‖S
.1+ ∑

N<M<N0

‖uM‖S

.1+ ∑
N<M<N0

M−
1+ε

2 ‖|∇| 1+ε
2 uM‖S

.1+ ∑
N<M<N0

1

<∞,

and

‖|∇| 1+ε
2 u<N‖S.

(
N0

N

) 1+ε
2 1

N
1+ε

2
0

‖|∇| 1+ε
2 u<N0‖S<∞.

Thus we complete the proof.

5 The non-evacuation of energy

In this part, we will prove that the energy can not evacuate from high frequency to low
frequency by showing that N(t) has a lower bound.

Proposition 5.1. Let d≥ 4, and let u : I×Rd→ C be the critical spherically symmetric
maximal-lifespan solution to (1.1) which obeys (1.4), (1.23). Then

inf
t∈I

N(t)>0. (5.1)

Assume for contradiction that we have a critical solution u : I×Rd→C obeying (1.4)
and the hypothesis (1.23) but such that

inf
t∈I

N(t)=0,

we will obtain the following fact:

Lemma 5.1. Under the conditions of Proposition 5.1, we have

limsup
N→∞

N
3−ε

2 −sc‖u≥N‖S<∞. (5.2)

Proof. Let η > 0 be a small number to be chosen later. By (4.22), there exists Ñ0 > 0 such
that

‖u≥Ñ0
‖S+

1

Ñ
1+ε

2
0

‖|∇|(1+ε)/2u<Ñ0
‖S.η. (5.3)
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By scaling invariance, we may assume Ñ0=1, thus

‖|∇|(1+ε)/2u<1‖S≤η, (5.4a)
‖u≥1‖S≤η. (5.4b)

We claim that:

Claim 5.1. For any given δ>0 such that

‖u≥N‖S≤ηN−(3−ε)/2+sc +δ for all N≥1, (5.5)

then

‖u≥N‖S≤ηN−(3−ε)/2+sc +
δ

2
for all N≥1. (5.6)

Assuming the claim, by iterating the above procedure, we will conclude that

‖u≥N‖S≤ηN−
3−ε

2 +sc for all N≥1.

Now we are dedicated to proving the claim. Indeed, by choosing 0<δ≤η such that (5.5)

holds. Furthermore, we can take a dyadic number N0≥1 such that ηN−
3−ε

2 +sc
0 ∼δ, then

‖u≥N‖S.ηN−
3−ε

2 +sc for all 1≤N≤N0, (5.7)

and

‖u≥N0‖S.δ. (5.8)

Let N≥1, applying P≥N to both sides of (1.1) we have

(i∂t+∆)u≥N =P≥N F(u). (5.9)

Hence, by weighted Strichartz estimate (3.2) we have

‖u≥N‖S.‖|∇|sc u≥N(t0)‖L2
x
+‖P≥N F(u)‖N, (5.10)

for any t0∈ I. As inft∈I N(t)=0, we have

inf
t0∈I
‖|∇|sc u≥N(t0)‖L2

x
=0. (5.11)

Thus

‖u≥N‖S.‖P≥N F(u)‖N. (5.12)
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We split F(u) as

F(u)=F(u<N0)+O(|u≥N0 |(|u<1|
4

d−2sc +|P<1u≤N0 |
4

d−2sc ))

+O(|u≥N0 |(|u≥1|
4

d−2sc +|P≥1u≤N0 |
4

d−2sc )).

So that we have

RHS of (5.12).‖P≥NO(|u≥N0 |(|u≥1|+|P≥1u≤N0 |)
4

d−2sc )‖N (5.13)

+‖P≥NO(|u≥N0 |(|u<1|+|P<1u≤N0 |)
4

d−2sc )‖N (5.14)
+‖P≥N F(u<N0)‖N. (5.15)

By (3.4), (5.4b), (5.8), we have

‖P≥NO(|u≥N0 ||u≥1|
4

d−2sc )‖N
.‖|u≥N0 ||u≥1|

4
d−2sc ‖N

.‖|∇|sc u≥1‖
4

d−2sc
L∞

t L2
x
‖u≥N0‖S

.η
4

d−2sc δ.

