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Abstract. In this paper, a weak type (1,1) estimate is established for the higher order
commutator introduced by Christ and Journé which is defined by

Tlay,--m]f(x)=p-v. /RdK(x—y) (f{mx,y”i) f(y)dy,

where K is the standard Calderén-Zygmund convolution kernel on R%(d > 2) and
mx,ya,-:folal-(sx—i—(l—s)y)ds.
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1 Introduction

Suppose that K is the standard Calderén-Zygmund convolution kernel on R%\ {0}, (d >
2), which means that K satisfies the following conditions:

|K(x)| <Clx| 7%, / K(x)dx=0 holds for all R>0, (1.1a)
R<|x|<2R
IK(x—y)—K(x)| <Cly|°|x| % forsome 0<d<1 if |x|>2|y|. (1.1b)

In 1987, Christ and Journé [5] introduced a higher dimensional commutator associated
with K and a; € L*(RY) (i=1,---,1) by

!
d
Tlay, -+ f(x) =pw [ K(x—y) ([ Tmnyai) - F)dy, FESRY,
i=1
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where 8(R?) denotes the Schwartz class and

1 1
mx,yai:/ ai((l—t)x—i—ty)dt:/ a;(tx+(1—t)y)dt.
0 0

Note that T[ay,---,a;]f(x) can be seen as a higher dimensional generalization of the fol-

lowing commutator
L Ai(x)—Aiw) fy)
P [ LT(F5 ) 2w

xX—y

which is the famous Calderén commutator discussed in [3] and is related to the study of
the Cauchy integral, boundary value problem of elliptic equation on non-smooth domain
(seee.g., [4,10,15]).

Observe that the kernel K(x—y) is smooth but 11, ,a; has no smoothness about vari-
able x and y if a; € L*(R?). Therefore the standard Calderén-Zygmund theory cannot
be applied directly. Christ and Journé [5] proved that T[ay,---,a;] is bounded on L?(R%)
(1<p<oo) when g, L*(RY) (i=1,---,1). In 1995, Hofmann [14] gave the weighted L? (R%)
(1< p <o) boundedness of T[ay,--,a;], when the kernel K(x)=Q(x/|x|)|x|~?. Recently,
there are renew interests on this singular integral of Christ-Journé type since it has some
direct applications in the mixing flows problem (see e.g., [2,13]). In 2015, A. Seeger,
C. Smart and B. Street [19] further studied the commutator of Christ-Journé type and
established some multilinear estimates. Later, the second author of the present paper es-
tablished all multilinear estimates of the higher Calderén commutator (see [16]). For the
endpoint case p=1, the weak type (1,1) estimate seems to be difficulty and the previous
result is only known for the first order commutator. In 2012, Grafakos and Honzik [12]
proved that the commutator T|[a] is of weak type (1,1) for d=2. Later, Seeger [18] showed
that T[a] is also of weak type (1,1) for all d >2. In [6], the authors established weighted
L? boundedness of T[a] for A, weight with d >2 and weighted weak type (1,1) bound-
edness for power weight |x|*(—2 < a < 0) with d =2 (later we extended this result to
general A; weight for all 4 >2 in [8]). However, the weak type (1,1) estimate for the
higher order commutator seems to be unexplored and may be very difficult since the
kernel involves with more than two rough factors []'_, my,ya; under the condition that
all g; € L°(R%)(i=1,---,1). In this paper, we try to give a weak type (1,1) estimate for
T[a1,---,a;] with some restricted condition of 4;. Our main result is as follows.

Theorem 1.1. Suppose K satisfies (1.1a) and (1.1b) for d >2. Let a; € L®(R?). Assume a;,a; €
LY(R%),i=2,---,1. Then there exists a constant C >0 such that

I
m({x € R | Tlar, ] f(x)| > A}) <CAar oo (TNl ) 111

i=2

forall A>0and f € L'(RY).
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Remark 1.1. By using Fourier inversive formula, it is easy to see that the condition g,
4 € L'(R?) implies a € L®(RY). To remove this kind of restricted condition, some new
ideas may be needed.

