Solvability for a Coupled System of Fractional p-Laplacian Differential Equations at Resonance

Zhou Hui ${ }^{1,2}$, Zhou Zong-Fu ${ }^{2, *}$ And Wang Li-Ping ${ }^{2}$
(1. School of Mathematics and Statistics, Hefei Normal University, Hefei, 230601)
(2. School of Mathematical Science, Anhui University, Hefei, 230601)
Communicated by Shi Shao-yun

Abstract

In this paper, by using the coincidence degree theory, the existence of solutions for a coupled system of fractional p-Laplacian differential equations at resonance is studied. The result obtained in this paper extends some known results. An example is given to illustrate our result.

Key words: p-Laplacian, coincidence degree, existence, fractional differential equation, boundary value problem
2010 MR subject classification: 26A33, 34B15
Document code: A
Article ID: 1674-5647(2017)01-0033-20
DOI: 10.13447/j.1674-5647.2017.01.05

1 Introduction

In this paper, by using the coincidence degree theory, we discuss the existence of solutions to a coupled system of fractional p-Laplacian differential equations at resonance:

$$
\begin{cases}D_{0^{+}}^{\beta} \phi_{p_{1}}\left(D_{0^{+}}^{\alpha} u(t)\right)=f_{1}\left(t, u(t), v(t), D_{0^{+}}^{\alpha} u(t), D_{0^{+}}^{\alpha} v(t)\right), & 0<t<1 \tag{1.1}\\ D_{0^{+}}^{\beta} \phi_{p_{2}}\left(D_{0^{+}}^{\alpha} v(t)\right)=f_{2}\left(t, u(t), v(t), D_{0^{+}}^{\alpha} u(t), D_{0^{+}}^{\alpha} v(t)\right), & 0<t<1 \\ u(0)=D_{0^{+}}^{\alpha} u(0)=0, \quad u(1)=\sum_{i=1}^{n_{1}} A_{i} u\left(\epsilon_{i}\right), & \\ \left.D_{0^{+}}^{\gamma} \phi_{p_{1}}\left(D_{0^{+}}^{\alpha} u(t)\right)\right|_{t=1}=\left.\sum_{i=1}^{n} a_{i} D_{0^{+}}^{\gamma} \phi_{p_{1}}\left(D_{0^{+}}^{\alpha} u(t)\right)\right|_{t=\xi_{i}}, \\ v(0)=D_{0^{+}}^{\alpha} v(0)=0, \quad v(1)=\sum_{i=1}^{m_{1}} B_{i} v\left(\sigma_{i}\right), \\ \left.D_{0^{+}}^{\delta} \phi_{p_{2}}\left(D_{0^{+}}^{\alpha} v(t)\right)\right|_{t=1}=\left.\sum_{i=1}^{m} b_{i} D_{0^{+}}^{\delta} \phi_{p_{2}}\left(D_{0^{+}}^{\alpha} v(t)\right)\right|_{t=\eta_{i}}\end{cases}
$$

[^0]where $1<\alpha, \beta \leq 2$, and $3<\alpha+\beta \leq 4 ; 0<\gamma, \delta \leq \beta-1 ; \phi_{p_{i}}(x)=|x|^{p_{i}-2} x, p_{i}>1$, $\phi_{q_{i}}=\phi_{p_{i}}^{-1}, \frac{1}{p_{i}}+\frac{1}{q_{i}}=1, i=1,2 ; 0<\epsilon_{1}<\epsilon_{2}<\cdots<\epsilon_{n_{1}}<1,0<\sigma_{1}<\sigma_{2}<\cdots<\sigma_{m_{1}}<1$, $0<\xi_{1}<\xi_{2}<\cdots<\xi_{n}<1,0<\eta_{1}<\eta_{2}<\cdots<\eta_{m}<1 ; A_{r}, a_{j}, B_{k}, b_{l} \in \mathbf{R}$, $r=1,2, \cdots, n_{1}, j=1,2, \cdots, n, k=1,2, \cdots, m_{1}, l=1,2, \cdots, m . D^{\alpha}, D^{\beta}, D^{\gamma}$ and D^{δ} are the standard Riemann-Liouville fractional derivatives.

In this paper, we always suppose that the following conditions hold.

$$
\begin{aligned}
& \quad\left(\mathrm{H}_{1}\right) \sum_{i=1}^{n_{1}} A_{i} \epsilon_{i}^{\alpha-1}=1, \sum_{i=1}^{m_{1}} B_{i} \sigma_{i}^{\alpha-1}=1, \sum_{i=1}^{n} a_{i} \xi_{i}^{\beta-\gamma-1}=1, \sum_{i=1}^{m} b_{i} \eta_{i}^{\beta-\delta-1}=1, \sum_{i=1}^{n_{1}} A_{i} \epsilon_{i}^{\alpha} \neq 1, \\
& \sum_{i=1}^{m_{1}} B_{i} \sigma_{i}^{\alpha} \neq 1, \sum_{i=1}^{n} a_{i} \xi_{i}^{\beta-\gamma} \neq 1, \sum_{i=1}^{m} b_{i} \eta_{i}^{\beta-\delta} \neq 1 .
\end{aligned}
$$

$\left(\mathrm{H}_{2}\right) f_{i}:[0,1] \times \mathbf{R}^{4} \rightarrow \mathbf{R}$ satisfied Carathéodory conditions, $i=1,2$, that is,
(i) $f\left(\cdot ; x_{1}, x_{2}, x_{3}, x_{4}\right):[0,1] \rightarrow \mathbf{R}$ is measurable for all $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbf{R}^{4}$;
(ii) $f(t ; \cdot, \cdot, \cdot, \cdot): \mathbf{R}^{4} \rightarrow \mathbf{R}$ is continuous for a.e. $t \in[0,1]$;
(iii) for each compact set $\mathcal{K} \subset \mathbf{R}^{4}$ there is a function $\varphi_{\mathcal{K}} \in L^{\infty}[0,1]$ such that

$$
\left|f\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right)\right| \leq \varphi_{\mathcal{K}}(t)
$$

for a.e. $t \in[0,1]$ and all $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathcal{K}$.
The existence of solutions for boundary value problem of integer order differential equations at resonance has been studied by many authors (see [1]-[10] and references cited therein). Since the extensive applicability of fractional differential equations (see [11] and [12]), recently, more and more authors pay their close attention to the boundary value problems of fractional differential equations (see [13]-[20]). In papers [13] and [14], the existence of solutions to coupled system of fractional differential equations at nonresonance has been given. In papers [15] and [16], the solvability of fractional differential equations at resonance has been investigated.

Paper [16] investigates the following coupled system of fractional differential equations at resonance:

$$
\begin{cases}D_{0^{+}}^{\alpha} u(t)=f_{1}(t, u(t), v(t)), & 0<t<1 \tag{1.2}\\ D_{0^{+}}^{\beta} v(t)=f_{2}(t, u(t), v(t)), & 0<t<1 \\ u(0)=0,\left.\quad D_{0^{+}}^{\gamma} u(t)\right|_{t=1}=\left.\sum_{i=1}^{n} a_{i} D_{0^{+}}^{\gamma} u(t)\right|_{t=\xi_{i}} \\ v(0)=0,\left.\quad D_{0^{+}}^{\delta} v(t)\right|_{t=1}=\left.\sum_{i=1}^{m} b_{i} D_{0^{+}}^{\delta} v(t)\right|_{t=\eta_{i}}\end{cases}
$$

where $1<\alpha, \beta \leq 2,0<\gamma \leq \alpha-1, \delta \leq \beta-1 ; 0<\xi_{1}<\xi_{2}<\cdots<\xi_{n}<1,0<\eta_{1}<\eta_{2}<$ $\cdots<\eta_{m}<1 ; \sum_{i=1}^{n} a_{i} \xi_{i}^{\beta-\gamma-1}=1, \sum_{i=1}^{m} b_{i} \eta_{i}^{\beta-\delta-1}=1$. By using the coincidence degree theory due to Mawhin and constructing suitable operators, the existence of solutions for (1.2) is obtained.

In the past few decades, in order to meet the demands of research, the p-Laplacian equation is introduced in some BVP, such as [17] and [18].

The turbulent flow in a porous medium is a fundamental mechanics problem. For studying this type of problems, Leibenson ${ }^{[17]}$ introduced the p-Laplacian equation as follows

$$
\left(\phi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}=f(t, x(t), x(t))
$$

where $\phi_{p}(s)=|s|^{p-2} s, p>1$. Obviously, ϕ_{p} is invertible and its inverse operator is ϕ_{q}, where $q>1$ is a constant such that $\frac{1}{p}+\frac{1}{q}=1$.

Paper [18] investigated the existence of solutions for the BVP of fractional p-Laplacian equation with the following form

$$
\left\{\begin{array}{l}
D_{0^{+}}^{\beta}\left(\phi_{p}\left(D_{0^{+}}^{\alpha} x(t)\right)\right)=f\left(t, x(t), D_{0^{+}}^{\alpha} x(t)\right), \quad t \in[0,1] \\
D_{0^{+}}^{\alpha} x(0)=D_{0^{+}}^{\alpha} x(1)=0
\end{array}\right.
$$

where $0<\alpha, \beta \leq 1$ with $1<\alpha+\beta \leq 2$, and $p>1, \phi_{p}(s)=|s|^{p-2} s$ is a p-Laplacian operator, D^{α} is a Caputo fractional derivative. By using the coincidence degree theory, a new result on the existence of solutions for the above fractional boundary value problem is obtained.

Inspired by above works, our work presented in this paper has the following new features. On the one hand, the method used in this paper is the coincidence degree theory and the system has p-Laplacian, which bring about many argument difficulties. On the other hand, our study is on fractional p-Laplacian differential system with multipoint boundary conditions. To the best of our knowledge, there are relatively few results on boundary value problems for fractional p-Laplacian equations at resonance. We fill this gap in the literature. Hence we improve and generalize the results of previous papers to some degree, and so it is interesting and important to study the existence of solutions for system (1.1).

This paper is organized as follows. In Section 2, we present the transformation of the system (1.1), some results of fractional calculus theory and some lemmas, which are used in the next two sections. In Section 3, basing on the coincidence degree theory of Mawhin ${ }^{[19]}$, we get the existence of solutions for system (1.1). In Section 4, one example is given to illustrate our result. Our result is different from those of bibliographies listed above.

2 Preliminaries

For abbreviation, we write $D_{0^{+}}^{\gamma} u(\xi)=\left.D_{0^{+}}^{\gamma} u(t)\right|_{t=\xi}$.
In order to use the coincidence degree theory to study the existence of solutions for BVP (1.1), let $w_{1}(t)=\phi_{p_{1}}\left(D_{0^{+}}^{\alpha} u(t)\right), w_{2}(t)=\phi_{p_{2}}\left(D_{0^{+}}^{\alpha} v(t)\right)$. Then we can rewrite (1.1) in the following form:

$$
\begin{cases}D_{0^{+}}^{\alpha} u(t)=\phi_{q_{1}}\left(w_{1}(t)\right), & 0<t<1 \tag{2.1}\\ D_{0^{+}}^{\alpha} v(t)=\phi_{q_{2}}\left(w_{2}(t)\right), & 0<t<1, \\ D_{0^{+}}^{\beta} w_{1}(t)=f_{1}\left(t, u(t), v(t), \phi_{q_{1}}\left(w_{1}(t)\right), \phi_{q_{2}}\left(w_{2}(t)\right)\right), & 0<t<1 \\ D_{0^{+}}^{\beta} w_{2}(t)=f_{2}\left(t, u(t), v(t), \phi_{q_{1}}\left(w_{1}(t)\right), \phi_{q_{2}}\left(w_{2}(t)\right)\right), & 0<t<1 \\ u(0)=w_{1}(0)=0, & u(1)=\sum_{i=1}^{n_{1}} A_{i} u\left(\epsilon_{i}\right),\left.\quad D_{0^{+}}^{\gamma} w_{1}(t)\right|_{t=1}=\left.\sum_{i=1}^{n} a_{i} D_{0^{+}}^{\gamma} w_{1}(t)\right|_{t=\xi_{i}} \\ v(0)=w_{2}(0)=0, \quad v(1)=\sum_{i=1}^{m_{1}} B_{i} v\left(\sigma_{i}\right),\left.\quad D_{0^{+}}^{\delta} w_{2}(t)\right|_{t=1}=\left.\sum_{i=1}^{m} b_{i} D_{0^{+}}^{\delta} w_{2}(t)\right|_{t=\eta_{i}}\end{cases}
$$

Clearly, if $\boldsymbol{x}(t)=\left(u(t), v(t), w_{1}(t), w_{2}(t)\right)^{\mathrm{T}}$ is a solution of (2.1), then $(u(t), v(t))^{\mathrm{T}}$ must be a solution of (1.1). So the problem of finding a solution for (1.1) is converted to find a solution for (2.1).

