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Abstract: In this paper Homotopy Analysis Method (HAM) is implemented for

obtaining approximate solutions of (2+1)-dimensional Navier-Stokes equations with

perturbation terms. The initial approximations are obtained using linear systems of

the Navier-Stokes equations; by the iterations formula of HAM, the first approxima-

tion solutions and the second approximation solutions are successively obtained and

Homotopy Perturbation Method (HPM) is also used to solve these equations; finally,

approximate solutions by HAM of (2+1)-dimensional Navier-Stokes equations with-

out perturbation terms and with perturbation terms are compared. Because of the

freedom of choice the auxiliary parameter of HAM, the results demonstrate that the

rapid convergence and the high accuracy of the HAM in solving Navier-Stokes equa-

tions; due to the effects of perturbation terms, the 3rd-order approximation solutions

by HAM and HPM have great fluctuation.
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1 Introduction

Most of nonlinear partial differential equations do not have a precise analytical solution,

by approximate methods these nonlinear equations can be solved. So far many numerical

algorithms have been developed for the approximate solutions of nonlinear partial differential
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equations, such as variational iteration method (see [1]–[5]), homotopy analysis method

(see [6]–[10]), differential transform method and the homotopy analysis method (see [11]),

differential quadrature method, etc. (see [12] and [13]).

Homotopy analysis method (HAM) is one of the most effective methods to find approxi-

mate solution of nonlinear partial differential equations. The HAM always provides us with

a family of solution expressions in the auxiliary parameter ~, by the convergence-controller

parameter ~, the region and rate of each solution might be adjusted and controlled conve-

niently (see [14]). The HAM has been applied to solve many types of nonlinear problems,

such as the nonlinear Cauchy problem of parabolic-hyperbolic type (see [15]), differential-

difference equations (see [16]), nonlinear reaction-diffusion-convection problems (see [17]),

nonlocal initial boundary value problem (see [18]), fractional differential equations (see [19]–

[21]), Fredholm and Volterra integral equations (see [22]). The HAM has been also used

to investigate the heat conduction problems (see [23]–[29]). Convergences of the homotopy

method are studied (see, for example, [30]–[36]).

The objective of this article is to implement HAM for finding new traveling wave solu-

tions of (2+1)-dimensional Navier-Stokes equations with perturbation terms. Navier-Stokes

equations are the most important equations in fluid dynamics for finding the velocity and

pressure functions (see [37]–[39]). Viscosity is a characteristic of a fluid, for example, air is

a kind of high viscosity fluid, water and air are fluids with low viscosity. Meanwhile, the

fluid movement equation is contained Navier-Stokes equations (see [40]).

2 Navier-Stokes Equations with Perturbation Terms

The Navier-Stokes equations with perturbation terms can be written in the following basic

form:

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂z
+

1

ρ

∂P

∂x
− ν

(
∂2U

∂x2
+

∂2U

∂z2

)
= F1, (2.1)

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂z
+

1

ρ

∂P

∂z
− ν

(
∂2V

∂x2
+

∂2V

∂z2

)
= F2, (2.2)

∂U

∂x
+

∂V

∂z
= F3, (2.3)

where U and V is speed component in direction to x and z, respectively, P is the pressure,

ρ is the fluid density, and ν is the kinematics of fluid coefficient that is positive constant,

Fi (i = 1, 2, 3) are the perturbation terms. The Navier-Stokes equations are nonlinear

partial differential equations and have perturbation terms, so approximate methods must

be constructed.

We introduce a complex variable ξ, ξ = x+z− ct, where c is the speed of traveling wave.

Thus, (2.1)–(2.3) become the ordinary differential equations as follows:

−c
dU

dξ
+ U

dU

dξ
+ V

dU

dξ
+

1

ρ

dP

dξ
− 2ν

d2U

dξ2
= F1, (2.4)
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− c
dV

dξ
+ U

dV

dξ
+ V

dV

dξ
+

1

ρ

dP

dξ
− 2ν

d2V

dξ2
= F2, (2.5)

dU

dξ
+

dV

dξ
= F3. (2.6)

The linear system of (2.4)–(2.6) as follows:

− c
dU

dξ
+

1

ρ

dP

dξ
− 2ν

d2U

dξ2
= 0,

− c
dV

dξ
+

1

ρ

dP

dξ
− 2ν

d2V

dξ2
= 0,

dU

dξ
+

dV

dξ
= 0.