When the dimension d =2, Grafakos and Honzik [12] used the TT* method to show
that the first order commutator T'[a] is of weak type (1,1). In[18], Seeger used the microlo-
cal decomposition of the kernel and the Littlewood-Paley decomposition of 2. However
it seems to be difficult to use these ideas from [12] and [18] to deal with the higher order
commutator which involves more than two rough factors. In the present paper, we add
some restricted condition ;€ L! (]Rd ) fori=2,---,1. So we can make a modified Calderé6n-
Zygmund decomposition of a function with some parameters come from ay,---,4;, but
those bounds in the Calderén-Zygmund decomposition are independent of these param-
eters (see Lemma 2.1). Applying this kind of Calderén-Zygmund decomposition, the
kernel essentially has only one rough kernel under the restricted condition 4; € L' (IR¥)
for i=2,---,I. Then using some idea from [7,9,17,18], we may get the weak type (1,1)
bound for the higher order commutator.

This paper is organized as follows. In Section 2, we complete the proof of Theorem 1.1
based on some lemmas, their proofs will be given in Section 3 and Section 4. Throughout
this paper, the letter C stands for a positive constant which is independent of the essential
variables and not necessarily the same one in each occurrence. A < B means A <CB for
some constant C. A~B means that A<B and B A. For a set ECIR?, we denote Lebesgue
measure of E by |E| or m(E). Denote by Ff and f the Fourier transform of f, which is
defined by

TFE)= [ e flx)d.

R4

Z. denote the set of all nonnegative integers and Z% =Z, x---xZ. [x] denotes the
integer part of x.

2 Proof of Theorem 1.1: setup

In this section we give the proof of Theorem 1.1 based on some lemmas, their proofs will
be given in Section 3 and Section 4, respectively.

Using the inversive Fourier formula under the condition that a;,a; € L! (RY),i=2,---,1,
we write each term

1 . .
_ G (17:) et 1i%) ot (L=5:) (W1i) 41y g -
My, a; (Zﬂ)d/() /]Rdal(iyl)e e dn;ds;.
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Therefore by Fubini’s theorem, we have

1
T[all'"rﬂl]f(x):WP-V-/H{dK(X—y)mx,yﬂl'f(y)
I
7 (1:)etsi i) ol (1=50) W) g3di
//[01][ (R lllal(m)e e dsdiy)dy
- / /E W () (TaWISF) (x) difs, @.1)
where
I
— [0/1]171 % (le)lfl/ uﬁ,s?(_x) _ (Zn)f(lfl)dl_[é\i(m)eis,-<x,17i>/
i=2
l .
dif =dny---dny;, W’7'§(y):1—[61(1751')@"7"> and ds=ds;y---ds,.

In the following, we try to make a Calderén-Zygmund decomposition of W'~ f with the
underlying cubes independent of 7,5.

Lemma 2.1. Let f € L'(R?) and A >0. Set Q) = {x € R%: M(f)(x) > A} where M is the
Hardy-Littlewood maximal operator. Then we have the following conclusions:
(1) O\ =UQ, Q’s are disjoint dyadic cubes. Let Q be the collection of all these cubes.

(i) m(©) S 1|l

(iii) fW° =g* +b'*.

(iv) b'1° = %b”Q’S, suppb “cQ, [b & =0
@ |83 S AN -

All the explicit constants that appear in (i)-(v) above are independent of ij 5.

5

NBG I SAIQL 1Bl S fl-

Proof. We first make a Whitney decomposition of the set (2. Then there exists a family
of dyadic closed cubes {Q;}; (e.g., see [11]) such that
(@) 2y =UQ; and Q;’s have disjoint interior.

(b) Vd-1(Q)) <dist(Q;,Q5) <4Vd-1(Q;), where I(Q;) denotes the side’s length of Q;.
By the weak type (1,1) of M, we have

m(Q) < L1 22)

We write fW'* = g5 + b, where

1= fwis OC+Z(Q/ JWI¥(x)dx) Xo.

B g [ f W o= T
Q .Q Q.

OQ

S
=
|
ql
vu
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So, bgg is supported in Q and [ bg’§: 0. Let tQ denote the cube with t times the side
length of Q and the same center. We now claim that

1
a7 f xS 2.3)

In fact, by the Whitney decomposition’s property (b) we have 9v/dQNQS # @. Thus by

the definition of Q, there exists xp € 9v/dQ such that Mf(xp) < A. Using the property of
the maximal function, we have B\}TQ\ s vaolf(x) |dx < A. Hence we conclude that

|f(x)]dx SA.