Next we present here the necessary definitions and Lemmas from fractional calculus theory. These definitions and Lemmas can be found in the recent literatures [11] and [12].

Definition 2.1 ${ }^{[11]}$ The fractional integral of order $\alpha>0$ of a function $f:(0, \infty) \rightarrow \mathbf{R}$ is defined by

$$
I_{0^{+}}^{\alpha} f(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} f(s) \mathrm{d} s
$$

provided that the right-hand side exists.
Definition 2.2 ${ }^{[11]}$ The Riemann-Liouville fractional order derivative of order $\alpha \in(n-$ $1, n$] of a function $f:(0, \infty) \rightarrow \mathbf{R}$ is defined by

$$
D_{0^{+}}^{\alpha} f(t)=\frac{1}{\Gamma(n-\alpha)} \frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}} \int_{0}^{t}(t-s)^{n-\alpha-1} f(s) \mathrm{d} s
$$

provided that the right-hand side exists.
Lemma 2.1 ${ }^{[12]} \quad$ Assume that $f \in L[0,1], q>p \geq 0$. Then

$$
D_{0^{+}}^{p} I_{0^{+}}^{q} f(t)=I_{0^{+}}^{q-p} f(t)
$$

Lemma 2.2 ${ }^{[12]}$ Assume that $\alpha>0, \lambda>-1$. Then

$$
D_{0^{+}}^{\alpha} t^{\lambda}=\frac{\Gamma(\lambda+1)}{\Gamma(n+\lambda-\alpha+1)} \frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}}\left(t^{n+\lambda-\alpha}\right),
$$

where $n=[\alpha]+1$.
Lemma 2.3 ${ }^{[12]}$ Let $\alpha \in(n-1, n], u \in C(0,1) \cap L^{1}(0,1)$. Then

$$
I_{0^{+}}^{\alpha} D_{0^{+}}^{\alpha} u(t)=u(t)+c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2}+\cdots+c_{n} t^{\alpha-n}
$$

where $c_{i} \in \mathbf{R}, i=1,2, \cdots, n$.
Now, we briefly recall some notations and an abstract existence result, which can be found in [19].

Let X, Y be real Banach spaces, $L: \operatorname{dom} L \subset X \rightarrow Y$ be a Fredholm operator with index zero, and $P: X \rightarrow X, Q: Y \rightarrow Y$ be projectors such that $\operatorname{Im} P=\operatorname{ker} L, \operatorname{Im} L=\operatorname{ker} Q$. then

$$
X=\operatorname{ker} L \oplus \operatorname{ker} P, \quad Y=\operatorname{Im} L \oplus \operatorname{Im} Q,
$$

and

$$
\left.L\right|_{\operatorname{dom} L \cap \operatorname{ker} P}: \operatorname{dom} L \cap \operatorname{ker} P \rightarrow \operatorname{Im} L
$$

is invertible. We denote the inverse by K_{P}.
If Ω is an open bounded subset of X such that $\operatorname{dom} L \cap \bar{\Omega} \neq \emptyset$, then the map $N: X \rightarrow Y$ will be called L-compact on $\bar{\Omega}$ if $Q N(\bar{\Omega})$ is bounded and $K_{P}(I-Q) N: \bar{\Omega} \rightarrow X$ is compact.

Lemma 2.4 ${ }^{[19]}$ Let $L: \operatorname{dom} L \subset X \rightarrow Y$ be a Fredholm operator with index zero and $N: X \rightarrow Y$ be L-compact on $\bar{\Omega}$. Assume that the following conditions are satisfied:
(1) $L x \neq \lambda N x$ for every $(x, \lambda) \in[(\operatorname{dom} L \backslash \operatorname{ker} L) \cap \partial \Omega] \times(0,1)$;
(2) $N x \notin \operatorname{Im} L$ for every $x \in \operatorname{ker} L \cap \partial \Omega$;
(3) $\operatorname{deg}\left(\left.J Q N\right|_{\text {ker } L}, \Omega \cap \operatorname{ker} L, 0\right) \neq 0$, where $J: \operatorname{Im} Q \rightarrow \operatorname{ker} L$ is a isomorphism, $Q: Y \rightarrow Y$ is a projection such that $\operatorname{Im} L=\operatorname{ker} Q$.
Then the equation $L x=N x$ has at least one solution in $\operatorname{dom} L \cap \bar{\Omega}$.
Let

$$
C^{\alpha-1}[0,1]=\left\{x \mid x, D_{0^{+}}^{\alpha-1} x \in C[0,1]\right\}
$$

with norm $\|x\|_{\alpha}=\max \left\{\|x\|_{\infty},\left\|D_{0^{+}}^{\alpha-1} x\right\|_{\infty}\right\}$,

$$
C^{\beta-1}[0,1]=\left\{x \mid x, D_{0^{+}}^{\beta-1} x \in C[0,1]\right\}
$$

with norm $\|x\|_{\beta}=\max \left\{\|x\|_{\infty},\left\|D_{0^{+}}^{\beta-1} x\right\|_{\infty}\right\}$, where $\|x\|_{\infty}=\max _{t \in[0,1]}|x(t)|$.
Set

$$
X=\left\{\boldsymbol{x}=\left(u(\cdot), v(\cdot), w_{1}(\cdot), w_{2}(\cdot)\right)^{\mathrm{T}} \mid u, v \in C^{\alpha-1}[0,1], w_{1}, w_{2} \in C^{\beta-1}[0,1]\right\}
$$

with norm

$$
\|x\|_{X}=\max \left\{\|u\|_{\alpha},\|v\|_{\alpha},\left\|w_{1}\right\|_{\beta},\left\|w_{2}\right\|_{\beta}\right\}
$$

and

$$
Y=\left\{\boldsymbol{y}=\left(y_{1}(\cdot), y_{2}(\cdot), y_{3}(\cdot), y_{4}(\cdot)\right)^{\mathrm{T}} \in L\left([0,1], \mathbf{R}^{4}\right)\right\}
$$

with norm

$$
\|\boldsymbol{y}\|_{Y}=\max \left\{\left\|y_{1}\right\|_{1},\left\|y_{2}\right\|_{1},\left\|y_{3}\right\|_{1},\left\|y_{4}\right\|_{1}\right\}
$$

where $\left\|y_{i}\right\|_{1}=\int_{0}^{1}\left|y_{i}(x)\right| \mathrm{d} x, i=1,2,3,4$. By means of the linear functional analysis theory, we can prove that X, Y are Banach spaces.

Define the operator $L: \operatorname{dom} L \subset X \rightarrow Y$ by

$$
L \boldsymbol{x}=\left(\begin{array}{c}
D_{0^{+}}^{\alpha} u \tag{2.2}\\
D_{0^{+}}^{\alpha} v \\
D_{0^{+}}^{\beta} w_{1} \\
D_{0^{+}}^{\beta} w_{2}
\end{array}\right)
$$

where

$$
\begin{aligned}
& \operatorname{dom} L=\{ \left.\boldsymbol{x}=\left(u(\cdot), v(\cdot), w_{1}(\cdot), w_{2}(\cdot)\right)^{\mathrm{T}} \in X \mid\left(D_{0^{+}}^{\alpha} u, D_{0^{+}}^{\alpha} v, D_{0^{+}}^{\beta} w_{1}, D_{0^{+}}^{\beta} w_{2}\right)\right)^{\mathrm{T}} \in Y, \\
& u(0)=v(0)=w_{1}(0)=w_{2}(0)=0, u(1)=\sum_{i=1}^{n_{1}} A_{i} u\left(\epsilon_{i}\right), v(1)=\sum_{i=1}^{m_{1}} B_{i} v\left(\sigma_{i}\right), \\
&\left.\left.D_{0^{+}}^{\gamma} w_{1}(t)\right|_{t=1}=\left.\sum_{i=1}^{n} a_{i} D_{0^{+}}^{\gamma} w_{1}(t)\right|_{t=\xi_{i}},\left.D_{0^{+}}^{\delta} w_{2}(t)\right|_{t=1}=\left.\sum_{i=1}^{m} b_{i} D_{0^{+}}^{\delta} w_{2}(t)\right|_{t=\eta_{i}}\right\} .
\end{aligned}
$$

Let $N: X \rightarrow Y$ be the operator

$$
N \boldsymbol{x}(t)=\left(\begin{array}{c}
N_{1} \boldsymbol{x}(t) \tag{2.3}\\
N_{2} \boldsymbol{x}(t) \\
N_{3} \boldsymbol{x}(t) \\
N_{4} \boldsymbol{x}(t)
\end{array}\right)=\left(\begin{array}{c}
\phi_{q_{1}}\left(w_{1}(t)\right) \\
\phi_{q_{2}}\left(w_{2}(t)\right) \\
f_{1}\left(t, u(t), v(t), \phi_{q_{1}}\left(w_{1}(t)\right), \phi_{q_{2}}\left(w_{2}(t)\right)\right) \\
f_{2}\left(t, u(t), v(t), \phi_{q_{1}}\left(w_{1}(t)\right), \phi_{q_{2}}\left(w_{2}(t)\right)\right)
\end{array}\right) .
$$

Then BVP (2.1) is equivalent to the operator equation

$$
L \boldsymbol{x}=N \boldsymbol{x}
$$

3 Main Results

Define operators $T_{1}, T_{2}, T_{3}, T_{4}: L[0,1] \rightarrow \mathbf{R}$ as follows:

$$
\begin{aligned}
& T_{1} y=\int_{0}^{1}(1-s)^{\alpha-1} \boldsymbol{y}(s) \mathrm{d} s-\sum_{i=1}^{n_{1}} A_{i} \int_{0}^{\epsilon_{i}}\left(\epsilon_{i}-s\right)^{\alpha-1} \boldsymbol{y}(s) \mathrm{d} s \\
& T_{2} y=\int_{0}^{1}(1-s)^{\alpha-1} \boldsymbol{y}(s) \mathrm{d} s-\sum_{i=1}^{m_{1}} B_{i} \int_{0}^{\sigma_{i}}\left(\sigma_{i}-s\right)^{\alpha-1} \boldsymbol{y}(s) \mathrm{d} s \\
& T_{3} y=\int_{0}^{1}(1-s)^{\beta-\gamma-1} \boldsymbol{y}(s) \mathrm{d} s-\sum_{i=1}^{n} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right)^{\beta-\gamma-1} \boldsymbol{y}(s) \mathrm{d} s \\
& T_{4} y=\int_{0}^{1}(1-s)^{\beta-\delta-1} \boldsymbol{y}(s) \mathrm{d} s-\sum_{i=1}^{m} b_{i} \int_{0}^{\eta_{i}}\left(\eta_{i}-s\right)^{\beta-\delta-1} \boldsymbol{y}(s) \mathrm{d} s
\end{aligned}
$$

In order to obtain our main results, we first present the following lemmas.

