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1 Introduction

Let Kn denote the set of convex bodies (compact, convex subsets with nonempty inte-

riors) in Euclidean space Rn. Let Kn
o and Kn

c respectively denote the set of convex bodies

containing the origin in their interiors and the set of convex bodies whose centroids lie at

the origin. Besides, for the set of star bodies (about the origin) and the set of star bodies

whose centroids lie at the origin in Rn, we write Sn
o and Sn

c , respectively. Let S
n−1 denote

the unit sphere in Rn and V (K) denote the n-dimensional volume of a body K. For the

standard unit ball B in Rn, its volume is written by ωn = V (B).

The notion of centroid body was introduced by Petty[1]. In [2], for a compact set K,

the centroid body, ΓK, of K is an origin-symmetric convex body whose support function is

defined by

h(ΓK,u) =
1

V (K)

∫
K

|u · x|dx, u ∈ Sn−1.
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The centroid body is one of the most important notions in the Brunn-Minkowski theory. In

recent decades, the centroid bodies have attracted increasing attention (see [2] and [3]).

In 1997, Lutwak and Zhang[4] introduced the notion of Lp-centroid bodies. For each

compact star-shaped (about the origin) K in Rn and real number p ≥ 1, the Lp-centroid

body, ΓpK, of K is an origin-symmetric convex body whose support function is defined by

h(ΓpK,u)p =
1

cn,pV (K)

∫
K

|u · x|pdx

=
1

cn,p(n+ p)V (K)

∫
Sn−1

|u · v|pρ(K, v)n+pdS(v), u ∈ Sn−1. (1.1)

Here

cn,p =
ωn+p

ω2ωnωp−1
,

and dS(v) denotes the standard spherical Lebesgue measure on Sn−1. Regarding the inves-

tigations of Lp-centroid bodies, we may refer to [5]–[14].

In 2005, Ludwig[15] introduced a function φτ : R → [0, +∞) by

φτ (t) = |t|+ τt (1.2)

with a parameter τ ∈ [−1, 1].

Based on Lp-centroid bodies and function (1.2), Feng et al.[16] defined a corresponding

notion of general Lp-centroid bodies in [16]. For K ∈ Sn
o , p ≥ 1 and τ ∈ [−1, 1], the general

Lp-centroid body, Γ τ
p K, of K is a convex body whose support function is defined by

h(Γ τ
p K, u)p =

1

cn,p(τ)V (K)

∫
K

φτ (u · x)pdx

=
1

cn,p(τ)(n+ p)V (K)

∫
Sn−1

φτ (u · v)pρ(K, v)n+pdS(v), (1.3)

where

cn,p(τ) =
1

2
cn,p[(1 + τ)p + (1− τ)p].

The normalization is chosen such that

Γ τ
p B = B, τ ∈ [−1, 1]

and

Γ 0
pK = ΓpK.

For the more investigations of general Lp-centroid bodies, see [16]–[18].

Combined with Lp-mixed volume, Lutwak[19] gave the definition of Lp-geominimal sur-

face area. For K ∈ Kn
o , p ≥ 1, the Lp-geominimal surface area, Gp(K), of K is defined

by

ω
p
n
n Gp(K) = inf

{
nVp(K,Q)V (Q∗)

p
n : Q ∈ Kn

o

}
.

Here Vp(M,N) denotes the Lp-mixed volume of M,N ∈ Kn
o . When p = 1, G1(K) is just the

classical counterpart which was introduced by Petty[20]. The Lp-geominimal surface area

have got many results from these articles (see [21]–[24]).

According to the notion of Lp-geominimal surface area and Lp-dual mixed volume, Wang

and Qi[25] introduced the definition of Lp-dual geominimal surface area. For K ∈ Sn
c , p ≥ 1,
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the Lp-dual geominimal surface area, G̃−p(K), of K is defined by

ω
− p

n
n G̃−p(K) = inf

{
nṼ−p(K,Q)V (Q∗)−

p
n : Q ∈ Kn

c

}
. (1.4)

Here Ṽ−p(M,N) denotes the Lp-dual mixed volume ofM,N ∈ Sn
o . For the studies of Lp-dual

geominimal surface area, some results have been obtained in many articles (see [26]–[32]).

Let Wn
p denote the set of the polar of all Lp-centroid bodies. Because of the polar of

Lp-centroid body is the origin-symmetric, thus

Wn
p ⊆ Kn

c .

For the convenience of our work, we improve the definition (1.4) from Q ∈ Kn
c to Q ∈ Wn

p

as follows:

If Q ∈ Wn
p in (1.4), we write G̃◦

−p(K) by

ω
− p

n
n G̃◦

−p(K) = inf
{
nṼ−p(K,Q)V (Q∗)−

p
n : Q ∈ Wn

p

}
. (1.5)

In this paper, associated with the Lp-dual geominimal surface area (1.5), we research

the Shephard type problem for the general Lp-centroid bodies. In Section 2, we recall some

notations and background material. In Section 3, we give and prove main results.