The solutions of the above system can be obtained

V = a1 + a2e
−λξ, λ =

c

2ν
, U = a3 − a2e

−λξ, P = a4,

where a1, a2, a3, a4 are constants. Obviously, for ξ ≥ 0, V (ξ) and U(ξ) are asymptotically

stable.

3 The Methodology

3.1 Homotopy Analysis Method (HAM)

Consider the following nonlinear differential equation:

N [u(ξ)] = 0, (3.1)

where N is a nonlinear operator, ξ is the independent variable and u(ξ) is an unknown

function. The homotopy is constructed as follows (see [10]):

(1− q)L[φ(ξ; q)− u0(ξ)] = q~H(ξ)N [φ(ξ; q)], (3.2)

where q ∈ [0, 1] is the embedding parameter, ~ ̸= 0 is an auxiliary parameter, L is an

auxiliary linear operator, φ(ξ; q) is an unknown function, u0(ξ) is an initial guess of u(ξ),

H(ξ) is a non-zero auxiliary function. When q varies from 0 to 1, one has

φ(ξ; 0) = u0(ξ), φ(ξ; 1) = u(ξ). (3.3)

Expanding φ(ξ; q) in Taylor series with respect to q, we have

φ(ξ; q) = u0(ξ) +

+∞∑
m=1

um(ξ)qm, (3.4)

where

um(ξ) =
1

m!

∂mφ(ξ; q)

∂qm

∣∣∣∣
q=0

. (3.5)

If the auxiliary linear operator, the initial guess and the auxiliary parameter ~ are prop-

erly chosen, when q = 1, then the solution of (3.2) has the series form as follows:

u(ξ) = φ(ξ; 1) = u0(ξ) +
+∞∑
m=1

um(ξ), (3.6)

The mth-order deformation equation of (3.2) in the following

L[um(ξ)− χmum−1(ξ)] = ~H(ξ)Rm(um−1), (3.7)
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where

Rm(um−1) =
1

(m− 1)!

∂m−1N [φ(ξ; q)

∂qm−1

∣∣∣∣
q=0

, (3.8)

here, um−1 = [u0(ξ), u1(ξ), u2(ξ), u3(ξ), · · · , um−1(ξ)] and

χm =

{
0, m ≤ 1;

1, m > 1,
(3.9)

If L =
d2

dξ2
, according to (3.7)–(3.9), then the solution of (3.1) is as follows

um(ξ) = χmum−1(ξ) + ~L−1[Rm(um−1)]

= χmum−1(ξ) + ~
∫ ξ

0

∫ ξ

0

Rm(um−1)dηdη + c0ξ + c1. (3.10)

For simplicity, all boundary or initial conditions are ignored, and the integral constant

c0 = 0, c1 = 0. (3.1)–(3.10) are called the standard HAM. (3.10) shows the HAM can ensure

the convergence of the series solutions by convergence-controller parameter

3.2 Homotopy Perturbation Method (HPM)

Dividing nonlinear differential equation (3.1) into linear part (L) and nonlinear part (N),

one has

Lu+Nu− f(ξ) = 0. (3.11)

By the homotopy technique, a homotopy of (3.11) is constructed in the form

H(W, p) = (1− p)[L(W )− L(u0)] + p[N(W )− f(ξ)] = 0,

where p ∈ (0, 1) is an embedding parameter, u2(ξ) is an initial approximation of (3.1).

In HPM, the embedding parameter p is used as a small parameter. Thus, the solution

of (3.11) can be expressed as a power series of p in the form W = W0 + pW1 + p2W2 + · · ·
Set p = 1. Then an approximate solution of (3.1) is u = lim

p→1
W = W0 + W1 + W2 + · · ·

The combination of a small parameter (perturbation parameter) with a homotopy is called

homotopy perturbation method (see [41]–[43]), essentially, the HAM logically contains the

HPM (see [44]).

