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Abstract. In this study, we propose a mathematical model and perform numerical
simulations for the antibubble dynamics. An antibubble is a droplet of liquid sur-
rounded by a thin film of a lighter liquid, which is also in a heavier surrounding fluid.
The model is based on a phase-field method using a conservative Allen–Cahn equa-
tion with a space-time dependent Lagrange multiplier and a modified Navier–Stokes
equation. In this model, the inner fluid, middle fluid and outer fluid locate in specific
diffusive layer regions according to specific phase filed (order parameter) values. If
we represent the antibubble with conventional binary or ternary phase-field models,
then it is difficult to have stable thin film. However, the proposed approach can
prevent nonphysical breakup of fluid film during the simulation. Various numerical
tests are performed to verify the efficiency of the proposed model.
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1. Introduction

In this paper, we propose a mathematical model for the antibubble dynamics and
perform several numerical simulations. An antibubble is a droplet of liquid surrounded
by a thin film of a lighter liquid, which is also in a heavier surrounding fluid, see Fig. 1
for the antibubble formation.

The terminology of antibubble first occurred in [2] and the antibubble can be gen-
erated in many fluids, such as diesel oil [3], soapy water, Belgian beer [4], etc. Unlike
a single bubble system, the antibubble system consists of three fluid components: inner
core fluid (fluid 1), middle fluid film (fluid 2) and outer ambient fluid (fluid 3). Usually,

∗Corresponding author. Email address: cfdkim@korea.ac.kr (J. Kim)

http://www.global-sci.org/nmtma 81 c©2020 Global-Science Press



82 J. X. Yang, Y. B. Li, D. Jeong and J. Kim

Figure 1: Formation of an antibubble. Reprinted from [1], with permission from IOP Publishing LTD.

the inner fluid and the outer fluid are the same. Because of the special fluid structure,
the form of antibubble can be applied in some scientific, industrial and medical fields,
including mass transfer of air [5], fluid transportation in a magnetic field [6], emulsion
formation [7]. Furthermore, if the inner fluid is different from the outer fluid, then the
antibubble structure can be extended for liquid drag delivery [8].

Recently, some researchers have conducted many theoretical and experimental stud-
ies on the antibubble. Scheid et al. [9] proposed a dynamic model for explaining the
effect of surface shear viscosity on the drainage of air film. Sob’yanin [10] proposed a
theory of antibubble collapse to account for the motion of air rim which can not be well
explained by potential flow. Zou et al. [11] investigated the collapse of an antibubble,
they found that the small bubbles are generated along the rim of air film during the
collapse process. Kim and Stone [1] experimentally studied the dynamics of antibubble
and provided the optimal condition for antibubble formation. Bai et al. [12] proposed
a new experimental method for antibubble formation. However, to the best knowledge
of authors, there are few numerical investigations of antibubble. Kim [13] performed a
simulation of antibubble raising by using ternary Cahn–Hilliard–Navier–Stokes system,
while the middle fluid film is set thick and the stability can not be satisfied in a long
time.

In this paper, we propose a mathematical model for antibubble simulation using
phase-filed method. Phase-field method is a popular issue in multiphase flow field
and large amounts of researches have been studied by some scholars [14–18]. The
proposed model is based on the conservative Allen–Cahn equation [19], which can
avoid mass spreading to the bulk phase. In this model, the inner fluid locates in the
region where the order parameter φ ≥ 0, the middle fluid film occupies the region
where −0.9 < φ < 0 and the rest of the region is filled with the outer ambient fluid.
This approach can naturally keep a stable thin fluid film.