The other term in (5.13) is estimated similarly.
For (5.14), by Lemma 3.1, (3.12a) (5.4a) and (5.8) we obtain

‖P≥NO(|u≥N0 ||u<1|
4

d−2sc )‖N
.‖|∇| 1−ε

2 −scO(|u≥N0 ||u<1|
4

d−2sc )‖N

.‖|∇|( d
2−

(d−2sc)(1+sc+ε)
4 )−u<1‖

4
d−2sc
L∞

t L2
x
‖|∇|(− 1−ε

2 )+u≥N0‖S

.η
4

d−2sc δ.

The other term of (5.14) is estimated similarly.
For the (5.15), by Lemma 3.1 and (3.12b)

‖P≥N F(u<N0)‖N.N−
3−ε

2 +sc‖|x| 1+ε
2 O(|up

<N0
∇u<N0 |)‖L2

t,x

.N−
3−ε

2 +sc‖|∇| 1+ε
2 u<N0‖

p
L∞

t L2
x
‖|∇| 1−ε

2 −sc+p(sc− 1+ε
2 )∇u<N0‖S.

Since by (5.4a) and (5.7) we have

‖|∇| 1+ε
2 u<N0‖L∞

t L2
x
.‖|∇| 1+ε

2 u≤1‖L∞
t L2

x
+ ∑

1<M<N0

‖|∇| 1+ε
2 uM‖L∞

t L2
x

.η+η ∑
1<M<N0

M
1+ε

2 M−
3−ε

2

.η,
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and

‖|∇| 1−ε
2 −sc+p(sc− 1+ε

2 )∇u<N0‖S
.‖|∇| 1−ε

2 −sc+p(sc− 1+ε
2 )∇u<1‖S+ ∑

1<M<N0

‖|∇| 1−ε
2 −sc+p(sc− 1+ε

2 )∇uM‖S

.η+η ∑
1<M<N0

M
1−ε

2 −sc+p(sc− 1+ε
2 )MM−

3−ε
2 +sc

.η.

Thus

‖P≥N F(u<N0)‖N.ηpηN−
3−ε

2 +sc . (5.16)

Combining the separated parts contributed to ‖u>N‖S, we have

‖u>N‖S.ηp(ηN−
3−ε

2 +sc +δ) for N≥1. (5.17)

By choosing η sufficiently small, we complete the proof.

Proof of Proposition 5.1. Now we can illuminate that inft∈I N(t)= 0 is incompatible with
energy-conservation. In fact, by (5.2), for sufficiently large N, we have

‖∇PNu‖L∞
t L2

x
.N−

1−ε
2 , (5.18)

and for each dyadic number N

‖∇PNu‖L∞
t L2

x
.N1−sc . (5.19)

Thus, by choosing M sufficiently large

‖∇u‖L∞
t L2

x
.‖∇u<M−1‖L∞

t L2
x
+‖∇uM−1≤.<M‖L∞

t L2
x
+‖∇u≥M‖L∞

t L2
x
,

as inft∈I N(t) = 0, we may choose a time sequence {ti} ∈ I such that N(ti)→ 0, and by
dominated convergence theorem we conclude that

‖∇u(ti)‖L2
x
→0 as N(ti)→0.

By interpolation

‖u‖Lp+2
x
.‖u‖θ

dp
2
‖u‖1−θ

2d
d−2
.‖|∇|sc u‖θ

L2
x
‖∇u‖1−θ

L2
x
→0 as N(ti)→0, (5.20)

where 0< θ<1.Thus

E(u)=
∫ 1

2
|∇u|2+ 1

p+2
|u|p+2dx→0 as N(ti)→0. (5.21)

By the energy conservation law of (1.1), (5.21) implies that u≡0, which is impossible.
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6 Rule out the critical solution

Theorem 6.1. Let d≥4, and let u : I×Rd→C be the critical maximal-lifespan spherically sym-
metric solution to (1.1) which obeys (1.4), (1.23). Suppose that u is not identically zero, then I is
bounded.