~

1 1
= dx < —
a s o [

For b and b5, b by (2.2) and (2.3) we have

o
Hb"5||1<2/ FO)ldxSAQL 1671 S f i+ Am () SIf -

Note that |f(x)| <A almost everywhere in Q). Using this fact, (2.2) and (2.3), we have

g 13 SMFlli+A2m () SAlflh-

Thus, we complete the proof. O

Now we set up the proof of Theorem 1.1 with a series of lemmas. We only focus on
dimension d>2. By using scaling arguments, we may assume ||a1 || =||7i|1=1, i=2,---,I.
By (2.1) and the property (iii) in Lemma 2.1, we obtain

[ Tlan, ] f ()] > A} <m(§ \//Eluvs 1875 (x) dijds| > A/2} )

]// 7 (x) Tlay 07 (x) dijas]| > 1/2} ).

Hence, using Chebyshev’s inequality, the fact T[a;] is bounded on L?(IR¥) with bound
Cl|a1]| (see [5]) and the property (iv) in Lemma 2.1, we get

{xer?: //EZ TS ()T (|7 (x) difds] > A /2 }|

<A2 H// u’7's(x)T[al]g”'s(x)dﬁdé’Hz

A2 //Ez 1—[\” 187 (x )szﬂds)
(), (szm) Hall\ongﬁ'gﬂzdﬁd?)z

SATHIf Il
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Define E* = UQEQZZOOQ. Then we have

\//E[ W3 () T b7 () dﬁd§‘>/\/2}>
<m(E")+m({ //El W () Tl 674 (x) dijds| > 1/2} ).

By the property (ii) in Lemma 2.1, the set E* satisfies

m(E*) Sm(Q) SATHIf -

Thus, to finish the proof of Theorem 1.1, it suffices to show

b7 (x) dﬁ’d§‘ >A/2}) S ”fA”l 2.4)

E!

Denote 9, = {Q € Q:1(Q) =2} and let %,75 =Y bgg Then b7* can be rewritten as
Qe

b=y ’B'] # Let  be a radial C* function such that (&) =1 for || <1, ¢(&)=0 for |{|>2
jeZ

and 0 <y (&) <1 for all € R?. Define ¢(x)=1(x

and ) ;¢;(x) =1 for all x € R?\ {0}, where ¢;(x)

T] [01] as

)—(2x). Then supp ¢ C {x:3 <|x| <2}
=¢(277x). Now we define the operator

Tlmlf ()= [ ¢(x—y)K(x=y)msym-F(y)dy. @3

Then Tla;] =)_T;[a1]. For simplicity, we set K;(x) =¢;(x)K(x). We write
i

;7§ ZZT [11 7§

neZjeZ

Note that T; [al]‘lﬁfn (x)=0 for x € (E*)¢ and n <100. Therefore we only consider n > 100.
Here we should point out that the number 100 is not very important. In fact, it is sufficient
to consider large 1 once we choose the set E* as large as we want. Write

8 (x) T[ag) 07 ( )dﬁd§}>;\/z})

s (x % [21]B dﬁ’ds‘ >A/2}).

E! n>100

El

Hence, to finish the proof of of Theorem 1.1, it suffices to verify the following estimate:

({xer?: ]// Y Y Tilm)® )dﬁd§(>A/z})§”J()J|1. 2.6)

n>100]€Z



274 Y. Ding and X. D. Lai / Anal. Theory Appl., 35 (2019), pp. 268-287

21 Some key estimates

Some important estimates play a key role in the proof of (2.6). We present them by some
lemmas, which will be proved in Section 3 and Section 4. The first estimate tells us that
the operator Tj[a;] can be approximated by an operator T'[a1] in measure, which is de-
fined below.

Let I+(n) =716 'n+2, where T>1 >0 and 0<16~! <1 will be chosen later. As we
mention before, we only need to consider sufficient larger n, so the constant T could
be chosen as small as want and it will be chosen at the end of this paper. Let 77 be a
nonnegative, radial C* function which is supported in {|x| <1} and satisfies [p,7(x)dx=
1. Set ;(x) =275 (27'x). Define the operator P; by P;f(x) =1 f(x). Set

K]n(X) = P]',IT(,,[)K]‘(X).