The remaining parts of this paper are organized as follows. In Section 2, we give
the mathematical model. The numerical solution of the proposed model is presented in
Section 3. To validate the new proposed model, various numerical tests are performed
in Section 4. In Section 5, conclusions are drawn.
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2. Mathematical model

2.1. Governing equation

We consider the following system modeling viscous, immiscible, incompressible,
two-phase fluid flow with surface tension force:

ρ(φ)(ut + u · ∇u) = −∇p+
1

Re
∇ ·
[
η(φ)(∇u +∇uT )

]
+ 2SF(φ) +

ρ(φ)

Fr
g, (2.1a)

∇ · u = 0, (2.1b)

φt +∇ · (φu) =
1

Pe

(
−F ′(φ) + ε2∆φ

)
+ β(t)

√
F (φ), (2.1c)

where u is the fluid velocity, p is the pressure, ρ(φ) and η(φ) are the variable density and
viscosity, respectively. F (φ) = 0.25(φ2 − 1)2, ε is a positive constant and β(t) is a non-
constant Lagrange multiplier which enforces the mass conservation. In an antibubble
system, the surface tension coefficients σ12 and σ23 play a joint effect, where σ12 and
σ23 are the surface tension coefficients on the interface between fluid 1 and fluid 2 and
on the interface between fluid 2 and fluid 3, respectively, see schematic illustration in
Fig. 2. For simplicity, we let fluid 1 and fluid 3 be the same (i.e., σ12 = σ23), therefore,
we take the double effect of surface tension in Eq. (2.1a). The formulas of density
and viscosity will be introduced in Section 2.2. g = (0,−1) is the gravity, SF(φ) is
the surface tension of the single layer interface. The interfacial force SF(φ) is given
as [20]:

SF(φ) = −3
√

2ε

4We
∇ ·
(
∇φ
|∇φ|

)
|∇φ|∇φ.

The dimensionless parameters are the Reynolds number, Re = ρcUcLc/ηc, the Weber
number, We = ρcLcU

2
c /σ, the Froude number, Fr = U2

c /(gLc) and the Peclet number,
Pe = UcLc/(Mµc), where Lc, Uc, ρc, ηc, σ, M and µc are the characteristic length,
velocity, density, viscosity, surface tension coefficient, constant mobility and chemical
potential, respectively. Unless otherwise specified, we define those characteristic vari-
ables as Lc = l, Uc =

√
gl, ρc = ρ1, ηc = η1, where l is chosen as the half of x-directional

length, ρ1 and η1 are the density and viscosity of fluid 1, respectively. More details about
the dimensionless process, please see [21].

2.2. Density and viscosity formulas

In this paper, we use the conservative Allen–Cahn–Navier–Stokes system to simulate
the antibubble raising. Unless specific needs, we set the fluid 1 is surrounded by the
fluid 2 in the ambient fluid 3. A diffusive region where −0.9 < φ < 0 is used to
represent the fluid 2, fluid 1 locates in the regions where φ ≥ 0 and the rest of the
region is fluid 3, see Fig. 2. The density ρ(φ) and viscosity η(φ) are represented as the
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φ ≥ 0

Fluid 1Fluid 2

−0.9 < φ < 0
φ ≤ −0.9

Fluid 3

σ12 σ23

Figure 2: Schematic illustration of antibubble.
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Figure 3: Schematic illustrations of (a) order parameter φ and (b) density ρ(φ) in one-dimensional space.

step functions of order parameter φ. The density is defined as

ρ(φ) =


[10(ρ2 − ρ3)(φ+ 1) + ρ3] /ρ1, if φ ≤ −0.9,

ρ2/ρ1, if − 0.9 < φ < 0,

[(ρ1 − ρ2)φ+ ρ2] /ρ1, otherwise,

(2.2)

where ρ1, ρ2 and ρ3 are the densities of fluid 1 (inner), fluid 2 (middle) and fluid
3 (outer), respectively. In particular, the densities of the inner and outer fluids are
the same, therefore, ρ1 = ρ3. The variable viscosity is defined in the same manner.
The illustrations of order parameter φ and density ρ(φ) in one-dimensional space are
shown in Figs. 3(a) and (b), respectively, where the thick solid line represents the order
parameter φ and the dash-dotted line represents the density. Note that the extension of
the definition of the order parameter was used in modeling capillaries, membrane and
extracellular matrix [22].

