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Abstract

The modeling flexibility and the optimality guarantees provided by mixed-integer pro-

gramming greatly aid the design of robust and future-proof decision support systems. The

complexity of industrial-scale supply chain optimization, however, often poses limits to

the application of general mixed-integer programming solvers. In this paper we describe

algorithmic innovations that help to ensure that MIP solver performance matches the com-

plexity of the large supply chain problems and tight time limits encountered in practice.

Our computational evaluation is based on a diverse set, modeling real-world scenarios

supplied by our industry partner SAP.

Mathematics subject classification: 90B06, 90C05, 90C06, 90C11, 90C90.
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1. Introduction

In the late 1990s, the need for advanced business software to face the challenges of ongoing

globalization had become ubiquitous and that need has been continuously increasing ever since

then. Thus, various software vendors began to offer so-called advanced planning systems (APS)

that helped companies plan and coordinate their growing supply chains and avoid potential

bottlenecks in their resources such as labor, material, and machinery.

Many of the underlying questions can naturally be phrased as complex mathematical op-

timization problems. This article focuses on supply network planning, an optimization task

that amounts to the computation of medium- and long-term plans for material procurement,

production, transportation, demand fulfillment, stock keeping, and resource capacity utiliza-

tion over large time horizons and various organizational units such as raw material suppliers,

plants, warehouses, and transportation facilities. Some of the quantities may be produced and

transported only in discrete lots. The goal is the minimization of the overall business-related

costs, which consist of actual costs, e.g., for stock keeping, production, and transportation, as

well as penalty costs for missing demand fulfillment [1].
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Mathematically, the resulting optimization problems can be formulated as mixed-integer

linear programs (MIPs), which take the general form

min
{
cTx : Ax ≥ b, x ∈ Zn1 × Rn2

}
,

where A ∈ R(n1+n2)×m, b ∈ Rm, c ∈ Rn1+n2 . This has many benefits. The expressivity and

flexibility of MIP allows to represent many different use cases in one general model. Additionally,

solvers provide guarantees on the quality of the supply network plans produced even if the

problems are too hard to be solved to optimality. The high feature complexity and level

of detail present in real-world supply network problems, however, pose challenges to current

state-of-the-art optimization software.

In this article, we describe how these challenges can be addressed even for large-scale real-

world supply chain problems in a software product delivered to SAP R© users worldwide. In

particular, we want to emphasize how the choice for using general MIP solvers as the underlying

optimization engine allows to achieve an integrated and general handling of models for different

supply chain structures that can easily be adapted and extended for future requirements. On

the mathematical side, we describe algorithmic techniques developed inside the academic MIP

solver SCIP1) [2] in order to improve computational performance on MIP formulations with

supply chain structure.

The paper is organized as follows. In Sections 2 and 3, we present the basic MIP models

solved and discuss the benefits and challenges of the MIP approach. In Section 4, we explain

high-level decomposition techniques that are applied in order to break down large MIP formula-

tions to sizes that can be handled by a general MIP solver within the running time requirements

imposed by practitioners. Sections 5 to 8 are dedicated to the algorithmic advances inside the

MIP solver SCIP that have been developed to alleviate the computational challenges. In Sec-

tion 9, we demonstrate their performance impact on a test set derived from diverse real-world

supply chain scenarios. Section 10 summarizes our findings.

2. A Mixed-integer Model for Optimal Supply Network Planning

In the following, we detail the base formulation of a mixed-integer model used to optimize

medium- or long-term plans for general supply networks including typical supply chain process-

es such as procurement, production, transportation, and customer-demand fulfillment. This

model is an integral part of the Supply Network Planning Optimization (SNP Optimization)

function delivered worldwide to users of the SAP R© Advanced Planning and Optimization com-

ponent.2) The supply chain plans may cover a time interval of several years and include various

organizational units of the supply network (locations) such as raw material suppliers, plants,

warehouses, and transportation facilities (see [1] for details). The objective of the model is to

minimize the overall business-related costs incurred by stock keeping, production, transport,

or missing demand fulfillment. Furthermore, it considers scarce resource capacities required by

production and transport activities. Large-scale scenarios may contain up to several thousand

products and hundreds of locations.

The basic decisions of the supply chain model to be made are the quantities of material

procurement, production, transportation, demand fulfillment, stock keeping, and resource ca-

pacity utilization. Some quantities may be produced and transported only in discrete lots. The

1) See http://scip.zib.de/
2) SAP is a registered trademark of SAP SE in Germany and in several other countries.
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granularity of these quantities is determined according to the coarse temporal structure of the

planning interval (horizon), which is subdivided into periods, called time buckets or simply

buckets. Typically buckets represent days, weeks, or months. The optimization has to make

the above decisions for every bucket where possible. Since early decisions often have to be

more fine-grained and precise than later decisions, many practitioners prefer using a so-called

telescopic bucket scheme. As an example, a telescopic scheme may divide the horizon into daily

buckets for short-term decisions, weekly buckets for mid-term decisions, and monthly buckets

for late-term decisions. In many scenarios the planning horizon comprises one or two years and

may consist of 25 to 100 buckets.

The supply chain structure itself yields numerous different constraints. These emerge from

restrictions entered by the user like limited resource capacities but also from essential require-

ments as stock balance consistency. We first state the core of the model. Refinements and

extensions are provided in the next section.

2.1. The core model

The formulation is based on the index sets, parameters, and variables summarized in Ta-

ble 2.1. All variables are given a default lower bound of zero. Upper bounds are implied by the

constraints.

The main goal of supply chain management is to satisfy requested demands. However, at

this stage there are no cost-relevant benefits or rewards generated by satisfying a demand.

Instead, in order to initiate activity within the supply chain, despite the costs of production

and transportation, the model incorporates non-delivery penalties.

A demand d of product p may allow a late delivery by at most δdp(t) time buckets. To obtain

the non-delivered amount regarding some demand in bucket t, all deliveries for that demand,

including delayed deliveries, are subtracted from the original demand quantity in that bucket:

xdp(t) = αdp(t)−
t+δdp(t)∑
t′=t

ydp(t, t
′), ∀d ∈ D, ∀p ∈ P, ∀t ∈ T. (2.1)

The stock level balance equation contains all information on input and output to and from

a location by production, transport, or procurement, as well as on stock quantities from the

previous time bucket. Consider time buckets τ, t ∈ T with τ ≤ t. Possible late deliveries to

satisfy demands of product p from earlier time buckets τ < t as well as on time delivery τ = t,

need also to be taken into account in the stock level balance equation, as long as their maximum

allowed lateness δdp(τ) permits a delivery up to bucket t:

slp(t) = slp(t− 1) + vlp(t) +
∑
o∈Ol

π+
op(t) · uo(t) +

∑
a∈Al

zap(t)

−
∑
o∈Ol

π−op(t) · uo(t)−
∑
a∈Al

zap(t)−
∑
d∈Dl

∑
τ≤t

ydp(τ, t),

∀l ∈ L, ∀p ∈ Pl, ∀t ∈ T. (2.2)

Resource restrictions can be considered in different activities. For simplicity, we refer only

to production as a showcase. Resource capacities in production usually represent allocatable

time on production machines or available man hours. Therefore different product lines may

share the same resources. Usually there are no costs for resource consumption. Production
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Table 2.1: Notation for index sets, parameters, and decision variables of the model.