Since K;(x) is supported in {2/~! < |x| <2/*'} and ), (,y(x) is supported in {|x| <
2i=l(M1 we see that K (x) is supported in {272 < |x| <2/+2}. Therefore

Kj' (x)] ngjd?({zﬂgmngﬂ} (2.7)
and similarly for multi-indices «,
|0“K} (x) | SZ_der(lT(n)_j)‘a‘X{szzg\x\ngﬂ}- (2.8)

Let p, be a smooth, nonnegative function such that p,,(s)=1on [27™,1-2"™"], supp p, C
(2=™=1,1—2-™-1) and the derivatives of p,, satisfy the natural estimates

1
my a1 :/0 Pn(s)ai(sx+(1—s)y)ds.
Define the operator T}'[a1] by

T mlf(x)= [ K Gey)mt,ar-f(y)dy

Lemma 2.2. With those definitions above, we have

<2k forall keZ,.

Let

{xert:| [] wii(x T8, ()~ T[] 87, () )arjas| > 274 1) < LI
w001 5 o] <11

By Lemma 2.2, the proof of (2.6) now is reduced to verify the following estimate:
({xer?: ‘// Wi x) ¥ YT ] (x) d d)>A/4})§”f”1.
A
n>100]€Z
Below we separate T}' [a1] as Pi_ncT}' [a1]+(I—P;_px) Tj[a1], where « satisfies 0 <x <1

which will be chosen later. For P]'_nKT]n [a1], we have the following lemma.
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Lemma 2.3. With those definitions above, for n > 100, we have
| Pjni T} [611]‘377 ® i Sn (27 070n o= H‘B [

Applying Chebyshev’s inequality, Minkowski’s inequality and Lemma 2.3 and the
property (iv) in Lemma 2.1, one may get

erRd // WS (x Y P TV 1] BT, (x) dijds| > A/4
‘ E n>100]€Z & ! ’ }>
<At /l ) Z]Ha n:) ||| P; Y %’7 |1dijds
Eu>100 7 i=2

AT Y n @2 £l S AT £
n>100

Now the problem is reduced to prove the estimate below

({xer?: ‘// Y (1P ) TV )87, () *d*)>A/4})<”f”1. 2.9)

n>100]€Z

In the following, we need to make a microlocal decomposition of the kernel. To do this,
we need to give a partition of unity on the unit surface S?~!. Choose n >100. Let @, =
{e"}, be a collection of unit vectors on S?~! which satisfies the following two conditions:

() len—en| >27114 if 0 £ 0/;

(b) If 8 €S9~1, there exists an e/ such that |e!! —8] <2774,

The constant vy in (a) and (b) satisfying 0 < 76! <y <x <1 which will be chosen later.
In fact, we may simply take a maximal collection {e }, for which (a) holds. Notice that
there are C2"7(@~1) elements in the collection {e!'},. For every 8 € S?~1, there only exists
finite e/ such that |e” —0]| <27"7~*. Now we can construct an associated partition of unity
on the unit surface $%~1. Let { be a smooth, nonnegative, radial function with {(u)=1 for
lu| <1 and {(u)=0 for |u| > 1. Define

wio=2(n(§-«)). mo-ve( g o)

encO,

-1

Then it is easy to see that I'? is homogeneous of degree 0 with }_I'?(&) =1 holds for all
[

0 and all n. In addition, we have the following estimate for multi-indices « and 0,
g
08T (&)] S 27| lel, (2.10)

Now we define operator T;*’[a1] by

T arlf(e) = [ K eyt £ )y, @11)
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where K]’.l’”(x) =K} (x)I'; (x). Therefore, we have

T'[m]=)_T""[ai].

v

In the sequel, we need to sperate the phase of the frequent space into different direction.
Hence we define a multiplier operator by

—

Guoh(§) = @(2" (e, /IE1))A(),

where h is a Schwartz function and & is a smooth, nonnegative, radial function such that
0<®(x)<1land ®(x)=1o0n |x| <2, &(x)=0on |x| >4. Now let G, ,+ (I —G,) act on
T:*’[a1]. Then we can split T;""[a1] into two parts:

T (a1] = G T [a1] + (I~ G o) TV [a1].

The following lemmas give the L? estimate involving the term G, ,, which will be proved
in next section.

Lemma 2.4. With those definitions above, for n > 100,

=2 =2 2
! /E, uT5(x) 1 Y Goo(I = Pyn) T[] 575, (x)djls|| <277 f 1.

jEZ v

The estimates of the terms involving (I—Gy,,) (I—Pj_x) T] “|a1] are more complicated.