3. Numerical solutions

The proposed numerical method is composed of two parts: A projection method for
the modified Navier–Stokes equation [23] and a hybrid method for the conservative
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Allen–Cahn equation with a space-time dependent Lagrange multiplier [24]. Let Ω =
(a, b)×(c, d) be a computational domain and h = (b−a)/Nx = (d−c)/Ny be a grid size,
where Nx and Ny are even integers. For i = 1, · · · , Nx and j = 1, · · · , Ny, let (xi, yj) =
(a+ (i− 0.5)h, c+ (j − 0.5)h) be the cell centers. Let φnij and pnij be approximations
of φ(xi, yj , n∆t) and p(xi, yj , n∆t), respectively, where ∆t is the temporal step size.
Velocities ui+ 1

2
,j and vi,j+ 1

2
are defined at cell edges (xi+ 1

2
, yj) = (a+ ih, c+ (j − 0.5)h)

and (xi, yj+ 1
2
) = (a+ (i− 0.5)h, c+ jh), respectively.

Given un, and φn, we want to find un+1, φn+1 and pn+1 which solve Eqs. (2.1a)-
(2.1c). Initialize u0 to be the divergence-free velocity field and φ0 to be the locally
equilibrated concentration profile.

Step 1. Solve the intermediate velocity field ũ:

ũ− un

∆t
=

1

ρnRe
∇d ·

[
ηn(∇du

n + (∇du
n)T )

]
+

2

ρn
SFn +

1

Fr
g − (u · ∇du)n,

where discretizations of the surface tension force SFn and the advection term can be
found in [20,21]. Next, we solve Eqs. (3.1a) and (3.1b) for the pressure field at (n+1)
time level.

un+1 − ũ

∆t
= − 1

ρn
∇dp

n+1, (3.1a)

∇d · un+1 = 0. (3.1b)

After taking the discrete divergence operator to Eq. (3.1a), we have the following Pois-
son equation

∇d ·
(

1

ρn
∇dp

n+1

)
=

1

∆t
∇d · ũ, (3.2)

where we used Eq. (3.1b). The resulting linear system of Eq. (3.2) is solved using a
multigrid method [25].

Step 2. Update the phase-field from φn to φn+1: To solve Eq. (2.1c), we use an operator
splitting method [24]:

∂φ

∂t
=

ε2

Pe
∆φ−∇ · (φu), (3.3a)

∂φ

∂t
= −F

′(φ)

Pe
, (3.3b)

∂φ

∂t
= β(t)

√
F (φ). (3.3c)

First, we solve Eq. (3.3a) by the following semi-implicit scheme with the multigrid
method [25]:

φ∗ij − φnij
∆t

=
ε2

Pe
∆dφ

∗
ij −∇d · (φu)nij . (3.4)
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Next, we solve Eq. (3.3b) analytically using the method of separation of variables

φ∗∗ij =
φ∗ij√

e−
2∆t
Pe + (φ∗ij)

2(1− e−
2∆t
Pe )

. (3.5)

Eq. (3.3c) is discretized as

φn+1
ij − φ∗∗ij

∆t
= β∗∗

√
F (φ∗∗ij ). (3.6)

Using Eq. (3.6) and the mass conservation, we have

Nx∑
i=1

Ny∑
j=1

φ0ij =

Nx∑
i=1

Ny∑
j=1

φn+1
ij =

Nx∑
i=1

Ny∑
j=1

(
φ∗∗ij + ∆tβ∗∗

√
F (φ∗∗ij )

)
. (3.7)

Thus,

β∗∗ =
1

∆t

Nx∑
i=1

Ny∑
j=1

(φ0ij − φ∗∗ij )
/ Nx∑

i=1

Ny∑
j=1

√
F (φ∗∗ij ). (3.8)

Finally, we get φn+1 from Eq. (3.6), i.e., φn+1
ij = φ∗∗ij + ∆tβ∗∗

√
F (φ∗∗ij ).