Symbol Index set

T Time buckets

L Locations

D Demands

Dt Demands in time bucket t ∈ T
Dl Demands at location l ∈ L
A Arcs

Al Arcs with location l ∈ L as destination

Al Arcs with location l ∈ L as origin

P Products

Pl Products handled at location l ∈ L
Pa Products transported on arc a ∈ A
Ol Production models at location l ∈ L
Rl Resources at location l ∈ L
Symbol Parameter

αdp(t) Quantity of demand d for product p in bucket t

δdp(t) Maximum allowed lateness for demand d for product p in bucket t

βdp(t) Non-delivery costs for demand d for product p in bucket t

γdp(t, t′) Late delivery costs for delivering demand d ∈ Dt for product p in bucket t′ > t,

i.e., (t′ − t) buckets late

ζap(t) Costs for transporting one unit of product p via arc a in bucket t

ηo(t) Costs of applying production model o ∈ Ol once at location l in bucket t

θlp(t) Costs of procuring product p at location l in bucket t

π+
op(t) Output quantity of product p from production model o in bucket t

π−op(t) Input quantity of product p to production model o in bucket t

σlp(t) Costs of storing product p at location l in bucket t

ρor(t) Requirement of resource r for production model o in bucket t

ψr(t) Capacity of resource r in bucket t

ϕo(t) Quantity of minimum lot size

M Large constant used in big-M method

Symbol Decision variable

xdp(t) Quantity not delivered for demand d of product p in bucket t

ydp(t, t′) Quantity delivered in bucket t′ for demand d of product p in bucket t

zap(t) Quantity of product p transported on arc a in bucket t

uo(t) Number of applications of production model o ∈ Ol at location l in bucket t

vlp(t) Quantity procured of product p at location l in bucket t

slp(t) Stock level at location l of product p in bucket t

wo(t) Binary indicator variable for minimum lot sizes

resource capacity restrictions are realized by∑
o∈Ol

ρor(t) · uo(t) ≤ ψr(t), ∀l ∈ L, ∀r ∈ Rl, ∀t ∈ T. (2.3)

Note, because of r ∈ Rl the capacity ψr(t) of resource r in bucket t is related to location l.

The minimum lot size for production describes the minimum number of times a production

model should be executed in case a production takes place. Two constraints are needed to

model minimum lot sizes. First for the decision if production takes place or not, which is
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modeled with the big-M method, and second for the minimum quantity requirement:

uo(t)−M · wo(t) ≤ 0, ∀l ∈ L, ∀o ∈ Ol, ∀t ∈ T, (2.4)

ϕo(t) · wo(t)− uo(t) ≤ 0, ∀l ∈ L, ∀o ∈ Ol, ∀t ∈ T. (2.5)

Finally, the objective function accumulates all emerging costs:

min
x,y,z
u,v,w,s

∑
t∈T

( ∑
d∈Dt

∑
p∈P

t+δdp(t)∑
t′>t

(
γdp(t, t

′) · ydp(t, t′) + βdp(t) · xdp(t)
)

+
∑
a∈A

∑
p∈Pa

ζap(t) · zap(t) +
∑
l∈L

∑
o∈Ol

ηo(t) · uo(t)

+
∑
l∈L

∑
p∈Pl

(
θlp(t) · vlp(t) + σlp(t) · slp(t)

))
. (2.6)

Note that, in practice, variables are generated sparsely, i.e., only for relevant index com-

binations for which their value can be non-zero. For notational convenience and readability,

however, the model above is formulated densely, e.g., using variables xdp(t) for all p ∈ P and

t ∈ T although one demand may only involve a subset of products and time buckets.

2.2. Further features

The variables and constraints described above comprise the basic core of the mathematical

model. In addition, the SNP Optimization supports further features that cannot be discussed

here in detail due to lack of space, for instance:

• fixed lot sizes: the requirement to produce only multiples of a fixed quantity

• safety stock: try to keep material inventory at a certain minimum level

• shelf life: limit material inventory not to exceed a certain maximum level

• extension capacity: extend resource capacity at some costs

• cost functions: convex and concave piecewise linear cost functions on basic decisions such

as production, transport, or inventory

• setup costs: fixed costs for production of a material, independent of the quantity produced

• substitution: satisfy product demands by substitute products

• quota arrangements: try to keep quota arrangements between alternative sources of supply

• subcontracting: consider external suppliers of certain products

• fixed material flows: some production may incur fixed material flows independent of the

number of produced lots

• fixed resource consumption: some production may incur fixed resource capacity consump-

tion, independent of the number of produced lots
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3. Benefits and Challenges of the MIP Approach

To find a feasible or even optimal solution for the supply chain problem, business-related

data is mapped into a general mathematical model as described in the previous section. After

building the mathematical model, a MIP solver is invoked for optimization. The result is

then converted back into a supply chain plan proposed to the practitioner. In practice, some

practitioners create remarkably large scenarios, resulting in MIP models with up to 30 million

variables and constraints, where up to 500,000 of the variables can be integer.

3.1. MIP vs. heuristics

Despite the large complexity of the resulting optimization problems, it was decided from

the very beginning of the SNP Optimization development to employ an exact MIP approach

instead of heuristic algorithms. The main reasons were threefold:

• the feature complexity of real-world supply chain problems,

• the extensibility of MIP models, and

• the possibility to evaluate feasibility and solution quality.

In the face of the feature complexity of the supply chain problems to be solved, one strong

argument for MIP was the expressiveness of general MIP models. Besides multiple stages in

production, capacity constraints, and discrete lot sizes, many supply chain-specific hard or

soft restrictions may occur in practice. Some examples are fulfillment of safety stock, product

interchangeability, or the consideration of shelf life. Although many heuristics exist for supply

chain planning, they usually are specialized on a subset of the features above. To the best of

our knowledge, a generalized heuristic that would consider all those aspects is neither available

on the software market nor described in literature. However, for practitioners it is often crucial

to be able to address all planning features and business requirements in a single optimization

framework.