In Section 4, we shall prove the following lemma.

Lemma 2.5. We have

| [[5) & E TG (1= By T ]2, 1) it 111

n>100]eZ v
2.2 Proof of Theorem 1.1
We now complete the proof of (2.9). By Chebyshev’s inequality, we have
({xe () L Y (= Pn)TY o] BT (x) dijds
n>100j€Z
<A- H//EI 3" G (1= Py T[] BT ( dquH
n>100]eZ v

7 JL0) £ TG (1= B T a2 () ]

n>100j€Z
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Using Lemma 2.5, we can get the desired estimate of the second term above. By Minkowski’s
inequality and Lemma 2.4, the first term above is bounded by

AL L0 D Gl T8, 1) ]
n>100"7/E

j€eZ v

A2 (2’””?»Hf|h)f) SAUIf .

n>100

We hence complete the proof of Theorem 1.1 once Lemmas 2.2-2.5 hold.

3 Proofs of Lemmas 2.2-2.4

3.1 Proof of Lemma 2.2

By the definitions of Tj[a1] and T}'[a1], we have

I Tj[a1]f = T}'[a1]f I =

(Kje— )y — K (x—y)mityar ) £ (y)dy | d

R4
<I+II,
where
1= [ ] ] (Kx=y)=KF (e =y) g fy)dy|dx,
R? | JR
1= o /Rd K (x— y)(mx,yal—mﬁlym)f(y)dy‘dx.

Consider [ firstly. By the definition of K7/ (x), we have

K (x=y) =K} (r=y) = [11-1,00(2) (K (x—y) ~Ky(x —y—2) )dz.
Notice that
Kj(x =)= Kj(x—y~2)|

<l¢j(x—y)(K(x—y) —K(x—y—2))|+|¢j(x—y) = ¢j(x —y—2)|[K(x—y —z)|
:=A+B.

Consider the first term A. Note that |z| < 2/=k(n) and 2/-1< |x—y| <2711, then we have
2|z| < |x—y|. By the regularity condition (1.1b), we have

6
’Z| —Ttnn—jd
S oy sy 8272 gy
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For the second therm B, by the fact |z| <2/~'*(") and the support of ¢;, we have |x—y|~
|x—z—y| and 2772 < |x—y| < 2/*2. By (1.1a), we get

B< 27]z| —tny—jdy ‘
WX{Z 2<]x— .'/|<2H'2} X{2i2<|x—y|<2i+2}-

As for 11, we have
1
sy = ya1] = | [ (1=pu(s))ar(sx+(1=s)y)ds| 27 a1 .

Combining the above three estimates and applying Minkowski’s inequality, we have

IT o) =T} ]

<nH—Tn jd

2 s o o e i @)1 () dyx

<=1\ || _p~id / / dyd

2 a2 L)y

<2 ™oyl - @)

By Chebyshev’s inequality, Minkowski’s inequality, the estimates above and the property
(iv) in Lemma 2.1, we get the bound

({xer| //EZ @) BB (TSl 00T B (0 )dids| > 1/2] )

<At Y. //Z 5 (1;) ZHT ] 75 —T”[al]%] ﬁds
n>10077F li=
!
srluaum(numul) > 27 SA7 I,
i=2 1n>100
which is the required estimate. ]

3.2 Proof of Lemma 2.3
Since ‘B?’fn = Yi(Q)=2 bg’g, we only need to consider a fixed bgg with [(Q) =2"". By
applying Fubini’s theorem, one may write

Pi_wc T} [m]b (x)

= | on(s) /R LB W) [t (x—w)K (= y)a (sw+ (1-5)y) dwdyds.
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Making a change of variables z=w-+ 15y, one may get
BT ()b (x)
= /Olpn (s) /]Rd a1(sz) /}Rd Hi—nx (x —z+ ?y) K} (z - %) bﬁQ’g(y)dydzds.
By using the cancellation of bg’g(see the property of (iv) in Lemma 2.1), one may write
[P T a5 ()|
= [ ents) /R a1(s2) [ VW)

<77J nK(x Z+173/) (Z_z> 1j— m<<x Z+17yo) (Z—}/()))dydzds’
<I+II,

where y is the center of Q and

= o o o

’;7] nK(x z+—y) 1j— nK(x z+1—yo))

”( —%) ‘dydzds

and

II—‘/pn /|alsz|/|g

Il

(z— %) K} (z— ?) ‘dydzds.