In summary, we obtain the following numerical schemes of Eqs. (2.1a)-(2.1c) and
then we solve these equations in order:

ρn
un+1 − un

∆t

= −ρn(u · ∇du)n −∇dp
n+1 +

1

Re
∇ ·
[
η(φn)(∇du

n +∇d(un)T )
]

+ 2SFn +
ρn

Fr
g, (3.9a)

∇d · un+1 = 0, (3.9b)

φ∗ − φn

∆t
=

ε2

Pe
∆dφ

∗ −∇d · (φu)n, (3.9c)

φ∗∗ =
φ∗√

e−
2∆t
Pe + (φ∗)2(1− e−

2∆t
Pe )

, (3.9d)

φn+1 − φ∗∗

∆t
= β∗∗

√
F (φ∗∗). (3.9e)

Here,

β∗∗ =
1

∆t

Nx∑
i=1

Ny∑
j=1

(φ0ij − φ∗∗ij )
/ Nx∑

i=1

Ny∑
j=1

√
F (φ∗∗ij ).
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4. Numerical experiment

Unless otherwise specified, we use the following initial conditions, computational
domains and boundary conditions. We let the inner and out fluids are both fluid 1.
The conditions are a circular droplet and zero velocities on the computational domain
Ω = (0, 2)× (0, 4):

φ(x, y, 0) = tanh

(
0.5−

√
(x− 1)2 + (y − 1)2√

2ε

)
,

u(x, y, 0) = v(x, y, 0) = 0.

On the top and bottom boundaries, we take the zero-Neumann boundary condition for
the order parameter φ and chemical potential µ. The no-slip conditions are used for u
and v. As for the pressure p, we take the inner product of both sides in Eq. (2.1a) with
the unit normal vector n:

n · ∇p = n ·
(

1

Re
∇ ·
[
η(φ)(∇u +∇uT )

]
+ 2SF(φ) +

ρ(φ)

Fr
g

)
.

On the left and right boundaries, we impose the periodic boundary condition for all
variables. Across interfacial transition layer φ varies from −0.9 to 0.9 over a length
of about 2

√
2ε tanh−1(0.9). Therefore, if we want this value to be about hm, then

ε = εm = hm/[2
√

2 tanh−1(0.9)] [26]. In our model, the fluid 2 locates in the region
where −0.9 < φ < 0 and occupies hm/2. We set the width of fluid 2 to be δ = 4h in the
following numerical experiments, therefore ε = ε8 is used. The schematic illustrations
are shown in Figs. 4(a) and (b).
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Figure 4: Schematic illustrations of (a) antibubble and (b) diffusive region, where the shadow region is filled
with fluid 2 and δ represents the width of fluid 2.

4.1. Effect of Peclet number

First, we investigate the effect of Peclet number by simulating the single bubble
raising with h = 1/64, ∆t = 0.001, ε = ε8, Re = 30, We = 30, F r = 1, ρ1 : ρ3 = 1 : 1,
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(a) (b) (c) (d)

Figure 5: The effect of Peclet number. (a) Initial state, (b) Pe = 0.1/ε at t = 5, (c) Pe = 0.01/ε at t = 5
and (d) Pe = 0.001/ε at t = 5. The contour levels are −0.9,−0.6,−0.3, 0, 0.3, 0.6, 0.9.

ρ1 : ρ2 = 3 : 1, η1 : η3 = 1 : 1 and η1 : η2 = 3 : 1. Various Peclet numbers,
Pe = 0.1/ε, 0.01/ε and 0.001/ε, are used. Fig. 5(a) shows the interfacial contours (φ =
−0.9,−0.6,−0.3, 0, 0.3, 0.6, 0.9) of the initial state. Figs. 5(b)-(d) show the interfacial
contours for Pe = 0.1/ε, 0.01/ε and 0.001/ε at t = 5, respectively. We can find that a
larger Peclet number causes a nonuniform distribution of contour lines, while a smaller
Peclet number causes a dominant effect of the conservative Allen–Cahn equation. In
our model, the middle fluid film is defined in the diffusive region where φ varies form
−0.9 to 0, therefore, the uniform distribution of contours is important. Unless otherwise
stated, we will use Pe = 0.01/ε in the following tests.