Another essential advantage of the MIP approach that is related, but slightly different, is

the extensibility of MIP models. Since the market launch of SNP Optimization, SAP had to

address numerous user requests for additional planning capabilities. Generally, extending a so-

phisticated heuristic that is already based on multiple interdependent and calibrated algorithms

often requires significant redesign and testing effort. Consequently, with an increasing number

of additional features the heuristic is likely to collapse under its growing complexity. Howev-

er, with the MIP approach, adding new features is far easier to accomplish by incrementally

adding further constraints and variables to the existing model, thereby keeping its correctness

and stability.

Last but not least, a major benefit of MIP solvers is their capability to evaluate whether

the supply chain problem is solvable at all and to estimate the gap between a best known and

the best possible solution, i.e., a global optimum [1]. If the model formulation is too restrictive

or contradictory, that is, if it contains a combination of constraints that can never be fulfilled,

the MIP solver can prove this infeasibility. In our experience, this often succeeds quickly before

the solver starts the branch-and-bound search for a solution. Thus, it is possible to inform the

planner about the infeasibility of the input data.

If, on the contrary, the model formulation is correct but the MIP solver fails to find the

global optimum within the given time limit, it will at least provide a guarantee about the actual
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solution quality. This gives the supply chain planner a quantitative basis to decide whether to

optimize with an increased time limit or whether the solution is already good enough. Most

heuristic approaches lack all these benefits.

3.2. Numerical stability

Despite the advantages described above, the MIP approach may exhibit some drawbacks.

One typical issue that can have a significant impact on the solver performance is numerical

instability of the model. If the optimization model is directly derived from a practitioner’s

business data, it usually contains a wide range of coefficients and constants.

Very large coefficients may occur in the objective function acting as pseudo-hard penalties

for not delivering a customer demand or for missing a minimum stock level (safety stock). Other

examples are variables or constraints limited by extremely high bounds to represent an almost

unlimited production or transport decision. Very small coefficients often occur in the objective

function representing low costs or in the constraints representing material flow coefficients,

stemming from internal unit conversions. In typical scenarios the coefficients in the model span

from 0.001 to 107, i.e., ten orders of magnitude.

As frequently described in the literature, too wide a range of numbers inside a single MIP

model is likely to deteriorate the numeric stability and significantly reduce the solver perfor-

mance (see for example [3]).

3.3. Scalability

Besides numerical issues, the major challenge of the MIP approach is to ensure high scala-

bility of running time and solution quality as the size of the model increases. As pointed out,

the supply chains of some practitioners lead to MIP models with up to 30 million variables and

constraints, where up to 500,000 of the variables may be integer. Given the high complexity of

MIP, no generic state-of-the-art solver can guarantee to find optimal solutions efficiently, say

within predictable running times growing linearly with the size of the model. In practice, this

indicates the risk of either long solving times or low solution quality within an acceptable time

frame. In some extreme cases, a MIP solver will not find any solution at all after many hours

or even days. However, the solving time expected by users is typically limited to few hours.

When running the tool manually on smaller scenarios, users usually expect a solving time of

few minutes. In the following, we describe techniques to tackle these challenges.

4. Decomposition Techniques

One classic possibility to address the scalability challenge is to apply decomposition tech-

niques. Here, the idea is to divide the optimization problem into several subproblems and solve

these separately instead of solving the problem as a whole. The solutions of the subproblems

are then combined to form the overall solution. Hence, decomposition techniques overcome the

performance bottleneck of large problems and often yield feasible and good solutions within an

acceptable time frame while keeping the memory consumption low.

In our framework, decomposition is applied both inside the MIP solver as well as a priori

before passing problems to the MIP solvers. While the techniques inside the MIP solver, which

will be described later, are all exact, some of the high-level decomposition techniques on the

modeling level are heuristic in the sense that they may compromise solution quality in order to
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deal with the large dimension of some supply chain problems. In the following, we describe the

decomposition techniques applied in SNP Optimization outside of the MIP solver.

4.1. Mathematical decomposition

The simplest way to decompose the MIP model is when completely independent subproblems

can be identified, i.e., disjoint groups of variables that are not linked by any constraints. In this

case, the objective function values and objective bounds of the subproblems (here: lower bounds

for a minimization problem) can be summed up after solving them individually to obtain the

final objective value and bound without losing solution quality.

However, even when this case is detected there is a risk that the model is not well decom-

posable, i.e., that some of the independent subproblems turn out to be significantly larger than

the remaining subproblems and cannot be split up further. This happens when variables occur

in multiple constraints, for example, variables representing stock levels of raw materials, which

are used throughout the whole supply chain. In this case, one would expect only a minimal

performance improvement from this decomposition technique.

4.2. Decomposition under business aspects

To lower the risk of inhomogeneous subproblems described above, SNP Optimization of-

fers optional decomposition techniques that allow subproblems to overlap to a limited extent,

thereby considering additional business-related knowledge of the supply chain:

• Decisions in earlier periods are often more critical than decisions in later periods.

• Some demands are more important than others and should be planned initially.

• Some product lines are more important than others and should be planned primarily.

The first aspect is covered by the so-called time decomposition, which solves the supply

chain problem in separate overlapping time windows, thereby gliding forwards in time. The

second aspect is exploited by the so-called priority decomposition. It first solves the supply

chain problem containing only demands of the highest priority. Afterwards it solves the same

problem with demands of the second-highest priority, while keeping the first solution fixed, and

so on. The third aspect is addressed by the product decomposition, which will be discussed in

detail in the following subsection.

Note that the price of these decomposition techniques is the loss of our capability to find the

optimal solution and to estimate the lower cost bound. The final solution will be feasible but

we cannot guarantee optimality. The lower bounds of the individual subproblems cannot be

combined to estimate the overall lower cost bound. Despite these limitations many practitioners

often prefer decomposition, in particular when planning large supply chains. The availability

of these decomposition approaches in conjunction with an exact model enable the practitioner

to evaluate the trade-off between running time and solution quality for typical input data in an

a priori study.

4.3. Product decomposition

The product decomposition is the most commonly used decomposition technique in practice.

It identifies independent product-line structures within the given supply chain, extracts them
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into subproblems, and solves them sequentially in a specific order. In practice, it is often

successful in breaking large scenarios into several hundred subproblems.

The subproblems of the product decomposition can overlap, since different product lines

may require common resource capacity, provided by machines of a factory or labor, for instance.

These capacity conflicts are resolved on a first-come, first-served basis: once a resource capacity

has been consumed within an early subproblem, any later subproblem has to respect that

consumption as a fixed boundary condition and may only utilize the remaining capacity of this

resource.