4 The Approximate Solutions of the Navier-Stokes Equa-
tions with Perturbation Terms

4.1 The Approximate Solutions via HAM

The Equations (2.4)–(2.6) become
dP

dξ
− ρc

dU

dξ
+ ρU

dU

dξ
+ ρV

dU

dξ
− 2νρ

d2U

dξ2
= ρF1,

d2V

dξ2
+

c

2ν

dV

dξ
− 1

2ν
U
dV

dξ
− 1

2ν
V
dV

dξ
− 1

(2νρ)

dP

dξ
=

1

2ν
F2,

dU

dξ
+

dV

dξ
= F3.
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Take initial approximations

V0 = a2e
−λξ + a1,

U0 = −a2e
−λξ + a3,

P0 = 1.

The auxiliary linear operators are

LU(ξ) =
dU

dξ
, LV (ξ) =

d2V

dξ2
, LP (ξ) =

dP

dξ
.

For m = 1, χm = 0, the iterations formulas are

P1 = ~
∫ ξ

0

(
dP0

dη
− ρc

dU0

dη
+ ρU0

dU0

dη
+ ρV0

dU0

dη
− 2νρ

d2U0

dη2
− ρF1

)
dη,

V1 = ~1
∫ ξ

0

∫ ξ

0

(
d2V0

dη2
+

c

2ν

dV0

dη
− 1

2ν
U0

dV0

dη
− 1

2ν
V0

dV0

dη
− 1

2ρν

dP0

dη
− 1

2ν
F2

)
dηdη,

U1 = ~
∫ ξ

0

(
dU0

dη
+

dV0

dη
− F3

)
dη.

For m = 1, χm = 1, the iterations formulas are

P2 = P1 + ~
∫ ξ

0

(
dP1

dη
− ρc

dU1

dη
+ ρU0

dU1

dη
+ ρU1

dU0

dη

+ρV0
dU1

dη
+ ρV1

dU0

dη
− 2νρ

d2U1

dη2
− ρF1

)
dη,

V2 = V1 + ~1
∫ ξ

0

∫ ξ

0

(
d2V1

dη2
+

c

2ν

dV1

dη
− 1

2ν
U0

dV1

dη
− 1

2ν
U1

dV0

dη

− 1

2ν
V1

dV0

dη
− 1

2ν
V0

dV1

dη
− 1

2ρν

dP1

dη
− 1

2ν
F2

)
dηdη,

U2 = ~
∫ ξ

0

(
dU1

dη
+

dV1

dη
− F3

)
dη.

For m > 1, χm = 1, the iterations formulas are

Pm = Pm−1 + ~
∫ ξ

0

(
dPm−1

dη
− ρc

dUm−1

dη
+ ρ

m−1∑
j=0

Uj
dUm−1−j

dη

+ ρ
m−1∑
j=0

Vj
dUm−1−j

dη
− 2νρ

d2Um−1

dη2
− ρF1

)
dη,

Vm = Vm + ~1
∫ ξ

0

∫ ξ

0

(
d2Vm−1

dη2
+

c

2ν

dVm−1

dη
− 1

2ν

m−1∑
j=0

Uj
dVm−1−j

dη

− 1

2ν

m−1∑
j=0

Vj
dVm−1−j

dη
− 1

2νρ

dPm−1

dη
− 1

2ν
F2

)
dηdη,

Um = Um−1 + ~
∫ ξ

0

(
dUm−1

dη
+

dVm−1

dη
− F3

)
dη.
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If the perturbation terms of the systems (2.1)–(2.3), F1 = ε sin ξ, F2 = 0 and F3 = ε cos ξ,

where ε is a positive small parameter, then we now successively obtain

P1 = − ~(a1a2ρ(e−λξ − 1)− ερ(cos ξ − 1) + a2a3ρ(e
−λξ − 1)),

U1 = − ε~ sin ξ,

V1 =
a2~1ξ(a1 + a3)