Since I(Q) =2/"", we have |y—yo| <2/7". Using the mean value formula, one may have

! 7,5 1—s__; Kn
ISl [ oas) [, [ 105 )| =227 ly—yal

1
<2(‘1+")”Hallloo/0 ou()s s [ K 1|6 1 S n2 =0 [

K} (z - %) ‘dydzds

Similarly, by the mean value formula and (2.8), one may get
1 75, ) L ty+(1—t
Sl [ ons) [, [ IE @Iyl [ |9k (= LI |drayazas
0 R? JR? 0 s
‘ 1
SP ot [ pu()s sV 05l S 27 .

Combining the estimates of I and IT and summing over all Q with [(Q) =2/"", we finish
the proof of Lemma 2.3. U
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3.3 Proof of Lemma 2.4

The proof of this lemma is quite similar to that of Proposition 2.4 in [18]. As usually,
we adopt the TT* method in the L? estimate. We also use some orthogonality argument
based on the following observation of the support of F(G, (I —Pj_nK)T}“’” [a1]): For a
fixed n>100, we have

sup)_|®%(2" (e}, & /18]))| S22, (3.2)
A0

In fact, by the homogeneity of ®*(2"7(el,&/|Z|)), it suffices to take the supremum over
the surface S%~1. For |¢| =1 and & € supp ® (2" (e!',&/|&|)), denote by &* the hyperplane
perpendicular to ¢. Then

dist(e?, &) <27, (3.3)

(d-2)

Since the mutual distance of e’’s is bounded by 27"7~#, there are at most 27 vectors

satisfy (3.3). We hence get (3.2).
By applying Plancherel’s theorem and Cauchy-Schwarz inequality, we have

H//Ezuﬁg ZZG”U I P]—nx)Tnv[al]‘B] diydsH

jEZ v
n n L b 2
/ﬁ L] | S et /1607 (20 - Broan) T e} B, ) @) 1)
E ; 2
ca (2} 2
<omr(d-2) // ‘Ha 171 (Z(I P nK)T v[al]%?’fn) zd*dé')
<2m(d-2) 1= Py ) T [ar] B ) aijas)’ 3.4
//gl Ha '71 ( =) T7 [21]B ”Hz) U S) ' (34)
Once it is showed that for a fixed el}, 7, 5,
L2
| =P Tl 8] || S22 DA £, (35)
j
then by card(®,) <2"7@-1), and apply (3.4) and (3.5) we get
| [ w70 & EGaI= o) T ) B, )d;yds AN £l

jeZ v

which is just the desired bound of Lemma 2.4. Thus, to finish the proof of Lemma 2.4, it
is enough to prove (3.5). By applying (2.7), the support of I') and 0 <y <x <1, we have

(1= Pie) T/ [a1]B]°, ()| S H %[BT | (x),
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where Hi""(x) := 2-jd XEe (x) and XEe (x) is a characteristic function of the set
E}? = {x R |(x,ef)| <22, [x—(xef)ef| <2277}

For a fixed e}}, we write

H Y T} [a1]B]
j

an an %’75 ‘( )’%?ﬁn(x)’dx

+y 2 / I« HP #|B]7 | (x)- |87, () |dx.

] i=—o00

Observe that ||[H" ||y <27 #m(E/") <2771, therefore for any i < j,

HJ+ H}"(x) < 2*”7(d*1>2*fd;(57,v,

where E? = E"? 4 E™'. Hence for a fixed 77, 5, j, n, e’ and x, we have

N -1 .
7 4 .5 ’ ’ -
H]M*Hfv*I%j—n|(x)+i—¥ooHJnU*va*‘%i—nux)
<2~ m(d-1)p JdZ/ “a(w)ldy
Z<] EHU
" y
SymEhpTy Sy /'UQ Iy

i<j  QeQ;y,
Qm{x+§” La¥0]

RV DD DE[e]

ZS] QeQ;_p
Qm{wE}?’”};&@

<A2—2n'y(d—l),

281

(3.6)

(3.7)

where in third inequality above, we use [ |b%§(y)]dy S A|Q| (see the property (iv) in
Lemma 2.1) and in the fourth inequality we use fact that the cubes in Q are disjoint (see
the property (i) in Lemma 2.1). By (3.6), (3.7) and the property (iv) in Lemma 2.1, we

obtain

1 SA272 @D £y

| 2B T )8,
j

Hence, we complete the proof of Lemma 2.4.
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4 Proof of Lemma 2.5

To prove Lemma 2.5, we have to deal with some oscillatory integrals which come from
(I—Gnp) T}“’ [a1].