Lemma 3.1 Suppose that $\left(\mathrm{H}_{1}\right)$ holds, and let L be defined by (2.2). Then

$$
\begin{array}{r}
\operatorname{ker} L=\left\{\left(u, v, w_{1}, w_{2}\right)^{\mathrm{T}}=\left(c_{11} t^{\alpha-1}, c_{12} t^{\alpha-1}, c_{21} t^{\beta-1}, c_{22} t^{\beta-1}\right)^{\mathrm{T}},\right. \\
\left.c_{11}, c_{12}, c_{21}, c_{22} \in \mathbf{R}, t \in[0,1]\right\}, \\
\operatorname{Im} L=\left\{\left(y_{1}, y_{2}, y_{3}, y_{4}\right)^{\mathrm{T}} \in Y \mid T_{1} y_{1}=T_{2} y_{2}=T_{3} y_{3}=T_{4} y_{4}=0\right\} . \tag{3.2}
\end{array}
$$

Proof. Since $\left(u, v, w_{1}, w_{2}\right)^{\mathrm{T}} \in$ ker L, we get

$$
\left(D_{0^{+}}^{\alpha} u(t), D_{0^{+}}^{\alpha} v(t), D_{0^{+}}^{\beta} w_{1}(t), D_{0^{+}}^{\beta} w_{2}(t)\right)^{\mathrm{T}}=(0,0,0,0)^{\mathrm{T}}
$$

By Lemma 2.3, $D_{0^{+}}^{\alpha} u(t)=0$ has solution

$$
u(t)=c_{11} t^{\alpha-1}+e_{11} t^{\alpha-2}, \quad c_{11}, e_{11} \in \mathbf{R}
$$

Combining with the boundary value condition $u(0)=0$, we get $e_{11}=0$. So

$$
u(t)=c_{11} t^{\alpha-1}
$$

Likewisely,

$$
v(t)=c_{12} t^{\alpha-1}
$$

Similarly, by Lemma $2.3, D_{0^{+}}^{\beta} w_{1}(t)=0$ has solution

$$
w_{1}(t)=c_{21} t^{\beta-1}+e_{21} t^{\beta-2}, \quad c_{21}, e_{21} \in \mathbf{R}
$$

Together with the boundary value condition $w_{1}(0)=0$, we get $e_{21}=0$. So

$$
w_{1}(t)=c_{21} t^{\beta-1}
$$

Likewisely,

$$
w_{2}(t)=c_{22} t^{\beta-1}
$$

One has that (3.1) holds.
If $\boldsymbol{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)^{\mathrm{T}} \in \operatorname{Im} L$, then there exists an $\boldsymbol{x}=\left(u, v, w_{1}, w_{2}\right)^{\mathrm{T}} \in \operatorname{dom} L$ such that $L \boldsymbol{x}=\boldsymbol{y}$. That is,

$$
y_{1}(t)=D_{0^{+}}^{\alpha} u(t), \quad y_{2}(t)=D_{0^{+}}^{\alpha} v(t), \quad y_{3}(t)=D_{0^{+}}^{\alpha} w_{1}(t), \quad y_{4}(t)=D_{0^{+}}^{\alpha} w_{2}(t) .
$$

Basing on Lemma 2.3, we have

$$
u(t)=I_{0^{+}}^{\alpha} y_{1}(t)+c_{1} t^{\alpha-1}+e_{2} t^{\alpha-2}, \quad c_{1}, e_{1} \in \mathbf{R} .
$$

From condition $u(0)=0$, we get $e_{1}=0$. It follows from $\left(\mathrm{H}_{1}\right)$ and the boundary conditions of $u(1)=\sum_{i=1}^{n_{1}} A_{i} u\left(\epsilon_{i}\right)$ that y_{1} satisfies

$$
\int_{0}^{1}(1-s)^{\alpha-1} y_{1}(s) \mathrm{d} s=\sum_{i=1}^{n_{1}} A_{i} \int_{0}^{\epsilon_{i}}\left(\epsilon_{i}-s\right)^{\alpha-1} y_{1}(s) \mathrm{d} s
$$

Likewisely, y_{2} satisfies

$$
\int_{0}^{1}(1-s)^{\alpha-1} y_{2}(s) \mathrm{d} s=\sum_{i=1}^{m_{1}} B_{i} \int_{0}^{\sigma_{i}}\left(\sigma_{i}-s\right)^{\alpha-1} y_{2}(s) \mathrm{d} s
$$

Similarly, by Lemma 2.3, we have

$$
w_{1}(t)=I_{0^{+}}^{\beta} y_{3}(t)+c_{2} t^{\beta-1}+e_{2} t^{\beta-2}, \quad c_{2}, e_{2} \in \mathbf{R} .
$$

From condition $w_{1}(0)=0$, we get $e_{2}=0$. It follows from $\left(\mathrm{H}_{1}\right)$ and the boundary conditions of $D_{0^{+}}^{\gamma} w_{1}(1)=\sum_{i=1}^{n} a_{i} D_{0^{+}}^{\gamma} w_{1}(\xi)$ that y_{3} satisfies

$$
\int_{0}^{1}(1-s)^{\beta-\gamma-1} y_{3}(s) \mathrm{d} s=\sum_{i=1}^{n} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right)^{\beta-\gamma-1} y_{3}(s) \mathrm{d} s
$$

Likewisely, y_{4} satisfies

$$
\int_{0}^{1}(1-s)^{\beta-\delta-1} y_{4}(s) \mathrm{d} s=\sum_{i=1}^{m} b_{i} \int_{0}^{\eta_{i}}\left(\eta_{i}-s\right)^{\beta-\delta-1} y_{4}(s) \mathrm{d} s
$$

So,

$$
T_{1} y_{1}=T_{2} y_{2}=T_{3} y_{3}=T_{4} y_{4}=0
$$

That is,

$$
\operatorname{Im} L \subseteq\left\{(\boldsymbol{x}, \boldsymbol{y}) \in\left\{\left(y_{1}, y_{2}, y_{3}, y_{4}\right)^{\mathrm{T}} \in Y \mid T_{1} y_{1}=T_{2} y_{2}=T_{3} y_{3}=T_{4} y_{4}=0\right\}\right.
$$

On the other hand, let $\boldsymbol{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)^{\mathrm{T}} \in Y$ satisfy $T_{1} y_{1}=T_{2} y_{2}=T_{3} y_{3}=T_{4} y_{4}=0$, and $\boldsymbol{x}=\left(u, v, w_{1}, w_{1}\right)^{\mathrm{T}}$. Take

$$
u(t)=I_{0^{+}}^{\alpha} y_{1}, \quad v(t)=I_{0^{+}}^{\alpha} y_{2}, \quad w_{1}(t)=I_{0^{+}}^{\beta} y_{3}(t), \quad w_{2}(t)=I_{0^{+}}^{\beta} y_{4}(t) .
$$

It follows from Lemma 2.1 that

$$
L \boldsymbol{x}=\boldsymbol{y} .
$$

Obviously, $\left(u, v, w_{1}, w_{2}\right)^{\mathrm{T}} \in X,\left(D_{0^{+}}^{\alpha} u, D_{0^{+}}^{\alpha} v, D_{0^{+}}^{\alpha} w_{1}, D_{0^{+}}^{\alpha} w_{2}\right)^{\mathrm{T}} \in Y$, and

$$
u(0)=v(0)=w_{1}(0)=w_{2}(0)=0 .
$$

By $T_{1} y_{1}=T_{2} y_{2}=T_{3} y_{3}=T_{4} y_{4}=0$, we get that u, v, w_{1}, w_{2} satisfy

$$
\begin{array}{ll}
u(1)=\sum_{i=1}^{n_{1}} A_{i} u\left(\epsilon_{i}\right), & v(1)=\sum_{i=1}^{m_{1}} B_{i} v\left(\sigma_{i}\right), \\
D_{0^{+}}^{\gamma} w_{1}(1)=\sum_{i=1}^{n} a_{i} D_{0^{+}}^{\gamma} w_{1}\left(\xi_{i}\right), & D_{0^{+}}^{\delta} w_{2}(1)=\sum_{i=1}^{m} b_{i} D_{0^{+}}^{\delta} \phi_{p_{2}} w_{2}\left(\eta_{i}\right),
\end{array}
$$

respectively. So, $\left(u, v, w_{1}, w_{2}\right)^{\mathrm{T}} \in \operatorname{dom} L$, we get $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)^{\mathrm{T}} \in \operatorname{Im} L$. That is,

$$
\left\{(\boldsymbol{x}, \boldsymbol{y}) \in\left\{\left(y_{1}, y_{2}, y_{3}, y_{4}\right)^{\mathrm{T}} \in Y \mid T_{1} y_{1}=T_{2} y_{2}=T_{3} y_{3}=T_{4} y_{4}=0\right\} \subseteq \operatorname{Im} L\right.
$$

The proof of Lemma 3.1 is completed.
Lemma 3.2 Let L be defined by (2.2). If $\left(\mathrm{H}_{1}\right)$ holds, then L is a Fredholm operator of index zero, and the linear continuous projector operators $P: X \rightarrow X$ and $Q: Y \rightarrow Y$ can be defined as

$$
\begin{aligned}
& P\left(\begin{array}{c}
u(t) \\
v(t) \\
w_{1}(t) \\
w_{2}(t)
\end{array}\right)=\left(\begin{array}{l}
\frac{D_{0^{+}}^{\alpha-1} u(0)}{\Gamma(\alpha)} t^{\alpha-1} \\
\frac{D_{0^{+}}^{\alpha-1} v(0)}{\Gamma(\alpha)} t^{\alpha-1} \\
\frac{D_{0^{+}}^{\beta-1} w_{1}(0)}{\Gamma(\beta)} t^{\beta-1} \\
\frac{D_{0^{+}}^{\beta-1} w_{2}(0)}{\Gamma(\beta)} t^{\beta-1}
\end{array}\right), \\
& Q\left(\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t) \\
y_{4}(t)
\end{array}\right)=\left(\begin{array}{l}
Q_{1} y_{1}(t) \\
Q_{2} y_{2}(t) \\
Q_{3} y_{3}(t) \\
Q_{4} y_{4}(t)
\end{array}\right)=\left(\begin{array}{c}
\frac{\alpha}{1-\sum_{i=1}^{n_{1}} A_{i} \epsilon_{i}^{\alpha}} T_{1} y_{1}(t) \\
\frac{\alpha}{1-\sum_{i=1}^{m_{1}} B_{i} \sigma_{i}^{\alpha}} T_{2} y_{2}(t) \\
\frac{\beta-\gamma}{1-\sum_{i=1}^{n} a_{i} \xi_{i}^{\beta-\gamma}} T_{3} y_{3}(t) \\
\frac{\beta-\delta}{1-\sum_{i=1}^{m} b_{i} \eta_{i}^{\beta-\delta}} T_{4} y_{4}(t)
\end{array}\right)
\end{aligned}
$$

for $t \in[0,1]$, and the operator $K_{P}: \operatorname{Im} L \rightarrow \operatorname{dom} L \cap \operatorname{ker} P$ can be written as

$$
K_{P}\left(\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right)=\left(\begin{array}{c}
K_{P_{1}} y_{1} \\
K_{P_{2}} y_{2} \\
K_{P_{3}} y_{3} \\
K_{P_{4}} y_{4}
\end{array}\right)=\left(\begin{array}{c}
I_{0^{+}}^{\alpha} y_{1} \\
I_{0^{+}}^{\alpha} y_{2} \\
I_{0^{+}}^{\beta} y_{3} \\
I_{0^{+}}^{\beta} y_{4}
\end{array}\right)
$$

where K_{P} is the inverse of $\left.L\right|_{\text {dom } L \cap \operatorname{ker} P}$.
Proof. We divide the proof into two steps.
Step 1. We prove that L is a Fredholm operator of index zero.
(I) Since Lemma 3.1, we know

$$
\begin{array}{r}
\operatorname{ker} L=\left\{\left(u, v, w_{1}, w_{2}\right)^{\mathrm{T}}=\left(c_{11} t^{\alpha-1}, c_{12} t^{\alpha-1}, c_{21} t^{\beta-1}, c_{22} t^{\beta-1}\right)^{\mathrm{T}}\right. \\
\left.c_{11}, c_{12}, c_{21}, c_{22} \in \mathbf{R}, t \in[0,1]\right\}
\end{array}
$$

By $u(t)=c_{11} t^{\alpha-1}$ and Lemma 2.2, we get

$$
D_{0^{+}}^{\alpha-1} u(0)=c_{11} \Gamma(\alpha)
$$

So

$$
c_{11}=\frac{D_{0^{+}}^{\alpha-1} u(0)}{\Gamma(\alpha)}
$$

Likewisely,

$$
c_{12}=\frac{D_{0^{+}}^{\alpha-1} v(0)}{\Gamma(\alpha)}, \quad c_{21}=\frac{D_{0^{+}}^{\beta-1} w_{1}(0)}{\Gamma(\beta)}, \quad c_{22}=\frac{D_{0^{+}}^{\beta-1} w_{2}(0)}{\Gamma(\beta)}
$$