2ν
− ~1a2(a1 + a3)

c
(1− e−λξ),

P2 = − ~(a2(a1 + a3)ρ(e
−λξ − 1)− ερ(cos ξ − 1))− ~(ε− ε cos ξ + ε~ρ

+ 2ε~ρν)− (1 + 2ν)ε~ρ cos ξ + a2(a1 + a3)~ρ(e−λξ − 1)

+ (a1 + a3 − ε) · ε~ρ sin ξ + a22(a1 + a3)

2c
~ρ(e−λ/2ξ − 1) +

a22(a1 + a3)

2ν
~ρξe−λ/ξ

− a2εc
2~ρ

4(c2/4 + ν2)
e−λ/ξ sin ξ − a2εc~ρ

2(c2/(4ν) + ν)
(e−λ/ξ cos ξ − 1),

U2 =
a2(a1 + a3)~2

c
(e−λξ − 1)− ε~ sin ξ − 2ε~2 sin ξ +

a2(a1 + a3)~2ξ
2ν

,

V2 =
ε~21ξ
2ν

− a2a
2
3~22ξ2

8
− ε~21

2ν
sin ξ − (a1 + a3)a

2
2~21λ−2

4
(1− (λξ + 1)e−λξ)

− a1a2(a1 + 2a3)~21ξ2

8
− a2(a1 + a3)~21ξ

2ν
− a2(a1 + a3)~21

c
(e−λξ − 1)

+
a2~1ξ(a1 + a3)

2ν
− a2εc~21ξ

4(λ2 + 1)
+

a1a2(a2 + a3)~21ν2

4c2
(e−λ/2ξ − 1)

+
a2(a

2
1 + a22)~21ν2

c2
(e−λξ − 1)− a2~1(a1 + a3)

c
(1− e−λξ)

+
a2c~21ξ2(a1 + a3)

8ν2
+ a1a2~21ξλ

(
a1 +

a2
2

)
+ a2a3~21ξλ

(
a3 +

a2
2

)
+

a2εc
2~21[2cν(e−λξ cos ξ − 1)− 4ν2e−λξ sin ξ]

4(c2 + 4ν2)(λ2 + 1)
+

a1a2a3~21νξ
c

.

If the perturbation terms of the systems (2.1)–(2.3) F1 = 0, F2 = 0 and F3 = 0, namely,

that is no perturbation terms, then we obtain the approximation solution as follows:

P ′
1 = − a2~ρ(a1 + a3)(e

−λξ − 1),

V ′
1 =

a2~1ξ(a1 + a3)

2ν
− ~1a2(a1 + a3)

c
(1− e−λξ),

U ′
1 = 0,

P ′
2 = − ~[a2~ρ(a1 + a3)(a2 − a2e

−2λξ − 2c+ 2ce−λξ) +
a22~ρξ
2ν

e−λξ(a1 + a3)]

− a2~ρ(a1 + a3)(e
−λξ − 1),

V ′
2 = ~1

a2ξ

2ν
(a1 + a3)−

a2(a1 + a3)

2c
(1− e−λξ) +

a2(a1 + a3)~21ξ
2ν

− a2(a1 + a3)~2

c
(e−λξ − 1) +

a22(a1 + a3)~21
4c2

(e−2λξ − 1)

+
a1a2(a1 + a3)~21

c2
(e−λξ − 1)− a22(a1 + a3)(1− e−λξ − λξe−λξ)

− a2(a
2
1 + a23)~21ξ2

8ν2
+

a22(a1 + a3)~21ξ
4cv

+
a2(a

2
1 + a23)~2ξ
2cv
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+
2a1a2a3~21

c2
(e−λξ − 1)− a1a2a3~21ξ2

4ν2
+

a2(a1 + a3)c~21ξ2

8ν2
+

a1a2a3~21ξ
cν

,

U ′
2 =

a2(a1 + a3)~2

c
(e−λξ − 1) +

a2~2ξ
2ν

(a1 + a3).