Before stating the proof of Lemma 2.5, let us give some notations. We first introduce
the Littlewood-Paley decomposition. Let ¢ be a radial C® function such that ¢(¢) =1 for
& <1, (&) =0 for |&| >2and 0< (&) <1 for all ZER?. Define B (&) =y(25¢) —p(2k+1¢),
then By is supported in {&:27F1 < |¢| <2~ k“} and Y Bx(&) =1 for CGIR"I\{O} Choose 3
be a radial C* function such that f(¢) =1 for 5 <|¢| <2, Bis supported in {¢: } <|&] <4}
and 0< (&) <1 for all ZERY. Set B (&) =B (2¢), then it is easy to see = B Br- Defme the
convolution operators Ay and Ay with Fourier multipliers f; and By, respectively. That
is,

MA@ =B@f(©), AS(E)=PL(&)F(E).

Then by the construction of B, and Br, we have

A=A, 1=Y A
keZ

where [ is the identity. Write
(I=Guo) T [m] =} (1= Gino) AT} [a1].
k
By using Minkowski’s inequality,

| / /El WT5(x) 3 YV (1= o) (1= Gino) T a8, ()|

n>100 0 |

) (1= Gno) AT [an |65 177, (4.1)

Ca>100 0 K I(Q)=2i
Lemma 4.1. For a fixed bg’g with 1(Q) =2/=", there exists N >0, such that

(1= Pi) (1= G o) AT/ ] b5 [ S 20 T @D+ (70 em Q2N S, - (a.2)
Proof. First write

(1= Pi—) (1= Gino ) AT} [m] 05 1
= (1= Pimne) A (1= Gino) Ak T} a1]65 |14
I =Pimwe) Akl 1 (1= G ) AT} [m] 05 |1
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It is easy to see that ||(I—Pj_,)A¢ll1 1 S 1 uniformly with j,k,nk. Denote hy ., (8) =
(1—®(2™ (e, &/ 1)) Br(). Applying Fubini’s theorem, we may write

(1= Gu) T oy () = [ Dilebfs )y, @3

where

1 ix- —il-w pn,o n
D) = gy [ hino@) [ K (=)l mdeode.

Next we make a change of variables to polar coordinate w—y =r6. By Fubini’s theorem,
Dy (x,y) can be written as

et fur THO [ [T (@K (00 0 ) o E). (40

By the support of K (x) in (2.7), we have 272 <r<2/*2, Since § €supp I'", then |0 —e!| <
2717, Using the support of ®, we see |{e/,&/|¢|)| >2'~"". Thus,

€0,8/18D 1 = [(e5,8 /1S | —[(en —6,8/1E[) [ =277, (4.5)

Integrating by parts with r, Di(x,y) can be rewritten as

L Lm0t i),

After integrating by parts with r, integrating by parts with ¢, the integral Di(x,y) can be

rewritten as
1 e 0 _
e Jo PO o 7 2 () g m)

[—-272%pz)N
X (1 _|_£2k‘x_yi>r9|2)]\] (hknv(‘:) (i<9/§>)71)d7’d§d‘7(9)- (4.6)

In the following, we give an explicit estimate of the term in (4.6). By the definition of
K(x), we have

03K (x) | = R

J@n; 10 ><x—z>1<~<z>dz\
<p—(j-1 \a\HK oo |27 |1 S 27 U-Fm)lal—jd, 4.7)

where the third inequality follows from (2.7). Observe

(5 [ on(5)ar(y+s0)ds) | 520 o (48)

|a1’ (m;Jrr(?,yal ) ‘ =
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By using product rule, (4.7), (4.8) and 272 <r<ot?,

(KF O (g ym) ) | S22 o (4.9)

By (4.5), we have
[(=i(0,8)) " hyeno (B S1(6,8) | S22,

Now using product rule,

19,1k, (8)] = | = 0g, [@(27 (e, /121)]- B (€) +9,Bi(§) - (1 =P (2" (e, ¢ /1)) | 27,

Therefore by induction, we have [0z ,5(Z)| <211l for any multi-indices « € Z'L. By
using product rule again and (4.5), we have

102 (46,8)) " i, (E))] = |(0,8) 72202 Iy 0 —2(0,8) 20,0, k0 (&) + (6,8) 7102 B (8]
523(n'y+k)'

This implies the follow inequality
27| A [((60,8)) o ()] S 2RI T2,
Proceeding by induction, we have
[(I=272A)N[(0,8) i 0 ()] | S2Lmr TR F2mN, (4.10)

Now we choose N = [4]+1. By (4.3) and Minkowski’s inequality,

H(I Guo) ART} [a1]b

= [ 1Dy 1 () ldy.