So $\operatorname{Im} P=\operatorname{ker} L$.
We show that $P^{2}\left(u, v, w_{1}, w_{2}\right)^{\mathrm{T}}=P\left(u, v, w_{1}, w_{2}\right)^{\mathrm{T}}$ in the follows. In fact, by Lemma 2.2 , we get

$$
\begin{aligned}
& P^{2}\left(\begin{array}{c}
u(t) \\
v(t) \\
w_{1}(t) \\
w_{2}(t)
\end{array}\right)=P\left(P\left(\begin{array}{c}
u(t) \\
v(t) \\
w_{1}(t) \\
w_{2}(t)
\end{array}\right)\right. \\
&=\left(\begin{array}{l}
\frac{\left.D_{0^{+}}^{\alpha-1}\left(c_{11} t^{\alpha-1}\right)\right|_{t=0}}{\Gamma(\alpha)} t^{\alpha-1} \\
\\
\frac{\left.D_{0^{+}}^{\alpha-1}\left(c_{12} t^{\alpha-1}\right)\right|_{t=0}}{\Gamma(\alpha)} t^{\alpha-1} \\
\\
\frac{\left.D_{0^{+}}^{\beta-1}\left(c_{21} t^{\beta-1}\right)\right|_{t=0}}{\Gamma(\beta)} t^{\beta-1} \\
c_{22} t^{\beta-1}
\end{array}\right)=\left(\begin{array}{c}
c_{11} t^{\alpha-1} \\
c_{12} t^{\alpha-1} \\
c_{21} t^{\beta-1} \\
\frac{\left.D_{0^{+}}^{\beta-1}\left(c_{22} t^{\beta-1}\right)\right|_{t=0}}{\Gamma(\beta)} t^{\beta-1}
\end{array}\right)=\left(\begin{array}{l}
\frac{c_{11} \Gamma(\alpha)}{\Gamma(\alpha)} t^{\alpha-1} \\
\frac{c_{12} \Gamma(\alpha)}{\Gamma(\alpha)} t^{\alpha-1} \\
\frac{c_{21} \Gamma(\beta)}{\Gamma(\beta)} t^{\beta-1} \\
\frac{c_{22} \Gamma(\beta)}{\Gamma(\beta)} t^{\beta-1}
\end{array}\right)=\left(\begin{array}{l}
c_{11} t^{\alpha-1} \\
c_{12} t^{\alpha-1} \\
c_{21} t^{\beta-1} \\
c_{22} t^{\beta-1}
\end{array}\right) \\
&=\left(\begin{array}{l}
u(t) \\
v(t) \\
w_{1}(t) \\
w_{2}(t)
\end{array}\right),
\end{aligned}
$$

Then P is the linear continuous projector operator. So, we have $X=\operatorname{ker} L \oplus \operatorname{ker} P$.
(II) For $\boldsymbol{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)^{\mathrm{T}} \in Y$, we prove $Q^{2} \boldsymbol{y}=Q \boldsymbol{y}$, that is, $Q_{i}^{2} y_{i}=Q_{i} y_{i}, i=$ $1,2,3,4$. In fact,

$$
\begin{aligned}
Q_{1}^{2} y_{1}(t) & =Q_{1}\left(Q_{1} y_{1}(t)\right) \\
& =\frac{\alpha}{1-\sum_{i=1}^{n_{1}} A_{i} \epsilon_{i}^{\alpha}} T_{1}\left(Q_{1} y_{1}(t)\right) \\
& =\frac{\alpha}{1-\sum_{i=1}^{n_{1}} A_{i} \epsilon_{i}^{\alpha}}\left(\int_{0}^{1}(1-s)^{\alpha-1} Q_{1} y_{1}(t) \mathrm{d} s-\sum_{i=1}^{n_{1}} A_{i} \int_{0}^{\epsilon_{i}}\left(\epsilon_{i}-s\right)^{\alpha-1} Q_{1} y_{1}(t) \mathrm{d} s\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\alpha}{1-\sum_{i=1}^{n_{1}} A_{i} \epsilon_{i}^{\alpha}}\left(\int_{0}^{1}(1-s)^{\alpha-1} \mathrm{~d} s-\sum_{i=1}^{n_{1}} A_{i} \int_{0}^{\epsilon_{i}}\left(\epsilon_{i}-s\right)^{\alpha-1} \mathrm{~d} s\right) Q_{1} y_{1}(t) \\
& =\frac{\alpha}{1-\sum_{i=1}^{n_{1}} A_{i} \epsilon_{i}^{\alpha}}\left(\frac{1}{\alpha}-\frac{\sum_{i=1}^{n_{1}} A_{i} \epsilon_{i}^{\alpha}}{\alpha}\right) Q_{1} y_{1}(t) \\
& =Q_{1} y_{1}(t) . \\
Q_{3}^{2} y_{3}(t) & =Q_{3}\left(Q_{3} y_{3}(t)\right) \\
& =\frac{\beta-\gamma}{1-\sum_{i=1}^{n} a_{i} \xi_{i}^{\beta-\gamma}} T_{3}\left(Q_{3} y_{3}(t)\right) \\
& =\frac{\beta-\gamma}{1-\sum_{i=1}^{n} a_{i} \xi_{i}^{\beta-\gamma}}\left(\int_{0}^{1}(1-s)^{\beta-\gamma-1} Q_{3} y_{3}(t) \mathrm{d} s-\sum_{i=1}^{n} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right)^{\beta-\gamma-1} Q_{3} y_{3}(t) \mathrm{d} s\right) \\
& =\frac{\beta-\gamma}{1-\sum_{i=1}^{n} a_{i} \xi_{i}^{\beta-\gamma}}\left(\int_{0}^{1}(1-s)^{\beta-\gamma-1} \mathrm{~d} s-\sum_{i=1}^{n} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right)^{\beta-\gamma-1} \mathrm{~d} s\right) Q_{3} y_{3}(t) \\
& =\frac{\beta-\gamma}{1-\sum_{i=1}^{n} a_{i} \xi_{i}^{\beta-\gamma}}\left(\frac{1}{\beta-\gamma}-\frac{\sum_{i=1}^{n} a_{i} \xi_{i}^{\beta-\gamma}}{\beta-\gamma}\right) Q_{3} y_{3}(t) \\
& =Q_{3} y_{3}(t) .
\end{aligned}
$$

Likewisely,

$$
Q_{2}^{2} y_{2}(t)=Q_{2} y_{2}(t), \quad Q_{4}^{2} y_{4}(t)=Q_{4} y_{4}(t) .
$$

So

$$
Q^{2} \boldsymbol{y}=Q \boldsymbol{y} .
$$

From the definition of Q and (3.2), we can easily get that

$$
\operatorname{ker} Q=\operatorname{Im} L .
$$

So, we have

$$
Y=\operatorname{Im} L \oplus \operatorname{Im} Q
$$

Thus

$$
\operatorname{dim} \operatorname{ker} L=\operatorname{dim} \operatorname{Im} Q=\operatorname{codim} \operatorname{Im} L=4 .
$$

This means that L is a Fredholm operator of index zero.
Step 2. We prove that the inverse of $\left.L\right|_{\text {dom } L \cap \text { ker } P}$ is K_{P}.
For $\boldsymbol{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)^{\mathrm{T}} \in \operatorname{Im} L, \boldsymbol{z}=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)^{\mathrm{T}}$, let $\boldsymbol{z}=K_{P} \boldsymbol{y}$, that is, \boldsymbol{z} satisfy $z_{i}=K_{P_{i}} y_{i}, i=1,2,3,4$, and $\boldsymbol{z} \in \operatorname{dom} L \cap \operatorname{ker} P$. Since $L K_{P} \boldsymbol{y}=\boldsymbol{y}$, we get $L \boldsymbol{z}=\boldsymbol{y}$. By (2.2), we know

$$
\left(D_{0^{+}}^{\alpha} z_{1}(t), D_{0^{+}}^{\alpha} z_{2}(t), D_{0^{+}}^{\beta} z_{3}(t), D_{0^{+}}^{\beta} z_{4}(t)\right)^{\mathrm{T}}=\left(y_{1}(t), y_{2}(t), y_{3}(t), y_{4}(t)\right)^{\mathrm{T}} .
$$

By Lemma 2.3, we have

$$
\begin{cases}z_{j}(t)=I_{0^{+}}^{\alpha} y_{j}(t)+c_{1 j} t^{\alpha-1}+e_{1 j} t^{\alpha-2}, & c_{1 j}, e_{1 j} \in \mathbf{R}, j=1,2 \tag{3.3}\\ z_{k}(t)=I_{0^{+}}^{\beta} y_{k}(t)+c_{1 k} t^{\beta-1}+e_{1 k} t^{\beta-2}, & c_{1 k}, e_{1 k} \in \mathbf{R}, k=3,4\end{cases}
$$

By $\boldsymbol{z} \in \operatorname{dom} L$, we know $z_{i}(0)=0, i=1,2,3,4$. So,

$$
\begin{equation*}
e_{1 j}=e_{1 k}=0, \quad j=1,2 ; k=3,4 . \tag{3.4}
\end{equation*}
$$

By $\boldsymbol{z} \in \operatorname{ker} P$, we know

$$
\frac{D_{0^{+}}^{\alpha-1} z_{j}(0)}{\Gamma(\alpha)} t^{\alpha-1}=0, \quad \frac{D_{0^{+}}^{\beta-1} z_{k}(0)}{\Gamma(\beta)} t^{\beta-1}=0, \quad j=1,2 ; k=3,4, t \in[0,1] .
$$

It follows from (3.3)-(3.4) and Lemma 2.2 that

$$
D_{0^{+}}^{\alpha-1} I_{0^{+}}^{\alpha} y_{j}(0)+c_{1 j} \Gamma(\alpha)=0, \quad D_{0^{+}}^{\beta-1} I_{0^{+}}^{\beta} y_{k}(0)+c_{1 k} \Gamma(\beta)=0, \quad j=1,2 ; k=3,4 .
$$

We get

$$
\begin{equation*}
c_{1 j}=-\frac{1}{\Gamma(\alpha)} I_{0+}^{1} y_{j}(0)=0, \quad c_{1 k}=-\frac{1}{\Gamma(\beta)} I_{0^{+}}^{1} y_{k}(0)=0, \quad j=1,2 ; k=3,4 \tag{3.5}
\end{equation*}
$$

It follows from (3.3)-(3.5) that

$$
\left(z_{1}(t), z_{2}(t), z_{3}(t), z_{4}(t)\right)^{\mathrm{T}}=\left(I_{0^{+}}^{\alpha} y_{1}(t), I_{0^{+}}^{\alpha} y_{2}(t), I_{0^{+}}^{\beta} y_{3}(t), I_{0^{+}}^{\beta} y_{4}(t)\right)^{\mathrm{T}}
$$

That is,

$$
K_{P} \boldsymbol{y}=\left(I_{0^{+}}^{\alpha} y_{1}, I_{0^{+}}^{\alpha} y_{2}, I_{0^{+}}^{\beta} y_{3}, I_{0^{+}}^{\beta} y_{4}\right)^{\mathrm{T}} .
$$

The proof of Lemma 3.2 is completed.
Lemma 3.3 Suppose that $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ hold. If $\Omega \subset X$ is an open bounded subset and $\operatorname{dom} L \cap \bar{\Omega} \neq \emptyset$, then N is L-compact on $\bar{\Omega}$.

Proof. By the condition $\left(\mathrm{H}_{2}\right)$, the continuity of $\phi_{q_{1}}, \phi_{q_{2}}$ and the definition of Q, we can know that $Q N(\bar{\Omega})$ is bounded. Now we show that $K_{P}(I-Q) N: \bar{\Omega} \rightarrow X$ is compact. For this, we prove firstly: (i) $K_{P}(I-Q) N(\bar{\Omega})$ is uniformly bounded; (ii) $K_{P}(I-Q) N(\bar{\Omega})$, $D_{0^{+}}^{\alpha-1} K_{P}\left(I_{0}-Q_{j}\right) N_{j}(\bar{\Omega})$ and $D_{0^{+}}^{\beta-1} K_{P}\left(I_{0}-Q_{k}\right) N_{k}(\bar{\Omega})$ are equicontinuous on $[0,1]$, where $I_{0}: L[0,1] \rightarrow L[0,1]$ is a identity mapping, $j=1,2, k=3,4$.
(i) The condition $\left(\mathrm{H}_{2}\right)$ and the continuity of $\phi_{q_{1}}, \phi_{q_{2}}$ mean that there exist constant $M_{i}>0$ such that

$$
\left|\left(I_{0}-Q_{i}\right) N_{i} x\right| \leq M_{i}, \quad t \in[0,1], x \in \bar{\Omega}, i=1,2,3,4 .
$$

For $\boldsymbol{x} \in \bar{\Omega}, t \in[0,1]$, we have

$$
\begin{aligned}
& K_{P}(I-Q) N \boldsymbol{x}(t) \\
= & \left(I_{0^{+}}^{\alpha}\left(I_{0}-Q_{1}\right) N_{1} \boldsymbol{x}(t), I_{0^{+}}^{\alpha}\left(I_{0}-Q_{2}\right) N_{2} \boldsymbol{x}(t), I_{0^{+}}^{\beta}\left(I_{0}-Q_{3}\right) N_{3} \boldsymbol{x}(t), I_{0^{+}}^{\beta}\left(I_{0}-Q_{4}\right) N_{4} \boldsymbol{x}(t)\right) .
\end{aligned}
$$