By the same manner, we can obtain Um(ξ), Vm(ξ), Pm(ξ), U ′
m(ξ), V ′

m(ξ) and P ′
m(ξ) (m =

3, 4, · · · ). Then the series solution expression by HAM can be written in the form

U(ξ) = U0(ξ) + U1(ξ) + U2(ξ) + · · · ,

V (ξ) = V0(ξ) + V1(ξ) + V2(ξ) + · · · ,

P (ξ) = P0(ξ) + P1(ξ) + P2(ξ) + · · · ,

U ′(ξ) = U ′
0(ξ) + U ′

1(ξ) + U ′
2(ξ) + · · · ,

V ′(ξ) = V ′
0(ξ) + V ′

1(ξ) + V ′
2(ξ) + · · · ,

P ′(ξ) = P ′
0(ξ) + P ′

1(ξ) + P ′
2(ξ) + · · · ,

where ξ = x+ z − ct, λ =
c

2ν
, ~ and ~1 are the convergence-controller parameters that can

ensure the convergence of approximate solutions. P1(ξ), V1(ξ), U1(ξ), P
′
1(ξ), V

′
1(ξ), U

′
1(ξ)

are the first approximation solutions, P2(ξ), V2(ξ), U2(ξ), P
′
2(ξ), V

′
2(ξ), U

′
2(ξ) are the second

approximation solutions.

4.2 The Approximate Solutions via HPM

According to HPM, the homotopies are constructed as follows:

(1− p)(wξ − P0ξ) + p(wξ − ρcuξ + ρuuξ + ρvuξ − 2νρvξξ − ρε sin ξ) = 0, (4.1)

(1− p)(vξξ − V0ξξ) + p
(
vξξ +

c

2ν
vξ −

1

2ν
uvξ −

1

2ν
vvξ −

1

2νρ
wξ

)
= 0, (4.2)

(1− p)(uξ − U0ξ) + p(uξ + vξ − ε cos ξ) = 0, (4.3)

where

w = w0 + pw1 + p2w2 + · · · ,

u = u0 + pu1 + p2u2 + · · · ,

v = v0 + pv1 + p2v2 + · · ·
The variables P , U and V can be obtained as

P = lim
p→1

w = w0 + w1 + w2 + · · · ,

U = lim
p→1

u = u0 + u1 + u2 + · · · ,

V = lim
p→1

v = v0 + v1 + v2 + · · ·

After expanding (4.1)–(4.3), the second power of p, one obtains

p0 : w0ξ = P0ξ, v0ξξ = V0ξξ, u0ξ = U0ξ. (4.4)

p1 : w1ξ − ρcu0ξ + ρu0u0ξ + ρv0u0ξ − 2ρνu0ξξ − ρε sin ξ = 0,

v1ξξ +
c

2ν
v0ξ −

1

2ν
u0v0ξ −

1

2ν
v0v0ξ −

1

2ρν
w0ξ = 0,

u1ξ + v0ξ − ε cos ξ = 0. (4.5)

p2 : w2ξ − ρcu1ξ + ρu0u1ξ + ρu1u0ξ + ρv0u1ξ + ρv1u0ξ − 2ρνu1ξξ = 0,
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v2ξξ +
c

2ν
v1ξ −

1

2ν
u0v1ξ −

1

2ν
u1v0ξ −

1

2ν
v1v0ξ −

1

2ν
v0v1ξ −

1

2ρν
w1ξ = 0,

u2ξ + v1ξ = 0. (4.6)

The solutions of (4.4)–(4.6) can be obtained

w1 = a1a2ρ(e
−λξ − 1)− ερ(cos ξ − 1) + a2a3ρ(e

−λξ − 1),

v1 = − a2ξ(a1 + a3 − c)