Hence, the solving order of the subproblems influences the final solution in the overlapping

case. To avoid the effect that earlier subproblems fully utilize capacities of shared resources,

thereby leaving little or no capacity for later subproblems, the product decomposition can

optionally apply a technique called preallocation. Here, as a heuristic preprocessing step, the

linear programming relaxation of the whole optimization problem is solved, which ignores any

discrete constraints. The resource occupancies of the linear solution then serve as further

boundary conditions for the subproblems. Naturally, this option is applicable only for supply

chain models with binary or integer-valued variables.

The product decomposition can succeed only if the underlying MIP solver solves all sub-

problems successfully. If it fails to find a feasible solution for only one subproblem, the whole

approach fails. Consequently, the distribution of the overall user-defined run-time to the indi-

vidual subproblems is critical for the success of this decomposition technique.

The simplest way is to evenly assign the run-time to the subproblems. This strategy works

for most problems in practice. A more complex way is to assign time slots proportionally to

the estimated complexity of the subproblems. SNP Optimization offers various methods to

estimate problem complexity based on the input data. If a subproblem is not solved within

its time slot, the remaining time will be used until the first solution is found. Afterwards, the

residual time will be redistributed to the remaining subproblems according to their complexity

estimation. Besides choosing the time-distribution strategy, the user may also choose among

several strategies for ordering the subproblem solving in order to avoid possible time bottlenecks

and to improve the solution quality.

Note that product decomposition is not suitable for very dense supply chain models. If, for

instance, a subproblem covers 90% of the supply chain model, product decomposition would

not yield a significant performance improvement. In this case, other decomposition techniques,

such as time decomposition, might be more suitable.

While the outlined decomposition techniques are applied on the business side with supply-

chain-specific knowledge at hand, the following sections are devoted to the algorithmic im-

provements that have been implemented inside of the MIP solver SCIP that receives only the

abstract mathematical MIP model.

5. Engineering the MIP Solver I: Presolving

Presolving is a collection of algorithms that reduce the size and, more importantly, improve

the formulation of a given model. They aim at shrinking and tightening the linear programming

(LP) relaxation such that it better describes the convex hull of the underlying mixed-integer

solutions and becomes easier to solve. Applied in multiple rounds before starting the branch-

and-bound search, these reductions help to decrease the number of nodes that need to be

explored later and speed up their processing time. It has been shown that presolving is a
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powerful key factor in modern mixed-integer programming solvers [4, 5].

Supply chain instances are often designed in a way that they are convenient for applying

presolving techniques: The underlying constraint matrix is mostly very sparse and equality

constraints, e.g., from modeling stock level conditions, can be used to aggregate variables prof-

itably. Many constraints consist only of continuous variables, where presolving techniques from

the linear programming literature take effect. In addition, the regarded instances often contain

independent components, i.e. parts of the original problem which share no common variables

and constraints.

In the following, we describe three presolving techniques and accent frequently occurring

substructures in supply chain instances predestinated for their employment. Furthermore, these

substructures appear in many other mixed-integer problems as well, e.g., production planning

and network design. Therefore, the following descriptions are a tutorial for identifying related

substructures in other applications or designing similar custom-made presolving algorithms.

Mathematical details of the presolving algorithms can be found in [6].

5.1. Singleton column stuffing

Convex piecewise linear functions play an important role in modeling cost structures with

coefficients depending on the stock level value. They are frequently used, e.g., for modeling

safety stock violation penalties, stock keeping costs, and maximum stock violation penalties.

After applying aggregation-related presolving techniques, models of such functions very often

yield continuous singleton columns.

A singleton column is a column of the constraint matrix with only one non-zero coefficient,

i.e., it appears only in one row of the constraint matrix. During singleton column stuffing we

determine for every row of the constraint matrix a set of continuous singleton columns. Then

we consider each variable of such a set in a suitable order that is determined by the ratio of

the objective function coefficient and the coefficient in the row and try to fix the corresponding

variable at a bound. This approach can be seen as solving a linear subproblem with one

constraint and it can be proven that at least one optimal solution must satisfy this fixing.

In Section 2.2, we have already listed some extensions of the core model. An obvious and

widespread extension is to integrate the modelling of convex piecewise linear cost functions

depending on some stock level value s. Instead of pointing out a detailed model description we

illustrate the idea with a small example. Consider a function f(s) : [0, 5]→ R defined by

f(s) =



−2s+ 3, s ∈ [0, 1],

−s+ 2, s ∈ [1, 2],

1

2
s− 1, s ∈ [2, 4],

3s− 11, s ∈ [4, 5],

(5.1)

and illustrated in Figure 5.1.

This could be the stock cost for a material with safety stock 2 and storage capacity 4.

Between 2 and 4, stock keeping costs are applied, while a stock level larger than the capacity

causes large maximum stock violation penalties. On the other hand, a stock level below the

safety stock causes safety stock violation penalties. Missing the safety stock by only a bit causes

a penalty cost of 1 per unit, while the penalty increases to 2 per unit when the safety stock is

missed by more than 1. In the mathematical model, we employ a variable pi, i = 1, . . . , 4 for
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s

f(s)

1 2 3 4 5

1

2

3

4

Fig. 5.1. A convex piecewise linear cost function.

each linear segment and obtain the following optimization problem:

min f(s) = 3− 2p1 − 1p2 + 1
2p3 + 3p4

s.t. s = p1 + p2 + p3 + p4

s ∈ [0, 5], p1 ∈ [0, 1], p2 ∈ [0, 1], p3 ∈ [0, 2], p4 ∈ [0, 1].

The slopes in (5.1) correspond to the coefficients in the objective function and the bounds of

the variables pi result from the corresponding interval widths. Due to the increasing objective

coefficients, an optimal solution will assign a non-zero value to pi only if pj is set to its maximum

value for all j < i. Singleton column stuffing uses this argument. If, for example, the bounds

of s are restricted to s ∈ [1.5, 3], singleton column stuffing can fix p1 to 1 and p4 to 0.

5.2. Dominated columns

The dominated columns presolving algorithm combines two features: implied variable bound-

s and a dominance relation between two columns of the constraint matrix. Let two variables

with the same type, i.e., continuous or integer, be given. Furthermore, let us assume that

we want to minimize a linear objective function and all constraints have a less equal relation.

Equations can be represented as two inequalities. If the coefficient in the objective function of

the first variable is less than or equal to the coefficient of the second variable and if for each

row the coefficient of the first variable in that row is less than or equal to that of the second

variable, then the first variable dominates the second variable.