4.2. The convergence of polygonal area with different mesh sizes

We investigate the convergence of polygonal area of antibubble for different mesh
sizes: 32×64, 64×128 and 128×256. ∆t = 0.001, ε = 0.03, Re = 30, We = 30, F r = 1,
ρ1 : ρ3 = 1 : 1, ρ1 : ρ2 = 3 : 1, η1 : η3 = 1 : 1 and η1 : η2 = 3 : 1 are used in this test. We
define the polygonal area of antibubble as

A =
∣∣∣ M∑
s=1

(XsYs+1 −Xs+1Ys)/2
∣∣∣

(see Fig. 6), where M is the total number of polygonal points on φ = −0.9 level set.
The relative error of polygonal area is defined as |An/A0−1|. Fig. 7 shows the temporal
evolutions of relative error of polygonal area for different mesh sizes. We can find that
the relative error of polygonal area is close to 0 with 128 × 256. The polygonal area
converges with refined mesh sizes.
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Figure 6: Schematic illustration of polygonal area.
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Figure 7: Temporal evolutions of the relative errors of polygonal area of antibubble for different mesh sizes.

4.3. Advantage of the proposed model

In order to verify the advantage of the proposed model, we compare the evolutions
of antibubble raising using the proposed model and the conventional CAC model. In
the convectional model, the initial condition is set to be an annular of fluid 2, the rest
region is filled by fluid 1. The density and viscosity are defined as ρ(φ) = ρ1(1−φ)/2 +
ρ2(1 + φ)/2, η(φ) = η1(1 − φ)/2 + η2(1 + φ)/2. In this test, we use the mesh size
128 × 256, ∆t = 0.001, ε = ε8, P e = 0.01/ε, Re = 30, We = 30, and Fr = 1. The
density and viscosity ratios for fluid 1 and fluid 2 are 3 : 1. Figs. 8(a) and (b) show
the temporal evolution for the conventional model and the proposed model. In the
conventional model, the sufficiently fine mesh size is needed to preserve the annular
region; otherwise, the breakup of annular will occur and the nonphysical evolution
can be found as shown in Fig. 8(a). However, the proposed model uses the diffusive
region, −0.9 < φ < 0, to represent the annular fluid, therefore, this approach naturally
prevents the nonphysical breakup and the stable temporal evolution can be found in
Fig. 8(b).
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(a)

(b)

Figure 8: Temporal evolutions of antibubble by using (a) the conventional model and (b) the proposed
model. The times from left to right are t = 0, 1, 2, 7, 13.
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Figure 9: Schematic illustrations of (a) bubble and (b) antibubble rising in liquid.

4.4. Comparison between the raising phenomenons of bubble and
antibubble

In this part, we compare the different dynamics of bubble and antibubble raising.
The schematic illustration of the bubble and antibubble is depicted in Fig. 9. A bubble
with radius R = 0.5 is placed at (1, 1) in a rectangular domain Ω = (0, 2) × (0, 4). For
the bubble, ρ3 vanishes, so we set ρ1 : ρ2 = 3 : 1, η1 : η2 = 3 : 1. For the antibubble, we
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(a) (b)

(c) (d)

Figure 10: Temporal evolutions of bubble and antibubble. The times from (a) to (d) are at t = 0, 3, 6.5, 10.

use ρ1 : ρ3 = 1 : 1, ρ1 : ρ2 = 3 : 1, η1 : η3 = 1 : 1, and η1 : η2 = 3 : 1. The mesh size is
128 × 256. Other numerical parameters are h = 1/64, ∆t = 0.001, Re = 30, We = 30,
F r = 1, ε = ε8, and Pe = 0.01/ε. Fig. 10 shows the temporal evolutions of bubble and
antibubble. The bubble is defined in the gray region and the other fluid is defined in
the white region. As we can see, bubble raises faster with larger deformation than the
antibubble at the same times.