And we can know

$$
\begin{align*}
\left|I_{0^{+}}^{\alpha}\left(I_{0}-Q_{j}\right) N_{j} x(t)\right| & =\frac{1}{\Gamma(\alpha)}\left|\int_{0}^{t}(t-s)^{\alpha-1}\left(I_{0}-Q_{j}\right) N_{j} x(s) \mathrm{d} s\right| \\
& \leq \frac{M_{j}}{\Gamma(\alpha)}\left|\int_{0}^{1}(1-s)^{\alpha-1} \mathrm{~d} s\right| \\
& =\frac{M_{j}}{\Gamma(\alpha+1)}, \quad j=1,2 \tag{3.6}
\end{align*}
$$

$$
\begin{gather*}
\left|D_{0^{+}}^{\alpha-1} I_{0^{+}}^{\alpha}\left(I_{0}-Q_{j}\right) N_{j} \boldsymbol{x}(t)\right| \leq \int_{0}^{t}\left|\left(I_{0}-Q_{j}\right) N_{j} x(s)\right| \mathrm{d} s \leq M_{j}, \quad j=1,2, \tag{3.7}\\
\left|I_{0^{+}}^{\beta}\left(I_{0}-Q_{j}\right) N_{k} x(t)\right| \leq \frac{M_{k}}{\Gamma(\beta+1)}, \quad\left|D_{0^{+}}^{\beta-1} I_{0^{+}}^{\beta}\left(I_{0}-Q_{k}\right) N_{k} x(t)\right| \leq M_{k}, \quad k=3,4 . \tag{3.8}
\end{gather*}
$$

From (3.6)-(3.8), we get

$$
\left\|K_{P}(I-Q) N x\right\|_{X} \leq M,
$$

where $M=\max \left\{M_{1}, M_{2}, M_{3}, M_{4}, \frac{M_{1}}{\Gamma(\alpha+1)}, \frac{M_{2}}{\Gamma(\alpha+1)}, \frac{M_{3}}{\Gamma(\beta+1)}, \frac{M_{4}}{\Gamma(\beta+1)}\right\}$. That is, $K_{P}(I-Q) N(\bar{\Omega})$ is uniformly bounded.
(ii) For $0 \leq t_{1}<t_{2} \leq 1, \boldsymbol{x} \in \bar{\Omega}$, we have

$$
\begin{gathered}
\left.K_{P}(I-Q) N \boldsymbol{x}\left(t_{2}\right)-K_{P}(I-Q) N \boldsymbol{x}\left(t_{1}\right)\right) \\
=\left(I_{0^{+}}^{\alpha}\left(I_{0}-Q_{1}\right) N_{1} \boldsymbol{x}\left(t_{2}\right)-I_{0^{+}}^{\alpha}\left(I_{0}-Q_{1}\right) N_{1} \boldsymbol{x}\left(t_{1}\right),\right. \\
I_{0^{+}}^{\alpha}\left(I_{0}-Q_{2}\right) N_{2} \boldsymbol{x}\left(t_{2}\right)-I_{0^{+}}^{\alpha}\left(I_{0}-Q_{2}\right) N_{2} \boldsymbol{x}\left(t_{1}\right), \\
I_{0^{+}}^{\alpha}\left(I_{0}-Q_{3}\right) N_{3} \boldsymbol{x}\left(t_{2}\right)-I_{0^{+}}^{\alpha}\left(I_{0}-Q_{3}\right) N_{3} \boldsymbol{x}\left(t_{1}\right), \\
\left.I_{0^{+}}^{\alpha}\left(I_{0}-Q_{4}\right) N_{4} \boldsymbol{x}\left(t_{2}\right)-I_{0^{+}}^{\alpha}\left(I_{0}-Q_{4}\right) N_{4} \boldsymbol{x}\left(t_{1}\right)\right), \\
\left|I_{0^{+}}^{\alpha}\left(I_{0}-Q_{j}\right) N_{j} \boldsymbol{x}\left(t_{2}\right)-I_{0^{+}}^{\alpha}\left(I_{0}-Q_{j}\right) N_{j} \boldsymbol{x}\left(t_{1}\right)\right| \\
=\frac{1}{\Gamma(\alpha)}\left|\int_{0}^{t_{2}}\left(t_{2}-s\right)^{\alpha-1}\left(I_{0}-Q_{j}\right) N_{j} \boldsymbol{x}(s) \mathrm{d} s-\int_{0}^{t_{1}}\left(t_{1}-s\right)^{\alpha-1}\left(I_{0}-Q_{j}\right) N_{j} \boldsymbol{x}(s) \mathrm{d} s\right| \\
\leq \frac{M_{j}}{\Gamma(\alpha+1)}\left|t_{2}^{\alpha}-t_{1}^{\alpha}+2\left(t_{2}-t_{1}\right)^{\alpha}\right|, \quad j=1,2 .
\end{gathered}
$$

By Lemma 2.1, we get

$$
\begin{aligned}
& \left|D_{0^{+}}^{\alpha-1} I_{0^{+}}^{\alpha}\left(I_{0}-Q_{j}\right) N_{j} \boldsymbol{x}\left(t_{2}\right)-D_{0^{+}}^{\alpha-1} I_{0^{+}}^{\alpha}\left(I_{0}-Q_{j}\right) N_{j} \boldsymbol{x}\left(t_{1}\right)\right| \\
= & \left|\int_{0}^{t_{2}}\left(I_{0}-Q_{j}\right) N_{j} \boldsymbol{x}(s) \mathrm{d} s-\int_{0}^{t_{1}}\left(I_{0}-Q_{j}\right) N_{j} \boldsymbol{x}(s) \mathrm{d} s\right| \\
\leq & M_{j}\left(t_{2}-t_{1}\right), \quad j=1,2 .
\end{aligned}
$$

Similarly, we get

$$
\begin{aligned}
& \left|I_{0^{+}}^{\beta}\left(I_{0}-Q_{k}\right) N_{k} \boldsymbol{x}\left(t_{2}\right)-I_{0^{+}}^{\beta}\left(I_{0}-Q_{k}\right) N_{k} \boldsymbol{x}\left(t_{1}\right)\right| \\
\leq & \frac{M_{k}}{\Gamma(\beta+1)}\left|t_{2}^{\beta}-t_{1}^{\beta}+2\left(t_{2}-t_{1}\right)^{\beta}\right|, \\
& \left|D_{0^{+}}^{\beta-1} I_{0^{+}}^{\beta}\left(I_{0}-Q_{k}\right) N_{k} \boldsymbol{x}\left(t_{2}\right)-D_{0^{+}}^{\beta-1} I_{0^{+}}^{\beta}\left(I_{0}-Q_{k}\right) N_{k} \boldsymbol{x}\left(t_{1}\right)\right| \\
\leq & M_{k}\left(t_{2}-t_{1}\right)
\end{aligned}
$$

for $k=3,4$.
Since t^{α}, t^{β} are uniformly continuous on $[0,1]$, we can obtain that $K_{P}(I-Q) N(\bar{\Omega})$, $D_{0^{+}}^{\alpha-1} K_{P}\left(I_{0}-Q_{j}\right) N_{j}(\bar{\Omega})(j=1,2)$ and $D_{0^{+}}^{\beta-1} K_{P}\left(I_{0}-Q_{k}\right) N_{k}(\bar{\Omega})(k=3,4)$ are equicontinuous on [0, 1].

Applying the Arzelà-Ascoli theorem, we get $K_{P}(I-Q) N: \bar{\Omega} \rightarrow X$ is compact. So, N is L-compact on $\bar{\Omega}$. The proof of Lemma 3.3 is completed.

To obtain our main results, we need the following conditions.
$\left(\mathrm{H}_{3}\right)$ There exist functions $\zeta_{i}, \psi_{i}, \varphi_{i}, h_{i}, g_{i} \in L[0,1], i=1,2$, such that

$$
\begin{aligned}
& \left|f_{i}\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right)\right| \\
\leq & \zeta_{i}(t)+\psi_{i}(t)\left|x_{1}\right|^{p_{1}-1}+\varphi_{i}(t)\left|x_{2}\right|^{p_{2}-1}+h_{i}(t)\left|x_{3}\right|^{p_{1}-1}+g_{i}(t)\left|x_{4}\right|^{p_{2}-1}
\end{aligned}
$$

for $t \in[0,1],\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbf{R}^{4}$, where $\psi_{i}, \varphi_{i}, h_{i}, g_{i}, i=1$, 2, satisfying

$$
\begin{gather*}
l:=\frac{1+\xi_{n}^{\beta-1}}{\xi_{n}^{\beta-1}}\left(\frac{2}{\Gamma(\alpha+1)}\right)^{p_{1}-1}\left\|\psi_{1}\right\|_{1}+\Gamma(\beta+1)\left\|h_{1}\right\|_{1}<\Gamma(\beta+1) \\
k:=\frac{1+\eta_{m}^{\beta-1}}{\eta_{m}^{\beta-1}}\left(\frac{2}{\Gamma(\alpha+1)}\right)^{p_{2}-1}\left\|\varphi_{2}\right\|_{1}+\Gamma(\beta+1)\left\|g_{2}\right\|_{1}<\Gamma(\beta+1) \\
0 \leq \frac{\left(1+\xi_{n}^{\beta-1}\right)\left(1+\eta_{m}^{\beta-1}\right)\left\|\varphi_{1}\right\|_{1}\left\|\psi_{2}\right\|_{1}}{(\Gamma(\beta+1)-l)(\Gamma(\beta+1)-k) \xi_{n}^{\beta-1} \eta_{m}^{\beta-1}}\left(\frac{2}{\Gamma(\alpha+1)}\right)^{p_{1}+p_{2}-2}<1 \tag{3.9a}\\
0 \leq \frac{\Gamma^{2}(\beta)\left(1+\beta \xi_{n}^{\beta-1}\right)\left(1+\beta \eta_{m}^{\beta-1}\right)\left\|\varphi_{1}\right\|_{1}\left\|\psi_{2}\right\|_{1}}{(\Gamma(\beta+1)-l)(\Gamma(\beta+1)-k) \xi_{n}^{\beta-1} \eta_{m}^{\beta-1}}\left(\frac{2}{\Gamma(\alpha+1)}\right)^{p_{1}+p_{2}-2}<1 \tag{3.9b}
\end{gather*}
$$

$\left(\mathrm{H}_{4}\right)$ For $\boldsymbol{x} \in \operatorname{dom} L$, there exist constants $R_{i}>0, i=1,2,3,4$, such that if at least one of the inequations
(1) $|u(t)|>R_{1}, t \in\left[\epsilon_{n_{1}}, 1\right]$;
(2) $\left|w_{1}(t)\right|>R_{3}, t \in\left[\xi_{n}, 1\right]$;
(3) $|v(t)|>R_{2}, t \in\left[\sigma_{m_{1}}, 1\right]$;
(4) $\left|w_{2}(t)\right|>R_{4}, t \in\left[\eta_{m}, 1\right]$
holds, then at least one of the following inequations holds:

$$
T_{1} N_{1} x(t) \neq 0, \quad T_{3} N_{3} x(t) \neq 0, \quad T_{2} N_{2} \boldsymbol{x}(t) \neq 0, \quad T_{4} N_{4} \boldsymbol{x}(t) \neq 0
$$

$\left(\mathrm{H}_{5}\right)$ For $\boldsymbol{x}=\left(c_{1} t^{\alpha-1}, c_{2} t^{\alpha-1}, c_{3} t^{\beta-1}, c_{4} t^{\beta-1}\right)^{\mathrm{T}} \in \operatorname{ker} L$, there exist constants $e_{i}>0$, $i=1,2,3,4$, such that either
(1) $c_{i} T_{i} N_{i} \boldsymbol{x}>0$ if $\left|c_{i}\right|>e_{i}, i=1,2,3,4$,
or
(2) $c_{i} T_{i} N_{i} \boldsymbol{x}<0$, if $\left|c_{i}\right|>e_{i}, i=1,2,3,4$
holds.

Lemma 3.4 Suppose that $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$ hold. Then the set

$$
\Omega_{1}=\{\boldsymbol{x} \in \operatorname{dom} L \backslash \operatorname{ker} L \mid L \boldsymbol{x}=\lambda N \boldsymbol{x}, \quad \lambda \in(0,1)\}
$$

is bounded in X.