A lower or upper bound on a variable derived by bound propagation techniques that is

finite and is equal to or tighter than the explicitly stated lower or upper bound, is called

implied lower bound or implied upper bound, respectively. Consider two variables, where the

first variable dominates the second variable. If the first variable has an implied upper bound,

then we can fix the second variable to its lower bound and remove it from the remaining

problem. Otherwise, if the second variable has an implied lower bound, then we can set the

first variable to the corresponding upper bound and remove this variable from the problem. By

simple transformations in the argumentation it is possible to transfer this idea to some other

cases.

This algorithm is suited for fixing both continuous and integer variables. Often it removes
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continuous variables representing a quantity delivered for covering the demand or a variable

constituting a specific stock level of a product at a location. Although it is sometimes useful to

fix continuous variables, it is more important to reduce the number of discrete variables.

In our context, it particularly helps to remove discrete variables describing the transport of

a product along an arc of the supply chain network. If there are different options how a product

p ∈ P can be transported from location l1 ∈ L to location l2 ∈ L, this is typically modeled

via parallel arcs. In case no additional restrictions are applied to the transport options, the

transport variables za1p(t) and za2p(t) have the same coefficients in all constraints, but may

have different capacities and costs in the time buckets t ∈ T . Now, if presolving identifies an

implied upper bound on za1p(t) and ζa1p(t) ≤ ζa2p(t) applies for the coefficients in the objective

function (2.6), za2p(t) can be fixed to its lower bound.

5.3. Disconnected components

Although a well-modeled problem should not contain disconnected components, we ob-

serve that they occur frequently in our supply chain instances. This happens for example if

some region is independent of the others, i.e., has its own, exclusive set of customers without

transportation to or from other regions and no common capacity restrictions. In the software

environment providing the model, an integrated treatment may be easier to accomplish for the

user than setting up independent business cases. More important, we have observed that even

a fully connected supply chain problem may split up into independent components after some

rounds of presolving. In this case, the MIP solver can employ decomposition techniques that

are not applicable at the high-level modeling level explained beforehand.

Mathematically, a disconnected component corresponds to a set of decision variables that do

not share a common constraint with any variable from outside the set. Solving the disconnected

components individually is equivalent to solving the problem as one piece. The components

presolver identifies disconnected components and tries to solve them to optimality. After one

component is solved, the constraints and variables therein can be removed from the remaining

problem. This approach can strongly speed up LP solving and reduce the total number of

branch-and-bound nodes explored in the search trees of the subproblems.

The disconnected components can be identified by first transferring the constraint matrix

into an undirected graph which is constructed as follows: For every variable a node is created,

and for each constraint we add edges to the graph such that the variables with non-zero coef-

ficients in the constraint are connected. The latter is realized by connecting all nodes of the

induced subgraph of a constraint by a simple path. In this case the size of the graph is linear

in the number of variables and non-zeros. Finally, we apply depth first search to compute the

disconnected components.

Consider the stock level balance equation (2.2) and let us assume that all transportation

decision variables zap(t) for a ∈ Al∪Al at a specific location l ∈ L and p ∈ Pl can be fixed for all

time buckets t ∈ T to certain values determined for example by bound propagation techniques.

This gives us a disconnected component for location l, which can be solved individually.

6. Engineering the MIP Solver II: Primal Heuristics

Many supply network planning models in practice, including many that serve as basis of

our evaluation in Section 9, tend to be hard to solve to optimality within the given time limit.
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If optimality is not reached, practitioners are mainly interested in the value of the best primal

solution obtained, while the dual bound is of small interest. In this situation, the use of effective

primal heuristics within the MIP solver is essential. They support the branch-and-bound search

by trying to construct feasible solutions in a short time. Although they can neither guarantee a

certain quality of the generated solution nor the successful construction of any feasible solution

at all, they have been proven to be very effective on many problem instances by providing

solutions of good quality in a reasonable amount of time. Note that these heuristics work on

a general MIP instance and do not use any additional problem information provided by the

user. They may, however, identify and exploit certain structures, as it is done in some of the

heuristics discussed in the following. The importance of primal heuristics within the exact MIP

solver SCIP is also emphasized by the fact that the latest release, SCIP 3.2.1, contains 44 primal

heuristics implementing various approaches.

Given this variety of primal heuristics and the need to find good solutions in a short amount

of time in the supply chain context we decided to put more emphasis on heuristics by increasing

running them more often within the branch-and-bound search and enabling some additional

heuristics. More important, however, we developed new general MIP heuristics that are moti-

vated by supply chain problems.

6.1. Shift-and-propagate

Shift-and-propagate [7] is a pre-root heuristic which aims at constructing a feasible solution

even before the initial root LP is solved. The heuristic starts with a trivial solution that fulfills

variable bounds but potentially violates some constraints. Then it iteratively selects one integer

variable and shifts it to a new value such that the number of infeasible constraints (or their

violation) is reduced. Domain propagation techniques are applied to deduce bound changes on

other variables or detect an infeasibility, in which case the shift is reverted. This is repeated

until all integer variables are fixed. Optimal values for the continuous variables are determined

by solving a final LP.

One of the reasons why shift-and-propagate performs well on supply chain instances is

the fact that feasibility can be reached for many assignments of integer variables, e.g., by

paying penalty costs for non-delivery even if production setup variables are fixed to zero. In

order to further improve both its success rate and the quality of the constructed solutions, we

implemented an extension to the shifting value determination rule motivated by the following

observation: For a continuous production variable, shifting the corresponding production setup

variable to one allows the LP to run production and decrease non-delivery costs. Since shift-and-

propagate regards a modified problem in the shifting phase, this does not necessarily render any

additional constraint feasible in that problem. However, it may be needed to obtain feasibility

in the final LP solve. Additionally, although production setup may trigger some additional cost,

this is often negligible compared to the improvement obtained by reducing the non-delivery cost.

In SCIP’s general setting, we were forced to implement this strategy without specific supply

chain knowledge. We could achieve this by selecting binary variables that are not restricted

from above by any constraints as a generalized proxy for production setup variables. Although

this extension can increase the size of the final LP to be solved and the running time of the

shift-and-propagate heuristic, it improves the heuristic not only for supply chain instances but

also for general MIP problems such that it is now enabled by default in SCIP.
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6.2. Structure-based primal heuristics

The restriction to very basic modeling components-variables, linear constraints, and bound

constraints-makes it hard to pass problem-specific knowledge to a black-box MIP solver that

could be exploited beneficially for the design of dedicated primal heuristics. On the other hand,

not having to do so has its own benefits on the business side, as we have argued above. In

order to compensate for the limited information, solvers identify and keep some common global

structures themselves. We developed new heuristics which make use of these structures for

constructing a feasible solution before solving the initial root LP. The latter is important since

some of the given instances have very large LP relaxations that take a significant time to solve.