Proof. By (1.13) and the fact that N(t) has lower bound, we may choose N sufficiently
small such that

‖|∇|sc u>N‖
L

2d
d−2
x

&1, (6.1)

then integrating with respect to the time variable over the interval I, we have

|I| 12 .‖|∇|sc u>N‖
L2

t L
2d

d−2
x

.

By (4.23) and (3.3), we know ‖|∇|sc u>N‖
L2

t L
2d

d−2
x

<∞, which implies |I|<∞.

Theorem 6.1 means that u blows up in finite time, thus by Corollary 1.1, N(t) does
not have upper bound in I, which is inconsistent with (1.23).

Appendix

In this part, we dedicate to proving Lemma 1.1. First we recall the definition of Strichartz
norm and Strichartz estimate.

Definition 6.1 (Admissible pair). Let d≥4, we call a pair of exponent (q,r) admissible if

2
q
=d
(1

2
− 1

r

)
with 2≤q≤∞. (6.2)

For a time interval I, we define Strichartz norm S(I) as

‖u‖S(I) :=sup{‖u‖Lq
t Lr

x(I×Rd) : (q,r) admissible}. (6.3)

We also define the dual of S(I) by N(I), we note that

‖u‖N(I).‖u‖Lq′
t Lr′

x (I×Rd)
for any admissible pair (q,r). (6.4)

Proposition 6.1 (Strichartz estimate). Let u : I×Rd→C be a solution to

(i∂t+∆)u=F (6.5)

and let s≥0, then

‖|∇|su‖S(I).‖u(t0)‖Ḣs
x
+‖|∇|sF‖N(I), (6.6)

for any t0∈ I.
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In the proof of Lemma 1.1, we need the following result. One can carry over the proof
of Lemma 3.4 in [35] verbatim.

Lemma 6.1 (Persistence of regularity). Let I be a compact time interval, and u be a solution to
(1.10) obeying

‖u‖
L
(d+2)p

2
t,x (I×Rd)

≤M, ‖|∇|sc e‖N(I)≤L�1, (6.7)

then we have

‖|∇|sc u‖S(I)≤C(M)‖u0‖Ḣsc
x

. (6.8)

In what follows, we denote

X(I) :=L
2(d−2sc+2)

(d−2sc)(1−sc)
t L

2(d−2sc+2)
d−2sc

x (I×Rd),

Y(I) :=L
2(d−2sc+2)

(d+4−2sc)(1−sc)
t L

2(d−2sc+2)
d−2sc+4

x (I×Rd),

X′(I) :=L
2(d−2sc+2)

(d−2sc)(1−sc)
t Ḣ

sc, 2d(d−2sc+2)
d2+4sc−4s2

c (I×Rd),

Y′(I) :=L
2(d−2sc+2)

(d+4−2sc)(1−sc)
t Ḣ

sc, 2d(d−2sc+2)
d2+4d−4s2

c+4sc
x (I×Rd).

Obviously, we have X′(I) ↪→X(I), Y′(I) ↪→Y(I).

Remark 6.1. The reason we choose the particular form of X(I) and Y(I) stems from the
following fact: by dispersive estimate and Hardy-Littlewood-Sobolev inequality we can
obtain relatively neat nonlinear estimate∥∥∥∥∫ t

0
eit∆|u|pu(s)ds

∥∥∥∥
X(I)
.‖|u|pu‖Y(I).‖u‖

p+1
X(I). (6.9)

Next we will present some nonlinear estimates.

Lemma 6.2. Let F(u) = |u|pu for some p > 0 and let 0 < s < 1. For 1 < r,r1,r2,∞ such that
1
r =

1
r1
+ p

r2
, we have

‖|∇|s[F(u+v)−F(u)]‖Lr
x
.‖|∇|su‖Lr1

x
‖v‖p

Lr2
x
+‖|∇|sv‖Lr1

x
‖u+v‖p

Lr2
x

. (6.10)

Lemma 6.3. Let d≥4, then with spacetime norms over I×Rd, we have

‖F(u)‖Y(I).‖u‖
1+p
X(I), (6.11a)

‖|∇|sc [F(u)−F(v)]‖
L2

t L
2d

d+2
x

.‖u−v‖
4

d−2sc
X(I) ‖v‖Ṡsc +‖u‖

4
d−2sc
X(I) ‖u−v‖Ṡsc (I). (6.11b)
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Proof. (6.11a) comes directly from the definition of X(I) and Y(I). (6.11b) from Lemma
6.2.