Proof. Take

$$
\boldsymbol{x}=\left(u, v, w_{1}, w_{2}\right)^{\mathrm{T}} \in \Omega_{1}
$$

By $L \boldsymbol{x}=\lambda N \boldsymbol{x}$, Lemma 2.3 and $\left(u(0), v(0), w_{1}(0), w_{2}(0)\right)^{\mathrm{T}}=(0,0,0,0)^{\mathrm{T}}$, we have

$$
\left(\begin{array}{c}
u(t) \tag{3.10}\\
v(t) \\
w_{1}(t) \\
w_{2}(t)
\end{array}\right)=\left(\begin{array}{c}
\lambda I_{0^{+}}^{\alpha} \phi_{q_{1}}\left(w_{1}(t)\right)+c_{11} t^{\alpha-1} \\
\lambda I_{0^{+}}^{\alpha} \phi_{q_{2}}\left(w_{2}(t)\right)+c_{12} t^{\alpha-1} \\
\lambda I_{0^{+}}^{\beta} f_{1}\left(t, u(t), v(t), \phi_{q_{1}}\left(w_{1}(t)\right), \phi_{q_{2}}\left(w_{2}(t)\right)\right)+c_{21} t^{\beta-1} \\
\lambda I_{0^{+}}^{\beta} f_{2}\left(t, u(t), v(t), \phi_{q_{1}}\left(w_{1}(t)\right), \phi_{q_{2}}\left(w_{2}(t)\right)\right)+c_{22} t^{\beta-1}
\end{array}\right),
$$

By $N \boldsymbol{x} \in \operatorname{Im} L$, we get

$$
T_{i} N_{i} \boldsymbol{x}=0, \quad i=1,2,3,4
$$

These, together with $\left(H_{4}\right)$, mean that there exist constants $t_{11} \in\left[\epsilon_{n_{1}}, 1\right], t_{1} \in\left[\xi_{n}, 1\right]$, $t_{22} \in\left[\sigma_{m_{1}}, 1\right], t_{2} \in\left[\eta_{m}, 1\right]$ such that

$$
\left|u\left(t_{11}\right)\right| \leq R_{1}, \quad\left|w_{1}\left(t_{1}\right)\right| \leq R_{3}, \quad\left|v\left(t_{22}\right)\right| \leq R_{2}, \quad\left|w_{2}\left(t_{2}\right)\right| \leq R_{4}
$$

By (3.10), we have

$$
\begin{align*}
\left|c_{21}\right| t_{1}^{\beta-1} & \leq R_{3}+\frac{1}{\Gamma(\beta)} \int_{0}^{1}(1-s)^{\beta-1}\left|f_{1}\left(s, u(s), v(s), \phi_{q_{1}}\left(w_{1}(s)\right), \phi_{q_{2}}\left(w_{2}(s)\right)\right)\right| \mathrm{d} s \tag{3.11}\\
\left|c_{22}\right| t_{2}^{\beta-1} & \leq R_{4}+\frac{1}{\Gamma(\beta)} \int_{0}^{1}(1-s)^{\beta-1}\left|f_{2}\left(s, u(s), v(s), \phi_{q_{1}}\left(w_{1}(s)\right), \phi_{q_{2}}\left(w_{2}(s)\right)\right)\right| \mathrm{d} s \tag{3.12}
\end{align*}
$$

By Lemma 2.3, we have

$$
\begin{aligned}
|u(t)| & =\left|u\left(t_{11}\right)+I_{t_{11}^{+}}^{\alpha} D_{0^{+}}^{\alpha} u(t)\right| \\
& \leq\left|u\left(t_{11}\right)\right|+\frac{1}{\Gamma(\alpha)} \int_{t_{11}}^{t}(t-s)^{\alpha-1}\left|D_{0^{+}}^{\alpha} u(s)\right| \mathrm{d} s \\
& \leq R_{1}+\frac{\left\|D_{0^{+}}^{\alpha} u\right\|_{\infty}}{\Gamma(\alpha+1)}
\end{aligned}
$$

that is,

$$
\begin{equation*}
\|u\|_{\infty} \leq R_{1}+\frac{\left\|D_{0^{+}}^{\alpha} u\right\|_{\infty}}{\Gamma(\alpha+1)} \tag{3.13}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\|v\|_{\infty} \leq R_{2}+\frac{\left\|D_{0^{+}}^{\alpha} v\right\|_{\infty}}{\Gamma(\alpha+1)} \tag{3.14}
\end{equation*}
$$

By (3.10)-(3.12), we know

$$
\begin{aligned}
&\left|w_{1}(t)\right| \leq\left|\lambda I_{0^{+}}^{\beta} f_{1}\left(t, u(t), v(t), \phi_{q_{1}}\left(w_{1}(t)\right), \phi_{q_{2}}\left(w_{2}(t)\right)\right)\right|+\left|c_{21}\right| t^{\beta-1} \\
& \leq \frac{1}{\Gamma(\beta)} \int_{0}^{1}(1-s)^{\beta-1}\left|f_{1}\left(s, u(s), v(s), \phi_{q_{1}}\left(w_{1}(s)\right), \phi_{q_{2}}\left(w_{2}(s)\right)\right)\right| \mathrm{d} s \\
&+\left(\frac{t}{t_{1}}\right)^{\beta-1}\left|c_{21}\right| t_{1}^{\beta-1} \\
& \leq \frac{R_{3}}{\xi_{n}^{\beta-1}}+\frac{1}{\Gamma(\beta)}\left(1+\frac{1}{\xi_{n}^{\beta-1}}\right) \int_{0}^{1}(1-s)^{\beta-1}\left[\zeta_{1}(s)+\psi_{1}(s)|u(s)|^{p_{1}-1}\right. \\
&\left.+\varphi_{1}(s)|v(s)|^{p_{2}-1}+h_{1}(s)\left|\phi_{q_{1}}\left(w_{1}(s)\right)\right|^{p_{1}-1}+g_{1}(s)\left|\phi_{q_{2}}\left(w_{2}(s)\right)\right|^{p_{2}-1}\right] \mathrm{d} s \\
& \leq \frac{R_{3}}{\xi_{n}^{\beta-1}}+\frac{1+\xi_{n}^{\beta-1}}{\Gamma(\beta+1) \xi_{n}^{\beta-1}}\left(\left\|\zeta_{1}\right\|_{1}+\left\|\psi_{1}\right\|_{1}\|u\|_{\infty}^{p_{1}-1}+\left\|\varphi_{1}\right\|_{1}\|v\|_{\infty}^{p_{2}-1}\right. \\
&\left.\quad+\left\|h_{1}\right\|_{1}\left\|w_{1}\right\|_{\infty}+\left\|g_{1}\right\|_{1}\left\|w_{2}\right\|_{\infty}\right)
\end{aligned}
$$

which together with

$$
\left|\phi_{p}(x+y)\right| \leq 2^{p-1}\left(x^{p-1}+y^{p-1}\right), \quad x, y>0
$$

(see [20]) and (3.13)-(3.14), we get

$$
\left\|w_{1}\right\|_{\infty} \leq \frac{R_{3}}{\xi_{n}^{\beta-1}}+\frac{1+\xi_{n}^{\beta-1}}{\Gamma(\beta+1) \xi_{n}^{\beta-1}}\left[\left\|\zeta_{1}\right\|_{1}+\left\|\psi_{1}\right\|_{1}\left(R_{1}+\frac{\left\|\phi_{q_{1}}\left(w_{1}\right)\right\|_{\infty}}{\Gamma(\alpha+1)}\right)^{p_{1}-1}\right.
$$

$$
\begin{aligned}
& \left.+\left\|\varphi_{1}\right\|_{1}\left(R_{2}+\frac{\left\|\phi_{q_{2}}\left(w_{2}\right)\right\|_{\infty}}{\Gamma(\alpha+1)}\right)^{p_{2}-1}+\left\|h_{1}\right\|_{1}\left\|w_{1}\right\|_{\infty}+\left\|g_{1}\right\|_{1}\left\|w_{2}\right\|_{\infty}\right] \\
\leq & \frac{R_{3}}{\xi_{n}^{\beta-1}}+\frac{1+\xi_{n}^{\beta-1}}{\Gamma(\beta+1) \xi_{n}^{\beta-1}}\left[\left\|\zeta_{1}\right\|_{1}+2^{p_{1}-1}\left\|\psi_{1}\right\|_{1}\left(R_{1}^{p_{1}-1}+\left(\frac{\left\|\phi_{q_{1}}\left(w_{1}\right)\right\|_{\infty}}{\Gamma(\alpha+1)}\right)^{p_{1}-1}\right)\right. \\
& \left.+2^{p_{2}-1}\left\|\varphi_{1}\right\|_{1}\left(R_{2}^{p_{2}-1}+\left(\frac{\left\|\phi_{q_{2}}\left(w_{2}\right)\right\|_{\infty}}{\Gamma(\alpha+1)}\right)^{p_{2}-1}\right)+\left\|h_{1}\right\|_{1}\left\|w_{1}\right\|_{\infty}+\left\|g_{1}\right\|_{1}\left\|w_{2}\right\|_{\infty}\right] .
\end{aligned}
$$

So

$$
\begin{aligned}
\left\|w_{1}\right\|_{\infty} \leq & \frac{\Gamma(\beta+1)}{\Gamma(\beta+1)-l}\left\{\frac{R_{3}}{\xi_{n}^{\beta-1}}+\frac{1+\xi_{n}^{\beta-1}}{\Gamma(\beta+1) \xi_{n}^{\beta-1}}\left[\left\|\zeta_{1}\right\|_{1}+2^{p_{1}-1}\left\|\psi_{1}\right\|_{1} R_{1}^{p_{1}-1}\right.\right. \\
& \left.\left.+2^{p_{2}-1}\left\|\varphi_{1}\right\|_{1} R_{2}^{p_{2}-1}+\left(\left\|g_{1}\right\|_{1}+\left(\frac{2}{\Gamma(\alpha+1)}\right)^{p_{2}-1}\left\|\varphi_{1}\right\|_{1}\right)\left\|w_{2}\right\|_{\infty}\right]\right\}
\end{aligned}
$$

Likewisely,

$$
\begin{aligned}
\left\|w_{2}\right\|_{\infty} \leq & \frac{\Gamma(\beta+1)}{\Gamma(\beta+1)-k}\left\{\frac{R_{4}}{\eta_{m}^{\beta-1}}+\frac{1+\eta_{m}^{\beta-1}}{\Gamma(\beta+1) \eta_{m}^{\beta-1}}\left[\left\|\zeta_{2}\right\|_{1}+2^{p_{1}-1}\left\|\psi_{2}\right\|_{1} R_{1}^{p_{1}-1}\right.\right. \\
& \left.\left.+2^{p_{2}-1}\left\|\varphi_{2}\right\|_{1} R_{2}^{p_{2}-1}+\left(\left\|h_{2}\right\|_{1}+\left(\frac{2}{\Gamma(\alpha+1)}\right)^{p_{1}-1}\left\|\psi_{2}\right\|_{1}\right)\left\|w_{1}\right\|_{\infty}\right]\right\} .
\end{aligned}
$$

In view of (3.9a), we can see that there exist constants $\bar{M}_{1}, \bar{M}_{2}>0$ such that

$$
\begin{equation*}
\left\|w_{1}\right\|_{\infty} \leq \bar{M}_{1}, \quad\left\|w_{2}\right\|_{\infty} \leq \bar{M}_{2} \tag{3.15}
\end{equation*}
$$

So

$$
\left\|D_{0^{+}}^{\alpha} u\right\|_{\infty}=\left\|\phi_{q_{1}}\left(w_{1}\right)\right\|_{\infty} \leq \phi_{q_{1}}\left(\bar{M}_{1}\right), \quad\left\|D_{0^{+}}^{\alpha} v\right\|_{\infty}=\left\|\phi_{q_{2}}\left(w_{2}\right)\right\|_{\infty} \leq \phi_{q_{2}}\left(\bar{M}_{2}\right) .
$$

Combing (3.13) with (3.14), we get

$$
\begin{equation*}
\|u\|_{\infty} \leq R_{1}+\frac{\phi_{q_{1}}\left(\bar{M}_{1}\right)}{\Gamma(\alpha+1)}, \quad\|v\|_{\infty} \leq R_{2}+\frac{\phi_{q_{2}}\left(\bar{M}_{2}\right)}{\Gamma(\alpha+1)} . \tag{3.16}
\end{equation*}
$$

On the other hand, by (3.10), we have

$$
\left|c_{11}\right| t_{11}^{\alpha-1} \leq R_{1}+\frac{1}{\Gamma(\alpha)} \int_{0}^{1}(1-s)^{\alpha-1}\left|\phi_{q_{1}}\left(w_{1}(s)\right)\right| \mathrm{d} s
$$