4.5. Effect of density ratio

In order to investigate the effect of density ratio between fluid 1 and fluid 2. We
choose three different density ratios: ρ1 : ρ2 : ρ3 = 2 : 1 : 2, 3 : 1 : 3 and 4 : 1 : 4.
The viscosity ratio for fluid 1 and fluid 2 is 1 : 1. We use the mesh size 128 × 256,
∆t = 0.0002, ε = ε8, P e = 0.01/ε, Re = 30, We = 30, and Fr = 1. The initial condition
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Figure 11: The snapshots of antibubble with different density ratios at t = 10.
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Figure 12: Temporal evolutions of the y-coordinate of the center of mass (Y n) in antibubble. ρ1 : ρ2 : ρ3 =
2 : 1 : 2 (line with circle markers), ρ1 : ρ2 : ρ3 = 3 : 1 : 3 (line with star markers), ρ1 : ρ2 : ρ3 = 4 : 1 : 4
(line with square markers).

is taken as

φ(x, y, 0) = tanh

(
0.5−

√
(x− 1)2 + (y − 2)2√

2ε

)
(4.1)

on Ω = (0, 2)× (0, 4). The computation runs until t = 10. Fig. 11 shows the snapshots
of antibubble for different density ratios at t = 10. The temporal evolutions of the
y-coordinate of the center of mass (Y n) of antibubble are shown in Fig. 12. If the
difference of density ratio is larger, then the buoyancy effect is more pronounced and
the antibubble with a larger density ratio is raising faster.

4.6. Effect of viscosity ratio

We investigate the effect of viscosity ratio. The inner fluid and outer fluid are set to
be the same as fluid 1, i.e., η1 = η3. The viscosity of fluid 2 is fixed as η2 = 0.1. Five
different viscosities for fluid 1 are used: η1 = 0.1, 0.2, 0.3, 0.4, 0.5. The density ratio is
set to be 3 : 1 : 3 for all tests. We use the mesh size 128 × 256, ∆t = 0.0002, ε = ε8,
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(a) (b) (c) (d) (e)

Figure 13: The snapshots of antibubble for different viscosity ratios at t = 10. (a)–(e) represent the viscosity
ratios: η1 : η2 : η3 = 1 : 1 : 1, 2 : 1 : 2, 3 : 1 : 3, 4 : 1 : 4, 5 : 1 : 5, respectively.
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Figure 14: Temporal evolutions of the y-coordinate of the center of mass in antibubble for different viscosity
ratios.

Pe = 0.01/ε, Re = 30, We = 30, and Fr = 1. The initial condition is taken to be the
same as in Eq. (4.1). The computation runs until t = 10. The snapshots of antibubble
for different viscosity ratios at t = 10 are shown in Fig. 13. Fig. 14 shows the temporal
evolutions of the y-coordinate of the center of mass in antibubble for different viscosity
ratios. Although the difference is not significant, a larger viscosity ratio makes the
antibubble rise faster. The existence of fluid 2 causes the raising of antibubble, a larger
viscosity ratios leads to a smaller viscosity effect of fluid 2, therefore, the raising with a
larger viscosity ratio is faster than that with a smaller viscosity ratio.

4.7. Effect of Weber number

Next, we investigate the effect of Weber number (We) on the antibubble raising.
The Weber number is an important parameter related to the surface tension, a larger
value of Weber number reflects a smaller effect of surface tension while a smaller value
of Weber number causes a larger surface tension. In this test, we use two different
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(a)

(b)

Figure 15: Temporal evolutions of antibubble for (a) We = 10 and (b) We = 100. The times from left to
right are at t = 0, 5, 10, 15, 20.