2ν
+

a2(a1 + a3 − c)

c
(1− e−λξ),

u1 = ε sin ξ − a2(e
−λξ − 1),

w2 = a22ρ(e
−λξ − 1)− a2(a1 + a3)ρ− 2ερν(1− cos ξ) + ρa2(a1 + a3)e

−λξ

− ερ(a1 + a3 + c) sin ξ +
a22ρ

2c
(a1 + a3)−

2νa2εcρ

c2+2ν2

− a22ρ

2c
(a1 + a3)e

−λ/2ξ − a22ρξ

2c
(a1 + a3)e

−λξ +
a22cρξ

2ν
e−λξ

− a22ρ

2c
(a1 + a3)e

−λ/2ξ − a22ρξ

2c
(a1 + a3)e

−λξ +
a22cρξ

2ν
e−λξ,

v2 = a2(e
−λξ − 1) +

ξ

2ν
(ε− a22)−

ε

2ν
sin ξ − a22

c
(e−λξ − 1)

+
a22(a1 + a3)

4c22
(e−λ/2ξ − 1) +

a2(a
2
1 + a23)

c22
(e−λξ − 1)− 3a2(a1 + a3)ξ

2ν

+
a2cξ

2ν
− (a1 + a3 + c)a22c

−2

[
1−

(
cξ

2ν
+ 1

)
e−λξ

]
− (3(a1+a3)c+ 2a1a3)a2

c2
(e−λξ − 1) +

a1a2ξ

4cν
(a2 + 2a1) +

a2a3ξ

4cν
(2a3 + a2)

− a2ξ
2

8ν2
(a1 + a3 − c)2 +

a1a2a2ξ

cν
− a2εcξ

c2 + 4ν2
+ a2ε2λ

2[(λ2 + 1)−2

− (cos ξ + λ sin ξ)]e−λξ − a2εc[λ(e
−λξ cos ξ − 1)− e−λξ sin ξ]

c2λ2 + 2c2 + 4ν2
,

u2 =
a2(a1 + a3 − c)

c(e−λξ − 1)
+

a2(a1 + a3 − c)ξ

2ν
,

and so on.

Finally, the approximated solutions are given by

P = w0 + w1 + w2 + · · · ,

U = u0 + u1 + u2 + · · · ,

V = v0 + v1 + v2 + · · ·

5 Comparison and Graphical Representations of the Ap-
proximation Solutions

In this section, to illustrate the efficiency of the method, comparisons are made. The ref-

erence [40] obtains the exact solutions of the systems of (2+1)-dimensional Navier-Stokes
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equations without perturbation terms by the expansion of the exp-function method, i.e.,

PEXACT(ξ) =
a′′1sb0e

ξ + a−1ρ(iw + ia′1s− sa1)

sb0eξ
,

VEXACT(ξ) =
a′1b0e

ξ + a′1b0b
′
0 − ia−1 − ib′0a−1e

−ξ

b0(eξ + b′0)
,

UEXACT(ξ) =
a1b0e

ξ + a−1 + a1b
2
0 + a−1b0e

−ξ

b0(eξ + b0)
,

ξ = isx+ sz + wt,

where the subscript EXACT is abbreviation of exact solution.

When there are no perturbation terms, the 3rd-order approximation solutions by HAM

are

P ′
HAM(x, z, t) ∼= P ′

0(x, z, t) + P ′
1(x, z, t) + P ′

2(x, z, t),

U ′
HAM(x, z, t) ∼= U ′

0(x, z, t) + U ′
1(x, z, t) + U ′

2(x, z, t),

V ′
HAM(x, z, t) ∼= V ′

0(x, z, t) + V ′
1(x, z, t) + V ′

2(x, z, t).

We now compare the approximation solutions of the (2+1)-dimensional Navier-Stokes equa-

tions without perturbation terms by HAM with the exact solutions by the expansion of

the exp-function method. For some values, a1 = 1, a2 = 2, a3 = 2, ν = 0.8, ~ = 0.05,

~1 = −0.02, c = 1, ρ = 1.29, x = 0.5, 0 ≤ t ≤ 3, 0 ≤ z ≤ 20, in order to be consistent

with approximation solutions by HAM, taking s = 1, w = −1; other parameters: a1 = −3,

b0 = 3, a−1 = 3, a′1 = 2, a′′1 = 2, b′0 = −2, the graphical representations of P ′
HAM(0.5, z, t),

V ′
HAM(0.5, z, t), U ′

HAM(0.5, z, t), PEXACT(0.5, z, t), VEXACT(0.5, z, t), UEXACT(0.5, z, t),

are shown in Fig. 5.1(a)–(f), respectively.