So

$$
\begin{aligned}
\left|D_{0^{+}}^{\alpha-1} u(t)\right| & =\left|\lambda \int_{0}^{1} \phi_{q_{1}}\left(w_{1}(s)\right) \mathrm{d} s+c_{11} \Gamma(\alpha)\right| \\
& \leq \int_{0}^{1}\left|\phi_{q_{1}}\left(w_{1}(s)\right)\right| \mathrm{d} s+\left(\frac{1}{t_{11}}\right)^{\alpha-1}\left|c_{11}\right| t_{11}^{\alpha-1} \Gamma(\alpha) \\
& \leq \int_{0}^{1}\left|\phi_{q_{1}}\left(w_{1}(s)\right)\right| \mathrm{d} s+\frac{\Gamma(\alpha)}{\epsilon_{n_{1}}^{\alpha-1}} R_{1}+\frac{1}{\epsilon_{n_{1}}^{\alpha-1}} \int_{0}^{1}(1-s)^{\alpha-1}\left|\phi_{q_{1}}\left(w_{1}(s)\right)\right| \mathrm{d} s \\
& \leq\left(1+\frac{1}{\alpha \epsilon_{n_{1}}^{\alpha-1}}\right)\left\|\phi_{q_{1}}\left(w_{1}\right)\right\|_{\infty}+\frac{\Gamma(\alpha)}{\epsilon_{n_{1}}^{\alpha-1}} R_{1} \\
& \leq\left(1+\frac{1}{\alpha \epsilon_{n_{1}}^{\alpha-1}}\right) \phi_{q_{1}}\left(\bar{M}_{1}\right)+\frac{\Gamma(\alpha)}{\epsilon_{n_{1}}^{\alpha-1}} R_{1} .
\end{aligned}
$$

Likewisely,

$$
\left|D_{0^{+}}^{\alpha-1} v(t)\right| \leq\left(1+\frac{1}{\alpha \sigma_{m_{1}}^{\alpha-1}}\right) \phi_{q_{2}}\left(\bar{M}_{2}\right)+\frac{\Gamma(\alpha)}{\epsilon_{m_{1}}^{\sigma-1}} R_{2}
$$

That is,

$$
\begin{equation*}
\left\|D_{0^{+}}^{\alpha-1} u\right\|_{\infty} \leq \bar{M}_{3}, \quad\left\|D_{0^{+}}^{\alpha-1} v\right\|_{\infty} \leq \bar{M}_{4} \tag{3.17}
\end{equation*}
$$

where $\bar{M}_{3}=\left(1+\frac{1}{\alpha \epsilon_{n_{1}}^{\alpha-1}}\right) \phi_{q_{1}}\left(\bar{M}_{1}\right)+\frac{\Gamma(\alpha)}{\epsilon_{n_{1}}^{\alpha-1}} R_{1}, \bar{M}_{4}=\left(1+\frac{1}{\alpha \sigma_{m_{1}}^{\alpha-1}}\right) \phi_{q_{2}}\left(\bar{M}_{2}\right)+\frac{\Gamma(\alpha)}{\epsilon_{m_{1}}^{\sigma-1}} R_{2}$.
Since

$$
D_{0+}^{\beta-1} w_{1}(t)=\lambda \int_{0}^{1} f_{1}\left(s, u(s), v(s), \phi_{q_{1}}\left(w_{1}(s)\right), \phi_{q_{2}}\left(w_{2}(s)\right)\right) \mathrm{d} s+c_{21} \Gamma(\beta),
$$

likewisely (3.15) and (3.17) obtained, and the condition (3.9b), we can know there exist constants $\bar{M}_{5}, \bar{M}_{6}>0$ such that

$$
\begin{equation*}
\left\|D_{0^{+}}^{\beta-1} w_{1}\right\|_{\infty} \leq \bar{M}_{5}, \quad\left\|D_{0^{+}}^{\beta-1} w_{2}\right\|_{\infty} \leq \bar{M}_{6} \tag{3.18}
\end{equation*}
$$

By (3.15)-(3.18), we have

$$
\left\|\left(u, v, w_{1}, w_{2}\right)^{\mathrm{T}}\right\|_{X}=\max \left\{\|u\|_{\alpha},\|v\|_{\alpha},\left\|w_{1}\right\|_{\beta},\left\|w_{2}\right\|_{\beta}\right\} \leq r_{1}
$$

where

$$
r_{1}=\max \left\{\bar{M}_{1}, \bar{M}_{2}, \bar{M}_{3}, \bar{M}_{4}, \bar{M}_{5}, \bar{M}_{6}, R_{1}+\frac{\phi_{q_{1}}\left(\bar{M}_{1}\right)}{\Gamma(\alpha+1)}, R_{2}+\frac{\phi_{q_{2}}\left(\bar{M}_{2}\right)}{\Gamma(\alpha+1)}\right\} .
$$

Therefore, Ω_{1} is bounded. The proof of Lemma 3.4 is completed.
Lemma 3.5 Suppose that $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{5}\right)$ hold. Then the set

$$
\Omega_{2}=\{\boldsymbol{x} \in \operatorname{ker} L \mid N \boldsymbol{x} \in \operatorname{Im} L\}
$$

is bounded in X.
Proof. For $\boldsymbol{x}=\left(u, v, w_{1}, w_{2}\right)^{\mathrm{T}} \in \Omega_{2}$, we have

$$
\boldsymbol{x}=\left(c_{1} t^{\alpha-1}, c_{2} t^{\alpha-1}, c_{3} t^{\beta-1}, c_{4} t^{\beta-1}\right)^{\mathrm{T}}, \quad c_{i} \in \mathbf{R}, t \in[0,1], i=1,2,3,4 .
$$

By $N \boldsymbol{x} \in \operatorname{Im} L$, we know

$$
T_{i} N_{i} \boldsymbol{x}=0, \quad i=1,2,3,4 .
$$

By $\left(\mathrm{H}_{5}\right)$, we know there exist constants $e_{i}>0$ such that

$$
\left|c_{i}\right| \leq e_{i}, \quad i=1,2,3,4
$$

So

$$
|u(t)|=\left|c_{1} t^{\alpha-1}\right| \leq\left|c_{1}\right| \leq e_{1},
$$

that is,

$$
\|u\|_{\infty} \leq e_{1} .
$$

Likewisely,

$$
\|v\|_{\infty} \leq e_{2}, \quad\left\|w_{1}\right\|_{\infty} \leq e_{3}, \quad\left\|w_{2}\right\|_{\infty} \leq e_{4}
$$

By Lemma 2.2, we can get

$$
\left|D_{0^{+}}^{\alpha-1} u(t)\right|=\left|c_{1} \Gamma(\alpha)\right| \leq e_{1} \Gamma(\alpha),
$$

that is,

$$
\left\|D_{0^{+}}^{\alpha-1} u\right\|_{\infty} \leq e_{1} \Gamma(\alpha) .
$$

Likewisely,

$$
\left\|D_{0^{+}}^{\alpha-1} v\right\|_{\infty} \leq e_{2} \Gamma(\alpha), \quad\left\|D_{0^{+}}^{\beta-1} w_{1}\right\|_{\infty} \leq e_{3} \Gamma(\beta), \quad\left\|D_{0^{+}}^{\beta-1} w_{2}\right\|_{\infty} \leq e_{4} \Gamma(\beta) .
$$

Thus

$$
\left\|\left(u, v, w_{1}, w_{2}\right)^{\mathrm{T}}\right\|_{X}=\max \left\{\|u\|_{\alpha},\|v\|_{\alpha},\left\|w_{1}\right\|_{\beta},\left\|w_{2}\right\|_{\beta}\right\} \leq r_{2},
$$

where

$$
r_{2}=\max \left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{1} \Gamma(\alpha), e_{2} \Gamma(\alpha), e_{3} \Gamma(\beta), e_{4} \Gamma(\beta)\right\}
$$

Therefore, Ω_{2} is bounded. The proof of Lemma 3.5 is completed.

Lemma 3.6 Suppose that $\left(\mathrm{H}_{1}\right)$, $\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{5}\right)$ hold. Then the set

$$
\Omega_{3}=\{\boldsymbol{x} \in \operatorname{ker} L \mid \lambda \boldsymbol{x}+(1-\lambda) \theta J Q N \boldsymbol{x}=0, \lambda \in[0,1]\}
$$

is bounded in X, where $J: \operatorname{Im} Q \rightarrow \operatorname{ker} L$ is a isomorphism given by

$$
\begin{aligned}
J\left(\begin{array}{l}
\frac{\alpha}{1-\sum_{i=1}^{n_{1}} A_{i} \epsilon_{i}^{\alpha}} e_{1} \\
\frac{\alpha}{1-\sum_{i=1}^{m_{1}} B_{i} \sigma_{i}^{\alpha}} e_{2} \\
\frac{\beta-\gamma}{1-\sum_{i=1}^{n} a_{i} \xi_{i}^{\beta-\gamma}} e_{3} \\
\frac{\beta-\delta}{1-\sum_{i=1}^{m} b_{i} \eta_{i}^{\beta-\delta}} e_{4}
\end{array}\right) & =\left(\begin{array}{l}
e_{1} t^{\alpha-1} \\
e_{2} t^{\alpha-1} \\
e_{3} t^{\beta-1} \\
e_{4} t^{\beta-1}
\end{array}\right), \quad t \in[0,1], e_{i} \in \mathbf{R}, i=1,2,3,4 . \\
\theta & = \begin{cases}1, & \text { if }\left(\mathrm{H}_{5}\right)(1) \text { holds; } \\
-1, & \text { if }\left(\mathrm{H}_{5}\right)(2) \text { holds. }\end{cases}
\end{aligned}
$$

Proof. For $\boldsymbol{x}=\left(u, v, w_{1}, w_{2}\right)^{\mathrm{T}} \in \operatorname{ker} L,\left(u, v, w_{1}, w_{2}\right)^{\mathrm{T}}=\left(c_{1} t^{\alpha-1}, c_{2} t^{\alpha-1}, c_{3} t^{\beta-1}\right.$, $\left.c_{4} t^{\beta-1}\right)^{\mathrm{T}}, c_{i} \in \mathbf{R}, t \in[0,1], i=1,2,3,4$. There exists $\lambda \in[0,1]$ such that

$$
\lambda \boldsymbol{x}=-(1-\lambda) \theta J Q N \boldsymbol{x}
$$

that is,

$$
\lambda\left(\begin{array}{c}
c_{1} t^{\alpha-1} \\
c_{2} t^{\alpha-1} \\
c_{3} t^{\beta-1} \\
c_{4} t^{\beta-1}
\end{array}\right)=-(1-\lambda) \theta\left(\begin{array}{c}
T_{1} N_{1} \boldsymbol{x} t^{\alpha-1} \\
T_{2} N_{2} \boldsymbol{x} t^{\alpha-1} \\
T_{3} N_{3} \boldsymbol{x} t^{\beta-1} \\
T_{4} N_{4} \boldsymbol{x} t^{\beta-1}
\end{array}\right)
$$

We get

$$
\lambda c_{i}=-(1-\lambda) \theta T_{i} N_{i} \boldsymbol{x}, \quad i=1,2,3,4
$$

If $\lambda=0$, by $\left(\mathrm{H}_{5}\right)$, we get

$$
\left|c_{i}\right| \leq e_{i}, \quad i=1,2,3,4
$$

If $\lambda=1$, we get

$$
c_{i}=0, \quad i=1,2,3,4
$$

For $\lambda \in(0,1)$, one has

$$
\begin{equation*}
\left|c_{1}\right|>e_{1}, \quad\left|c_{2}\right|>e_{2}, \quad\left|c_{3}\right|>e_{3}, \quad\left|c_{4}\right|>e_{4} \tag{3.19}
\end{equation*}
$$

If at least one of the inequalities in (3.19) holds, we have that at least one of the following inequations holds:

$$
\begin{aligned}
& \lambda c_{1}^{2}=-(1-\lambda) \theta c_{1} T_{1} N_{1} \boldsymbol{x}<0 \\
& \lambda c_{2}^{2}=-(1-\lambda) \theta c_{2} T_{2} N_{2} \boldsymbol{x}<0 \\
& \lambda c_{3}^{2}=-(1-\lambda) \theta c_{3} T_{3} N_{3} \boldsymbol{x}<0 \\
& \lambda c_{4}^{2}=-(1-\lambda) \theta c_{4} T_{4} N_{4} \boldsymbol{x}<0
\end{aligned}
$$

this is a contradiction. So, for $\lambda \in[0,1]$, we get

$$
\left|c_{i}\right| \leq e_{i}, \quad i=1,2,3,4
$$

Similar to the proof of Lemma 3.5, we can get

$$
\left\|\left(u, v, w_{1}, w_{2}\right)^{\mathrm{T}}\right\| \leq r_{2} .
$$

Therefore, we obtain Ω_{3} is bounded. The proof of Lemma 3.6 is completed.

Theorem 3.1 Suppose that $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{5}\right)$ hold. Then the problem (1.1) has at least one solution in X.