In the following, we will first present a very easy but nonetheless successful heuristic which

is based on the bound information of variables. After that, we present two more complex

structures—the clique table and the variable bound graph. We discuss their relation to supply

chain models and show how they can be used in primal heuristics.

The bound heuristic fixes all binary and integer variables either to their lower or upper bound

and solves the remaining LP to obtain optimal values for the continuous variables. Although

quite simple, this heuristic can be very effective for supply chain instances: Often, the only

integer variables in the problem are indicator variables which allow production or transportation

within the network. Running the bound heuristic and fixing all those variables to zero leads

to a solution which will deliver stocked products optimally under those restrictions, but not

produce any new ones. These restrictions often still allow feasible solutions since non-delivery

is possible, though penalized by a cost. As a basis for subsequent improvement heuristics,

however, this starting solution can be very effective.

Cliques and variable bounds are two global structures that represent dependencies between

variables. A clique is a set of binary variables of which at most one variable can be set to one.

A variable bound is a valid bound on a variable which is not yet fixed, but depends on the value

(or bound) of another variable. For example, a production variable x typically has a variable

upper bound depending on a setup variable y. If y is fixed to zero, the production variable x

also has an upper bound of zero; if the upper bound of the setup variable y is one, a non-zero

upper bound is imposed on the production variable x. Mathematically, this corresponds to a

linear constraint of the general form x ≤ ay + b.

These structures can be given directly or indirectly by linear constraints of the model or

detected by presolving techniques such as probing [8]. In modern MIP solvers, the set of all

detected cliques is stored in the so-called clique table, while variable bounds can be stored in

the variable bound graph. In this directed graph, each node corresponds to the lower or upper

bound of a variable and each variable bound relation is represented by an arc pointing from

the influencing bound to the dependent bound.

These structures cover part of the inherent implications of a supply network. For example,

cliques may identify conflicting production setup variables, while the variable bound graph

depicts how the possible flow in the network is influenced, e.g., by production setup variables.

In general, they form relaxations of the MIP and are used by solver components, e.g., to create

clique cuts [9], to deduce stronger reductions in presolving and propagation [8], or for c-MIR

cut separation, where variable bounds can be used to replace non-binary variables by binary

ones [10].

We present now briefly how they can be exploited by primal heuristics, and refer to [11] for

more details. The algorithmic framework is the same for both heuristics:
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1. In a first step they iteratively fix one or more variables, interleaved with some rounds

of domain propagation. This is similar to the behavior of shift-and-propagate, but the

decision of which variable to fix and to which value is based on the respective structure.

This helps to predict the effects of domain propagation after a fixing.

2. When all variables covered by the structure were fixed, the LP relaxation of the remaining

problem is solved and a simple rounding heuristic is applied to compute values for the

remaining, unfixed integer variables.

3. If the rounding step fails, the remaining problem is solved as a sub-MIP.

Therefore, the heuristics ultimately implement the large neighborhood search (LNS) paradigm.

That means that the problem is restricted to the neighborhood of a given reference point, in

this case by fixing of variables. This neighborhood is then solved as a sub-MIP, typically up

to some working limits. In contrast to most existing LNS heuristics for MIP, they do not rely

on an optimal LP solution or a primal feasible MIP solution as reference point to define the

neighborhood. Instead they iteratively define the neighborhood based on the global structures.

In the clique heuristic, the fixing is done based on a clique partition computed in advance,

i.e., a set of cliques such that each binary variable is part of exactly one of these cliques. For each

clique in the partition, the clique heuristic selects an unfixed variable with smallest objective

coefficient and fixes it to one. The subsequent domain propagation step then fixes all other

variables in the clique to zero and possibly identifies deductions on variables outside of this

clique. The rationale is to fix one variable to one since this causes many domain reductions in

propagation and thus reduces the size of the problem to be solved as a sub-MIP. We fix the

cheapest variable to one in order to increase the objective value as little as possible.

The variable bound heuristic first computes a topological order for the nodes in the variable

bound graph, i.e., an order such that for all arcs in the graph, the origin precedes the destination

in that order. The heuristic then regards all nodes of the graph in this order and decides on

whether and how to fix the corresponding variable. We developed several fixing schemes that

make different trade-offs between feasibility, solution quality, and size of the final sub-MIP.

6.3. Further heuristics

Besides the previously described methods, many general MIP heuristics were implemented

during the course of the research project which also helped to improve the performance on the

supply chain instances. This includes

• a random rounding heuristic,

• the fast rounding heuristic ZI rounding [12],

• a two-opt heuristic, which tries to improve the best known solution by changing the value

of two variables at a time, and

• two more LNS heuristics: zeroobj, which disregards the objective function, allowing for

more presolving reductions; and proximity search [13], which searches for an improving

solution close to the incumbent.
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7. Engineering the MIP Solver III: LP Solving

The fast solution of linear programs is a key ingredient for the performance of SNP Opti-

mization. On the one hand, some practitioners build large supply chain problems with contin-

uous decision variables only. On the other hand, the solution of linear programs is required at

many points during the MIP solving process and may easily take up the largest share of the

overall solution time. The tight time restrictions demand a highly efficient implementation.

This is particularly crucial for pure LPs, where no intermediate solutions are available, and

for large instances where most of the available time may be spent in the initial root LP of the

branch-and-bound tree.

Particular challenges are the large dimensions of the models as described earlier and the

numerically difficult input data as will be discussed in the next section. A typical feature of

large supply chain instances is the extreme sparsity of their data, i.e., the abundance of zero

elements in the constraint matrix. On average over the regarded instances, the number of non-

zeros per constraint is about 7.7 while this number is on average almost 60 for instances in

the MIPLIB 2010 [14] benchmark set. Exploiting this characteristic is crucial for any efficient

solver [15].

Despite its missing capability to exploit parallel computer hardware, our benchmarks showed

the revised simplex method to outperform other LP algorithms such as the barrier method. It

is the method of choice in the supply chain context for two further reasons. First, it computes

so-called basic solutions, i.e., solutions defined by a set of active constraints, which are often

numerically “cleaner” than an interior point solution returned by the barrier without a crossover

step. Second, the simplex can hot-start from these basic solutions after small modifications to

the LP, the standard scenario inside the branch-and-bound tree of a MIP solver.

The above challenges were addressed in our simplex code SoPlex [16]. We have implemented

a technique to combine multiple dual simplex pivots into one iteration by performing so-called

bound flips in the step length computation, the so-called ratio test. This technique is known

as the long step rule in the simplex literature [17]. Our tests showed, however, that the supply

chain instances from our benchmark set exhibit only little potential for performing such long

steps. Hence, although this enhancement slightly reduces the number of pivots until optimality,

the improvement of the overall performance was small, also because of the additional overhead

introduced by computing long steps.