When x = 0.5, the 3rd-order approximation solutions by HAM of the (2+1)-dimensional

Navier-Stokes equations with perturbation terms are given by

P = PHAM(0.5, z, t) ∼= P0(0.5, z, t) + P1(0.5, z, t) + P2(0.5, z, t),

UHAM(0.5, z, t) ∼= U0(0.5, z, t) + U1(0.5, z, t) + U2(0.5, z, t),

VHAM(0.5, z, t) ∼= V0(0.5, z, t) + V1(0.5, z, t) + V2(0.5, z, t).

Meanwhile, the 3rd-order approximation solutions by HPM are given by

PHPM(0.5, z, t) ∼= w0(0.5, z, t) + w1(0.5, z, t) + w2(0.5, z, t),

UHPM(0.5, z, t) ∼= u0(0.5, z, t) + u1(0.5, z, t) + u2(0.5, z, t),

VHPM(0.5, z, t) ∼= v0(0.5, z, t) + v1(0.5, z, t) + v2(0.5, z, t).

The 3rd-order approximation solutions by HAM of the (2+1)-dimensional Navier-Stokes

equations with perturbation terms are compared with 3rd-order approximation solutions

by HPM, the graphical representations of PHAM(0.5, z, t), PHPM(0.5, z, t), VHAM(0.5, z, t),

VHPM(0.5, z, t), UHAM(0.5, z, t), UHPM(0.5, z, t) are shown in Fig. 5.2(a)–(f), respectively.

ε = 0.2, the remaining parameters are the same as the above.
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(a) P ′
HAM(0.5, z, t) (b) PEXACT(0.5, z, t)

(c) V ′
HAM(0.5, z, t) (d) VEXACT(0.5, z, t)

(e) U ′
HAM(0.5, z, t) (f) UEXACT(0.5, z, t)

Fig. 5.1
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(a) PHAM(0.5, z, t) (b) PHPM(0.5, z, t)

(c) VHAM (0.5, z, t) (d) VHPM(0.5, z, t)

(e) UHAM(0.5, z, t) (f) UHPM(0.5, z, t)

Fig. 5.2
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6 Discussion

From Fig. 5.1 we observe that the solutions by HAM of P ′
HAM(0.5, z, t) and PEXACT(0.5, z, t),

U ′
HAM (0.5, z, t) and UEXACT(0.5, z, t) are basically in good agreement, but V ′

HAM(0.5, z, t)

and VEXACT (0.5, z, t) have some differences, because some parameters value are different.

It is seen that from Fig. 5.2, due to the perturbation terms, the HAM solution and the

HPM solution of have great fluctuation characteristics and the HAM solution more rapid

convergence. The comparisons of Fig. 5.1 and Fig. 5.2 reveal that the perturbation terms

have great effect to the (2+1)-dimensional Navier-Stokes equations, thus the perturbation

effects cannot neglected in the traveling wave propagation. So HAM is very effective and

convenient for solving nonlinear partial differential equations and has the great validity and

potential.

7 Conclusions

Navier-Stokes equations are the most important equations in fluid dynamics for finding the

velocity and pressure functions. In this study, we use the HAM for finding the 3rd-order ap-

proximate solutions of (2+1)-dimensional Navier-Stokes equations without the perturbation

terms and with the perturbation terms. The 3rd-order approximate solutions of (2+1)-

dimensional Navier-Stokes equations without perturbation terms by HAM are compared

with the exact solutions by the expansion of the exp-function method, the 3rd-order ap-

proximate solutions of (2+1)-dimensional Navier-Stokes equations with perturbation terms

by HAM are compared with the 3rd-order approximate solutions by HPM. The results show

that a rapid convergence and a high accuracy of the HAM for solved (2+1)-dimensional

Navier-Stokes equations and the perturbation terms have considerable effects in the travel-

ing wave propagation.
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