In order to prove Lemma 1.1, we primarily establish the short-time perturbation re-
sult.

Lemma 6.4 (Short-time perturbation). Let d≥ 4, I be a compact interval, ũ : I×Rd→C be
solution to the equation {

(i∂t+∆)ũ=F(ũ)+e,
ũ(0)= ũ0∈ Ḣsc .

Suppose
‖ũ‖L∞

t Ḣsc (I×Rd)≤E.

Let 0 ∈ I and u0 ∈ Ḣsc
x (R

d). Then there exits ε0,δ > 0 (depending on E) with the following
properties hold: 0< ε< ε0, if

‖ũ‖X(I)≤δ, ‖u0−ũ0‖Ḣsc +‖e‖Y′(I)≤ ε, (6.12)

then there exits u : I×Rd→C solving

(i∂t+∆)u= |u|pu with u(0)=u0,

satisfying

‖|∇|sc(u−ũ)‖S(I). εc, (6.13a)

‖|∇|sc u‖S(I).E, (6.13b)

‖|∇|sc(|u|pu−|ũ|ũ)‖N(I). εc, (6.13c)

where c>0 is a given constant.

Proof. First, we show that ‖u‖X(I).δ. Indeed by Duhamel formula (1.3)

‖eit∆ũ0‖X(I).‖ũ‖X(I)+‖F(ũ)‖Y(I)+‖e‖Y′(I)

.δ+δ1+ 4
d−2sc +ε. (6.14)

By (6.12) and triangle inequality we have

‖eit∆u0‖X(I).δ. (6.15)

Then using Strichartz estimate (6.9) and (6.11a), we have

‖u‖X(I).δ+‖F(u)‖Y(I).δ+‖u‖1+ 4
d−2sc

X(I) .
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By continuity argument we have ‖u‖X(I).δ.
We let w=u−ũ, thus w satisfies

(i∂t+∆)w=F(u)−F(ũ)−e, w(0)=u0−ũ0. (6.16)

By Strichartz estimate (6.9) we have

‖w‖X(I).‖eit∆w(0)‖X(I)+‖e‖Y(I)+‖F(u)−F(v)‖Y(I)

.ε+{‖ũ‖
4

d−2sc
X(I) +‖u‖

4
d−2sc
X(I) }‖w‖X(I)

.ε+δ
4

d−2sc ‖w‖X(I).

Thus by choosing δ sufficiently small, we have

‖w‖X(I). ε. (6.17)

By Strichartz estimate and (6.12) and (6.11b), we have

‖|∇|sc w‖S(I).‖u0−ũ0‖Ḣsc +‖e‖Y′(I)+‖|∇|sc [F(u)−F(ũ)]‖
L

2(d+2)
d+4

t,x

.ε+‖|∇|sc ũ‖S(I)‖w‖
4

d−2sc
X(I) +‖|∇|

sc w‖S(I)‖u‖
4

d−2sc
X(I) .

By (6.12) and the persistence of regularity results, we have ‖|∇|sc ũ‖S(I) ≤ C(δ)E. For
(6.13b), by (6.13a) and Strichartz estimate we have

‖|∇|sc u‖S(I)

.εc+‖|∇|sc ũ0‖L2
x
+‖(|ũ|pũ)‖Y′(I)+‖e‖Y′(I)

.εc+E+‖ũ‖
4

d−2sc
X(I) ‖ũ‖X′(I)

.εc+E+C(δ)E

.E.

Now (6.13c) can be deduced from Lemma 6.2 and (6.13a).

Proof of Lemma 1.1. First note that ‖ũ‖
L
(d+2)p

2
t,x (I×Rd)

≤L, by the persistence of regularity, we

have ‖ũ‖X(I).C(E,L). Then we may subdivide I into (finitely many, depending on δ and
L) intervals Jk =[tk,tk+1) so that

‖ũ‖X(I)∼δ, (6.18)

then we can use the short-time perturbation results and bootstrap argument to obtain
Lemma 1.1. �
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