Proof. Set

$$
\Omega=\left\{\boldsymbol{x} \in X \mid\|\boldsymbol{x}\|_{X}<r_{1}+r_{2}+1\right\} .
$$

Obviously, Ω is a bounded open subset of X and $\Omega_{1} \cup \Omega_{2} \cup \Omega_{3} \subset \Omega$. It follows from Lemmas 3.2 and 3.3 that L (defined by (2.2)) is a Fredholm operator of index zero and N (defined by (2.3)) is L-compact on $\bar{\Omega}$. By Lemmas 3.4 and 3.5 , we get that the following two conditions are satisfied:
(1) $L \boldsymbol{x} \neq \lambda N \boldsymbol{x}$ for every $(\boldsymbol{x}, \lambda) \in[(\operatorname{dom} L \backslash \operatorname{ker} L) \cap \partial \Omega] \times(0,1)$;
(2) $N \boldsymbol{x} \notin \operatorname{Im} L$ for every $\boldsymbol{x} \in \operatorname{ker} L \cap \partial \Omega$.

Next, we need only to prove
(3) $\operatorname{deg}\left(\left.J Q N\right|_{\text {ker } L}, \Omega \cap \operatorname{ker} L, 0\right) \neq 0$.

Take

$$
H(\boldsymbol{x}, \lambda)=\lambda \boldsymbol{x}+\theta(1-\lambda) J Q N \boldsymbol{x}, \quad \boldsymbol{x} \in(\operatorname{dom} L \backslash \operatorname{ker} L) \cap \partial \Omega, \lambda \in(0,1) .
$$

According to Lemma 3.6, we know

$$
H(\boldsymbol{x}, \lambda) \neq 0, \quad x \in \partial \Omega \cap \operatorname{ker} L
$$

By the homotopy of degree, we have

$$
\begin{aligned}
& \operatorname{deg}\left(\left.J Q N\right|_{\operatorname{ker} L}, \Omega \cap \operatorname{ker} L, 0\right) \\
= & \operatorname{deg}(\theta H(\cdot, 0), \Omega \cap \operatorname{ker} L, 0) \\
= & \operatorname{deg}(\theta H(\cdot, 1), \Omega \cap \operatorname{ker} L, 0) \\
= & \operatorname{deg}(\theta I, \Omega \cap \operatorname{ker} L, 0) \\
\neq & 0 .
\end{aligned}
$$

By Lemma 2.4, we can get that $L \boldsymbol{x}=N \boldsymbol{x}$ has at least one solution on $\operatorname{dom} L \cap \bar{\Omega}$. That is, (2.1) has at least one solution in X. Then we know (1.1) has at least one solution in X. The proof of Theorem 3.1 is completed.

4 Example

Let us consider the following coupled system of fractional p-Laplacian differential equations at resonance

$$
\begin{cases}D_{0^{+}}^{\frac{3}{2}} \phi_{3}\left(D_{0^{+}}^{\frac{5}{4}} u(t)\right)=f_{1}\left(t, u(t), v(t), D_{0^{+}}^{\frac{1}{2}} u(t), D_{0^{+}}^{\frac{1}{2}} v(t)\right), & 0<t<1, \\ D_{0^{+}}^{\frac{3}{2}} \phi_{2}\left(D_{0^{+}}^{\frac{5}{4}} v(t)\right)=f_{2}\left(t, u(t), v(t), D_{0^{+}}^{\frac{1}{2}} u(t), D_{0^{+}}^{\frac{1}{2}} v(t)\right), & 0<t<1, \\ u(0)=D_{0^{+}}^{\alpha} u(0)=0, \quad u(1)=\frac{2}{3} u\left(\frac{1}{16}\right)+2 u\left(\frac{1}{81}\right), & \tag{4.1}\\ D_{0^{+}}^{\frac{1}{2}} \phi_{3}\left(D_{0^{+}}^{\frac{5}{4}} u(1)\right)=D_{0^{+}}^{\frac{1}{2}} \phi_{3}\left(D_{0^{+}}^{\frac{5}{4}} u\left(\frac{1}{4}\right)\right), \\ v(0)=D_{0^{+}}^{\alpha} v(0)=0, \quad v(1)=\frac{\sqrt{2}}{3} v\left(\frac{1}{4}\right)+\frac{\sqrt{3}}{3} v\left(\frac{1}{9}\right)+\frac{\sqrt{5}}{3} v\left(\frac{1}{25}\right), \\ D_{0^{+}}^{\frac{1}{4}} \phi_{2}\left(D_{0^{+}}^{\frac{5}{4}} v(1)\right)=\sqrt{3} D_{0^{+}}^{\frac{1}{4}} \phi_{2}\left(D_{0^{+}}^{\frac{5}{4}} u\left(\frac{1}{9}\right)\right),\end{cases}
$$

where

$$
\begin{aligned}
& f_{1}\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right)=t^{3} \cos \left(x_{1} x_{2}\right)+\frac{1}{32} e^{-(1-t)} x_{1}^{2}+\frac{t}{64} \sin x_{2}+\frac{t}{6} x_{3}^{2}+\frac{t}{3} x_{4}, \\
& f_{2}\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right)=\sqrt{t} \sin \left(x_{1} x_{2}\right)+\frac{1}{16} \cos t \sin \left(x_{1}^{2}\right)+\frac{1}{32} e^{-(1-t)} x_{2}+\frac{t}{4} x_{3}^{2}+\frac{t}{6} x_{4}
\end{aligned}
$$

Corresponding to BVP (1.1), we have that $m=n=1, m_{1}=3, n_{1}=2, \alpha=\frac{5}{4}, \beta=\frac{3}{2}$, $\gamma=\frac{1}{2}, \delta=\frac{1}{4}, \epsilon_{1}=\frac{1}{16}, \epsilon_{2}=\frac{1}{81}, \sigma_{1}=\frac{1}{4}, \sigma_{1}=\frac{1}{9}, \sigma_{1}=\frac{1}{25}, A_{1}=\frac{2}{3}, A_{2}=2, B_{1}=\frac{\sqrt{2}}{3}$, $B_{2}=\frac{\sqrt{3}}{3}, B_{3}=\frac{\sqrt{5}}{3}, \xi_{1}=\frac{1}{4}, \eta_{1}=\frac{1}{9}, a_{1}=1, b_{1}=\sqrt{3}$. Take

$$
\begin{aligned}
& \zeta_{1}=t^{3}, \quad \psi_{1}=\frac{1}{32} e^{-(1-t)}, \quad \varphi_{1}=\frac{t}{64}, \quad h_{1}=\frac{t}{6}, \quad g_{1}=\frac{t}{3}, \\
& \zeta_{2}=\sqrt{t}, \quad \psi_{2}=\frac{1}{16} \cos t, \quad \varphi_{2}=\frac{1}{32} e^{-(1-t)}, \quad h_{2}=\frac{t}{4}, \quad g_{2}=\frac{t}{6} .
\end{aligned}
$$

Then

$$
\begin{aligned}
l & =\frac{1+\xi_{n}^{\beta-1}}{\xi_{n}^{\beta-1}}\left(\frac{2}{\Gamma(\alpha+1)}\right)^{p_{1}-1}\left\|\psi_{1}\right\|_{1}+\Gamma(\beta+1)\left\|h_{1}\right\|_{1} \\
& <3 \times\left(\frac{2}{1.133}\right)^{2} \times \frac{1}{32}+1.330 \times \frac{1}{6} \\
& \approx 0.434<1.329 \approx \Gamma\left(\frac{5}{2}\right) \\
& =\Gamma(\beta+1), \\
k & =\frac{1+\eta_{m}^{\beta-1}}{\eta_{m}^{\beta-1}}\left(\frac{2}{\Gamma(\alpha+1)}\right)^{p_{2}-1}\left\|\varphi_{2}\right\|_{1}+\Gamma(\beta+1)\left\|g_{2}\right\|_{1} \\
& <4 \times\left(\frac{2}{1.133}\right) \times \frac{1}{32}+1.330 \times \frac{1}{6} \approx 0.409<1.329 \\
& \approx \Gamma\left(\frac{5}{2}\right)=\Gamma(\beta+1),
\end{aligned}
$$

and

$$
\frac{\left(1+\xi_{n}^{\beta-1}\right)\left(1+\eta_{m}^{\beta-1}\right)\left\|\varphi_{1}\right\|_{1}\left\|\psi_{2}\right\|_{1}}{(\Gamma(\beta+1)-l)(\Gamma(\beta+1)-k) \xi_{n}^{\beta-1} \eta_{m}^{\beta-1}}\left(\frac{2}{\Gamma(\alpha+1)}\right)^{p_{1}+p_{2}-2} \approx 0.484<1,
$$

$$
\frac{\Gamma^{2}(\beta)\left(1+\beta \xi_{n}^{\beta-1}\right)\left(1+\beta \eta_{m}^{\beta-1}\right)\left\|\varphi_{1}\right\|_{1}\left\|\psi_{2}\right\|_{1}}{(\Gamma(\beta+1)-l)(\Gamma(\beta+1)-k) \xi_{n}^{\beta-1} \eta_{m}^{\beta-1}}\left(\frac{2}{\Gamma(\alpha+1)}\right)^{p_{1}+p_{2}-2} \approx 0.012<1
$$

By simple calculation, we can get that $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$ and $\left(\mathrm{H}_{5}\right)(1)$ hold. By Theorem 3.1, we obtain that the problem (4.1) has at least one solution.

References

[1] Lian H, Pang H, Ge W. Solvability for second-order three-point boundary value problems at resonance on a half-line. J. Math. Anal. Appl., 2008, 337: 1171-1181.
[2] Zhang X, Feng M, Ge W. Existence result of second-order differential equations with integral boundary conditions at resonance. J. Math. Anal. Appl., 2009, 353: 311-319.
[3] Kosmatov N. Multi-point boundary value problems on an unbounded domain at resonance. Nonlinear Anal., 2008, 68: 2158-2171.
[4] $\mathrm{Du} \mathrm{B} ,\mathrm{Hu} \mathrm{X}$.$\mathrm{~A} \mathrm{new} \mathrm{continuation} \mathrm{theorem} \mathrm{for} \mathrm{the} \mathrm{existence} \mathrm{of} \mathrm{solutions} \mathrm{to} p -Lpalacian BVP$ at resonance. Appl. Math. Comput., 2009, 208: 172-176.
[5] Du Z, Lin X, Ge W. Some higher-order multi-point boundary value problem at resonance. J. Comput. Appl. Math., 2005, 177: 55-65.
[6] Xue C, Ge W. The existence of solutions for multi-point boundary value problem at resonance. Acta Math. Sinica, 2005, 48: 281-290.
[7] Ma R. Existence results of a m-point boundary value problem at resonance. J. Math. Anal. Appl., 2004, 294: 147-157.
[8] Liu Y, Ge W. Solvability of nonlocal boundary value problems for ordinary differential equations of higher order. Nonlinear Anal., 2004, 57: 435-458.
[9] Lu S , Ge W. On the existence of m-point boundary value problem at resonance for higher order differential equation. J. Math. Anal. Appl., 2003, 287: 522-539.
[10] Liu B. Solvability of multi-point boundary value problem at resonance (II). Appl. Math. Comput., 2003, 136: 353-377.
[11] Igor Podlubny. Fractional Differential Equations. New York-London: Academic Press, 1999.
[12] Miller K S, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: Wiley, 1993.
[13] Yang A, Ge W. Positive solutions for boundary value problems of N-dimension nonlinear fractional differential system. Bound. Value Probl., 2008, 437-453.
[14] Su X. Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett., 2009, 22: 64-69.
[15] Kosmatov N. A boundary value problem of fractional order at resonance. Elec. J. Differential Equations, 2010, 135(1), 1-10.
[16] Jiang W H. Solvability for a coupled system of fractional differential equations at resonance. Nonlinear Anal., 2012, 13: 2285-2292.
[17] Leibenson L S. General Problem of the Movement of a Compressible Fluid in a Porous Medium (in Russian). Moskva: Izvestiia Akademii Nauk Kirgizsko SSSR, 1983: 7-10.
[18] Chen T Y, Liu W B, Hu Z G. A boundary value problem for fractional differential equation with p-Laplacian operator at resonance. Nonlinear. Anal., 2012, 75: 3210-3217.
[19] Mawhin J. Topological degree methods in nonlinear boundary value problems. in: CBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI, 1979.
[20] Jiang J Q, Liu L S, Wu Y H. Positive solutions for p-Laplacian fourth-order differential system with integral boundary conditions. Discrete Dyn. Nat. Soc.. 2012, Article ID 293734, 19 pages.

[^0]: Received date: April 13, 2015.
 Foundation item: The Key NSF (KJ2015A196) of Anhui Higher Education and the Young Foundation (2015QN19) of Hefei Normal University.

 * Corresponding author.

 E-mail address: zhouhui0309@126.com (Zhou H), zhouzf12@126.com (Zhou Z F).