In contrast, we could achieve significant performance improvements by focusing on the

pricing step, which selects a variable or constraint that determines the step direction for the

next iteration. Different selection criteria are described in the literature and it is known that

the steepest edge pricing rule often yields the smallest number of iterations [18]. However,

our performance tests showed that on the supply chain instances the computationally more

expensive steepest edge pricing was outperformed by the cheaper devex pricing rule because of

higher iteration speed.

Independent of the pricing criteria, however, the extreme sparsity of the supply chain in-

stances can be exploited more fundamentally. In the dual simplex algorithm, pricing determines

the step direction by selecting a variable or constraint that currently violates one of its bounds

and shifting it to its closest bound in order to reduce primal infeasibility. This variable or con-

straint is selected from a subset called the basis, which contains as many elements as number

of constraints in the problem. While a naive implementation might scan the entire simplex

basis in every iteration for the largest violations, this is prohibitively expensive for our large
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Fig. 7.1. Pricing statistics: The total number of current violations is several orders of magnitude larger

than the number of updated violations per iteration.

supply chain models. As a first remedy, we implemented a procedure that keeps track of these

violations by updating instead of recomputing them from scratch.

Still, the pricing step can strongly impact the performance because the number of violated

variables and constraints is typically very high throughout most of the iterations. On the

contrary, we noticed that the majority of violations remain untouched after a single simplex

iteration. This is visualized in Figure 7.1, which shows the number of pricing comparisons in

all three cases for one typical instance. While the number of violations is only slowly getting

smaller, the number of actual changes introduced in a single iteration is several orders of

magnitude smaller.

We used this to design an efficient update scheme for keeping a short list of most promising

pricing candidates. For the correctness of the simplex algorithm it is sufficient to select one

violated variable or constraint. This allowed us to reduce the number of comparisons in pricing

significantly during most of the dual iterations. Only in the final iteration we need to ensure

that all basic variables and constraints are within their bounds.

8. Engineering the MIP Solver IV: Numerics

Many of the investigated models contain coefficients of very large magnitude both in the

constraints as well as in the objective function. Optimal solution values can be in the range

of 1018. This imposes difficulties for any software implementation using double-precision arith-

metic, which can only express floating-point numbers with up to 16 digits on current archi-

tectures. Moreover, at most 12 digits are typically reliable because the last digits are often

corrupted due to floating-point round-off errors. During the course of the research project,

we robustified SCIP with respect to such extreme numerical scenarios, which required rather

technical changes in details of the MIP solving process. In the following, we try to give only a

few selected examples.

Per default, SCIP treats all values above 1020 as infinity. We changed this limit to 1030 in

order to prevent cutting off very large numbers. Additionally, we introduced a safety threshold

of 1015; larger values are handled with special care, e.g., by deactivating bound tightening on

constraints with such large numbers.

Furthermore, activity-based bound tightening relies heavily on so-called minimal and maxi-

mal activities, which represent lower and upper bounds on the constraint function. For perfor-

mance reasons, these activities are usually updated whenever the bound of a variable changes
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instead of being recomputed from scratch when accessed. However, these updates are prone

to numerical errors, in particular if an update reduces their absolute value by several orders of

magnitude. Therefore, we added a method checking the reliability of an update; if necessary,

the value is marked as unreliable and recomputed from scratch next time it is used. This helped

to avoid several cases of incorrect bound tightenings on supply chain instances with very large

coefficients.

Our last example is related to presolving. Although the preprocessing phase transforms

the model into a mathematically equivalent formulation, it may happen that a solution to this

transformed problem is not feasible after mapping it back to the original formulation. This

is due to the use of tolerances, usually in the range of 10−6 to 10−9, that help to cope with

floating-point round-off errors.

Like most MIP solvers, SCIP uses a mixture of relative and absolute tolerances for checking

feasibility. While relative tolerances are stable with respect to scaling of a constraint, this does

not hold for absolute checks as illustrated by the following example:

105x− y = 0
scaling−−−−→
by 10−5

x− 10−5y = 0.

The solution (x?, y?) = (1, 100000.05) is feasible for the scaled equation, since the constraint is

only violated by 5 · 10−7, which is below the tolerance of 10−6. On the other hand, the original

equation is violated by 0.05, which is beyond the accepted tolerance.

In order to improve the consistency of our tolerances under scaling, we added the option

to consider the violation relative to the largest contribution of a variable to the left-hand side,

i.e., solution value of the variable multiplied by its coefficient in the constraint. In the previous

example, this check finds the solution (x?, y?) = (1, 100000.05) feasible also for the original

constraint since the check is done relative to 100000.05 which is the largest contribution of a

variable.

In the supply chain instances discussed in this paper, this modified check is particularly

important for stock level balance equations like (2.2). Their right-hand side is typically zero

while the stock levels as well as in- and out-flows can have very high values in millions or

billions. An absolute tolerance of 10−6 is impractical in those cases and cannot be achieved

given the use of floating-point arithmetic.

9. Computational Results

In the literature, a very popular measure for comparing MIP solver performance is the

(average) running time to proven optimality. This, however, does not always reflect well the

suitability of algorithms in an application setting. Hence, in the following we describe a more

practice-oriented benchmarking methodology and evaluate the impact of the algorithmic ad-

vances described in Sections 5 to 8 computationally.

9.1. Experimental setup

The basis of our evaluation is a representative selection of 55 benchmark instances supplied

by SAP. The instances model diverse real-world supply chain scenarios, each in multiple levels of

detail, leading to a variety of problem types and sizes. Basic statistics about the instance sizes

are presented in Figure 9.1. The majority of instances are mixed-integer problems (illustrated

as blue triangles in Figure 9.1), but there are also 13 mixed-binary problems (green circles)



884 G. GAMRATH, et. al

1e+04

1e+06

1e+04 1e+05 1e+06

Variables

C
o
n

st
ra

in
ts

Type

LP

MBP

MIP

Coeffs

4

8

12

16

Fig. 9.1. Problem types and sizes of the 55 benchmark instances used for the computational evaluation.

and 14 pure LPs (red squares) without integer or binary variables. The problem sizes in

terms of variables (x-axis) and constraints (y-axis) ranges from a few thousand variables and

constraints (lower left) to several million variables and constraints (upper right). Thereby, the

largest instances are pure LPs, but also the largest MIP has 1.2 million variables and 256 000

constraints. All instances have slightly more variables than constraints; the ratio between the

two ranges from 1.2 to 4.7. The average number of non-zero coefficients per constraint is

between 3.6 and 18.5, illustrated by the size of the instance symbol in Figure 9.1. The amount

of integrality is usually below 10% of the variables but can be as high as 30% for one problem

class.