Weber numbers: We = 10 and We = 100. The other parameters are taken the same
values as in Section 4.4. Figs. 15(a) and (b) show the temporal evolutions of antibubble
for We = 10 and We = 100, respectively. As we can see, when We = 10, the surface
tension is dominant, the deformation of antibubble is small. However, whenWe = 100,
the deformation is large during the evolution. Although the deformation is large, there
is no nonphysical breakup of fluid 2 in the whole process.

4.8. Effect of the density of inner fluid

While the densities of inner fluid and outer fluid are equal, the antibubble will raises
with time since the buoyancy of middle fluid film. Here, we investigate the effect of
the density of inner fluid by using three different density ratios: ρ1 : ρ2 : ρ3 = 3 : 1 :
3, 4 : 1 : 3 and 5 : 1 : 3, where ρ1, ρ2 and ρ3 represent the densities of inner, middle and
outer fluid, respectively. The viscosity ratio for inner, middle and outer fluid is 3 : 1 : 3,
respectively. The other parameters are taken to be the same as in Section 4.4. The
initial condition is

φ(x, y, 0) = tanh

(
0.5−

√
(x− 1)2 + (y − 2)2√

2ε

)
. (4.2)

The temporal evolutions of antibubble with different inner densities are shown in
Fig. 16. In addition, we define the temporal deformation rate: Dn = (B/H)n, where
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(a)

(b)

(c)

Figure 16: Temporal evolutions of antibubble with different inner densities. (a) ρ1 : ρ2 : ρ3 = 3 : 1 : 3, (b)
ρ1 : ρ2 : ρ3 = 4 : 1 : 3, (c) ρ1 : ρ2 : ρ3 = 5 : 1 : 3. The times from left to right are at t = 0, 5, 10, 15, 20.

B is the distance between xmax and xmin and H is the distance between ymax and ymin.
Here, xmax and xmin are the maximum and minimum of x-coordinate on the antibub-
ble interface, ymax and ymin are the maximum and minimum of y-coordinate on the
antibubble interface (see Fig. 17(a)). Fig. 17(b) illustrates the temporal evolutions of
deformation rate with three different inner densities. When the inner density is large
than the outer density, buoyancy does not balance the gravity and the antibubble starts
to falling with time. We can observe that the deformation rate is not significant when
the inner density is 4. With the increase of inner density, the falling speed becomes fast
and the deformation rate becomes larger.

4.9. Temporal evolution of antibubble with initial rotation velocity field

Finally, we investigate the dynamics of antibubble with initial rotation velocity field.
The numerical parameters are h = 1/64, ∆t = 0.001, Re = 20, We = 1, P e = 0.01ε,
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Figure 17: (a) Schematic diagram. (b) Temporal evolutions of deformation rate with different inner densities.

ε = ε8, and Fr = 1. The initial conditions are taken to be

φ(x, y, 0) = tanh

(
0.25−

√
(x− 1)2 + (y − 1.4)2√

2ε

)
, (4.3a)

u(x, y, 0) = − sin2(0.5πx) sin(πy), (4.3b)

v(x, y, 0) = sin(πx) sin2(0.5πy), (4.3c)

on the domain Ω = (0, 2)× (0, 2). No-slip boundary condition for velocities is imposed
on all boundaries. The temporal evolution of antibubble is shown in Fig. 18. Because
the existence of the initial velocity, the antibubble first rotates and moves downward
along the velocity direction. With the effect of buoyancy, the downward velocity be-
comes weaker gradually and then the antibubble raises with time.

5. Conclusions

A new mathematical model for simulating the dynamics of antibubble was pro-
posed in this work. The conservative Allen–Cahn equation was adopted in this model
and the inner, middle and outer fluids are defined in different diffusive regions. The
corresponding density and viscosity functions were presented to fit this new model.
Numerical results demonstrated that the proposed model can simulate the antibubble
without nonphysical breakup. In addition, the effects of various numerical parameters
on the dynamics of antibubble were also investigated.
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