So we need to get the L! estimate of (4.4), by the support of f ; »,

-N
/pp(h )/(1+2_2k|x—y—1’9|2) dxdé <C.
su k,n,o

Integrating with r, we get a bound 2/. Then integrating with 6, we get a bound 2~"7
Combining (4.9), (4.10) and the above estimates,

(@-1),

1D (- y) ||y S 20 7= (@D (k) +ny(142N),

Hence we complete the proof of Lemma 4.1 with N=[4]+1. O

Lemma 4.2. For a fixed bgg with 1(Q)=2"", then

H(I_P]'*HK)(I_Gn,v)AkT]‘n’v[al]bﬁSH <2 ny(d—1)+j—nx— kHbWsnl



Y. Ding and X. D. Lai / Anal. Theory Appl., 35 (2019), pp. 268-287 285

Proof. We write
(=P} (1= G ) AT} [an] 6
=[1(I = Pjse) Ae(I=Gino) AT} [a]5 |14
<N =P Al | (T Gono) Akl [ T [ B -

By using Minkowski’s inequality, one can easily get

|\T]?“'”[a1]b’“ul<z my(@-1) IIb 1. (4.11)
Now we claim that

I(I=Pj_) Akl 1 pn S277 K, (4.12a)

[(I=Gno) Akl ST (4.12b)

Combining (4.11), (4.12a) and (4.12b), one get the asserted bound. So to finish the proof,
it suffice to show (4.12a) and (4.12b). Write

(I—=Pi_pe) Aif (x) = ﬁk*f X)—1j- nx*ﬁkf()
_/IRd/]Rd ,g ,Bk(x y— Z))’?] wc(2)dz- f(y)dy

By using the mean value formula, one may get

~ = 1 =
Belx—y)=Bilx=y=2)= | (2 VBi(x—y—s2))ds.
Utilize the Fubini’s theorem, one may get

k1o i—nx—k
(I =Py Al S FIV B Il S 27| 1

Thus we prove (4.12a). To prove (4.12b), it is enough to show that the function hy ,, ,({) =
(1—D(2"7(et,&/|Z])))Bk(&) is a L! Fourier multiplier. Let A}’ be an invertible transform
with AJ0e? =27"7"ken? and A}y =2"Fy if (y,e™’) =0. For all a € Z%, it is straightfor-
ward to check that

10% (M0 (AF°)) 1251

uniformly with k,n,v. By the Berenstein multiplier theorem (e.g., see Lemma 6.1.5 in [1]),

1 1
(I = G0 ) Akl 0 S Wi, (AR )13 30 119" (o (AR7)) 113 £,

|a|=n

which completes the proof of (4.12b). O
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Proof of Lemma 2.5. Let ¢ satisfy 0 <&y <1 and will be chosen later. By (4.1), Lemma 4.1,
Lemma 4.2 card®,, §2”7<d—1), the property (iv) in Lemma 2.1 and the fact [ngg] < nep <
[neo]+1, one obtain

H//Er ul(x ZZI Pine) (1= Gno) T} [ﬂl]% diydsH

>100 0 |

S(ZZZ Yoo tY Y} ) )

n>100 0 j k<j—[neo]l(Q)=2/—" n>100 v j k>j—[neo]l(Q)=2i"
!
AT 1)
i=2
!
< v @i Jf Mo
n>100 =2
< Y @22 flh,

n>100

)| (I Pie) (1= G o) AT} [y ] |yl

Y87, s
]

where
5= —£0+7+2< [g} +1>’y+5_1r, 52 =—K+eo.

Now we choose T > % and 0< 01T < v < eg <k < 1 such that
max{si,s2} <0.

Therefore the above sum is convergent and we finish the proof of Lemma 2.5. ]
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