For each benchmark instance, a time limit has been specified within which practitioners

expect to obtain a high-quality solution. Because of the challenging nature of the instances and

the often tight limits, many benchmark instances cannot be solved to optimality within the

given time. Therefore, our foremost measure is the best primal bound computed within this

time limit, i.e., the objective function value of the best solution found by SCIP. The given time

limits vary between 30 and 7200 seconds, depending mostly on the problem size.

While pure LPs need to be solved to optimality, MIPs have a so-called optimality gap,

signifying how far the solution value of an integer feasible solution is away from that of the

optimal one. Whenever a new incumbent, i.e., an improved solution is found, the optimality

gap is reduced and this development can be represented as a monotonously decreasing function.

To measure how quickly the quality of the best known primal solution approaches the optimum,

we additionally employ the primal integral measure [19].

For practical applications, this measure is richer than the traditional way of comparing

solution times or solution qualities at the limit limit, especially since our main goal is to provide

good solutions quickly. To obtain the version-to-version progress displayed in Figure 9.3, we

averaged over the primal integrals for all instances in the test set. In order to account for each

instance equally, the primal bound function was normalized by the instance-dependent time

limits.
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All computations were performed on Intel Xeon X5672 CPUs with 3.2 GHz and 64 GB of

main memory, running only one problem instance at a time in order to measure solution times

accurately. We compared the performance of five different versions of SCIP, version 1.2.0 to

version 3.1.0, that span the duration of our research project. SCIP 1.2.0 was released just before

the work on the research project started and hence serves as a baseline.

9.2. Evaluation

Figure 9.2 displays the performance progress over the SCIP versions released during the

project. To this end, the instances in our test set are classified according to the quality of

the primal bound at the end of the instance-specific time limit into the following categories:

a provably optimal solution is returned, the final optimality gap is below 1% (near-optimal),

below 10% (high-quality), a feasible solution with worse optimality gap is returned, and no

solution could be found at all, which is considered a failure.

As can be seen, we managed to improve the solution quality with every new release of SCIP

and eventually were able to compute solutions to all but one problem instance. Note that the

failing instance is an LP with more than 5 million variables and constraints. This does not

mean that the SNP Optimizer is not able to solve these instances at all, only that the user

needs to wait for the result longer than the desired time limit. In our evaluation, we defined

tight time limits in order to set ambitious goals.

In order to also compare the speed at which improving solutions are found we depict the

development of the mean primal gap over all instances, similar as suggested by [19]. In Fig-

ure 9.3, we can see a continuous improvement from one SCIP version to the next concerning

this measure. Improving solutions were found earlier in the solving process while also the over-

all primal gap could be decreased significantly. In the following, we shortly present how this

progress was achieved.

Both SCIP 1.2.0 and SCIP 2.0.0 were run with default settings. SCIP 1.2.0 was released
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Fig. 9.2. For each SCIP version the solution quality for the instances in the test set is illustrated. The

number of found solutions is continuously increasing from version to version. The same holds for the

solution quality measured by the integrality gap within the time limit.
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Fig. 9.3. The comparison of the primal integrals using normalized time limits demonstrates that from

version to version better solutions are found earlier during the solution process.

before work on the project started, whereas SCIP 2.0 was released shortly after. The most im-

portant new feature in SCIP 2.0.0 is the shift-and-propagate heuristic, which computes feasible

solutions very early in the solving process. It helped to solve more instances to optimality and

reduce the number of failed instances.

SCIP 2.1.0 led to a considerable performance improvement, partly due to using customized

SCIP parameters. On the one hand, algorithmic features which proved to be inefficient for the

regarded supply chain instances were disabled or reduced in their intensity, most prominently

the probing presolver, which was able to find only few reductions while consuming a significant

amount of time due to the large size of many of the problems. More importantly, however, the

aggressiveness of the available heuristics was increased in order to focus on finding solutions

rather than proving optimality. Additionally, first versions of the structure-based heuristics were

added, which saw further enhancements in the following releases. This was complemented by

many more performance improvements in SCIP, among them improved and extended algorithms

for presolving and node preprocessing. The corresponding SoPlex release contained for the first

time the long step ratio test and modifications for numerical stability: LP scaling prior to

running the simplex algorithm and an increased Markowitz threshold, that is used for the

internal LU factorizations.

The three presolvers described above were added in release 3.0.0 of SCIP. Among them,

the detection of independent components in the problem instance during presolving had the

highest impact, often leading to significantly reduced problem sizes. Numerical problems were

reduced by the addition of the three modifications presented in the last section. Furthermore,

some parameters were modified to decrease the number of useless cutting planes and to switch

the default LP pricing rule from steepest edge to the faster devex pricing. Additionally, the

overall pricing implementation in SoPlex was improved to exploit sparsity of the data.

The work on SCIP 3.1.0 mainly succeeded in improving performance on the primal side.

The random rounding heuristic was added to SCIP and other existing heuristics were improved,

most importantly the shift-and-propagate heuristic as described above. Moreover, LP pricing

was accelerated by adding hyper sparse functionality.

Finally, in order to distinguish the impact of the work presented in Sections 5–8 from the

general speedup achieved by the four releases of SCIP during the duration of our reseach

project, we also performed a run with SCIP 3.1 where we disabled all new algorithms and

reset all customized parameters to their default value. The solution quality on the instances,
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illustrated by the rightmost bar in Figure 9.2, lies between the quality obtained for SCIP 1.2

and SCIP 2.0. This demonstrates that the majority of the improvement in SCIP for supply

chain instances stems from the developments described in this paper.

10. Conclusion

Modeling flexibility and optimality guarantees are only two benefits of mixed-integer pro-

gramming that make it an ideal basis for building a robust and feature-rich decision support

system. In this paper, we discussed the algorithmic challenges of the MIP approach in the

context of supply chain planning and showed how it can be applied successfully even to a large

and diverse user base such as that of SAP’s SNP Optimizer.

We tried to emphasize that this result could only be achieved by algorithmic improvements

on many different levels, both external and internal to the MIP solver. These techniques

exploit supply-chain-specific structures without tying themselves to specific models. Notably,

some of these features are even better exploited inside the general MIP solver, which may

seem counterintuitive at first. To give only one simple example, we observed that different

components of the model may become disconnected only during the preprocessing phase of the

solver after it has identified fixed linking variables or redundant linking constraints through a

large collection of mathematical reduction techniques.

As a result, we achieved drastic performance improvements within the academic MIP solver

SCIP for supply chain planning problems. We demonstrated this in particular with respect to

the quality of the primal solutions obtained within ambitious time limits specified according to

instance size and user requirements.
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