2 Notation and Background Material

2.1 Support Function, Radial Function and Polar of Convex Bodies

Let R be the set of real numbers. If K ∈ Kn, then the support function of K,

hK = h(K, · ) : Rn → R,

is defined by (see [2])

h(K, x) = max{x · y : y ∈ K}, x ∈ Rn,

where x · y denotes the standard inner product of x and y in Rn.

If K is a compact star shaped (about the origin) in Rn, then its radial function,

ρK = ρ(K, · ) : Rn \ {0} → [0, +∞),

is defined by ([3])

ρ(K, x) = max{λ ≥ 0 : λx ∈ K}, x ∈ Rn \ {0}.

If ρK is positive and continuous, K is called a star body (with respect to origin).

If E is a nonempty subset and contains the origin in Rn, then the polar set, E∗, of E is

defined by (see [2] and [3])

E∗ = {x ∈ Rn : x · y ≤ 1, y ∈ E}.

Meanwhile, it is easy to get that (K∗)∗ = K for K ∈ Kn
o .

From the above definitions, we see that if K ∈ Kn
o , then ([2] and [3])

h(K∗, · ) = 1

ρ(K, · )
, ρ(K∗, · ) = 1

h(K, · )
. (2.1)

Associated with (2.1), if K,L ∈ Kn
o and K ⊆ L, then K∗ ⊇ L∗.
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2.2 Lp-mixed Volume and Lp-dual Mixed Volume

If K, L ∈ Kn
o , then for p ≥ 1, the Lp-mixed volume, Vp(K,L), of K and L is given by (see

[33])

Vp(K, L) =
1

n

∫
Sn−1

h(L, u)pdSp(K, u). (2.2)

Here Sp(K, · ) denotes the Lp-surface area measure of K.

In 1996, Lutwak[19] introduced the notion of Lp-dual mixed volume as follows: If K,L ∈
Sn
o , p ≥ 1, the Lp-dual mixed volume, Ṽ−p(K,L), of K and L is given by

Ṽ−p(K, L) =
1

n

∫
Sn−1

ρ(K, u)n+pρ(L, u)−pdS(u). (2.3)

From (2.3) it is easy to see that

Ṽ−p(K, K) = V (K) =
1

n

∫
Sn−1

ρ(K, u)ndS(u). (2.4)

The Lp-dual Minkowski’s inequality can be stated as follows:

Theorem 2.1 [19] If K,L ∈ Sn
o , p ≥ 1, then

Ṽ−p(K, L) ≥ V (K)
n+p
n V (L)−

p
n (2.5)

with equality if and only if K and L are dilates.

2.3 General Lp-projection Body

For K ∈ Kn
o , p ≥ 1, the Lp-projection body, ΠpK, of K is an origin-symmetric convex body

whose support function is given by (see [9])

h(ΠpK, u)p =
1

nωncn−2, p

∫
Sn−1

|u · v|pdSp(K, v), u, v ∈ Sn−1.

In 2005, Ludwig[15] introduced the general Lp-projection body by the function φτ (t):

For K ∈ Kn
o , p ≥ 1, the general Lp-projection body, Π τ

p K ∈ Kn
o , of K is given by

h(Π τ
p K, u)p = αn, p(τ)

∫
Sn−1

φτ (u · v)pdSp(K, v), (2.6)

where

αn, p(τ) =
αn, p

(1 + τ)p + (1− τ)p
,

with

αn, p =
1

cn, p(n+ p)ωn
.

The normalization is chosen such that

Π τ
p B = B, τ ∈ [−1, 1], Π 0

pK = ΠpK.

3 Main Theorems and Proofs

Lemma 3.1 [16] If K,L ∈ Sn
o , p ≥ 1 and τ ∈ [−1, 1], then

Ṽ−p(K, Γ τ,∗
p L)

V (K)
=

Ṽ−p(L, Γ
τ,∗
p K)

V (L)
. (3.1)
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Theorem 3.1 For K, L ∈ Sn
c , p ≥ 1 and τ ∈ [−1, 1], if Γ τ

p K ⊆ Γ τ
p L, then

G̃◦
−p(K)

V (K)
≤

G̃◦
−p(L)

V (L)
, (3.2)

equality holds when

Γ τ
p K = Γ τ

p L.

Proof. For K, L ∈ Sn
c , p ≥ 1 and τ ∈ [−1, 1], if Γ τ

p K ⊆ Γ τ
p L, then

ρ(Γ τ,∗
p K, · ) ≥ ρ(Γ τ,∗

p L, · )
with equality if and only if

Γ τ,∗
p K = Γ τ,∗

p L. (3.3)

From (1.5) and (3.1), taking Q = Γ τ,∗
p N , we get

ω
− p

n
n G̃◦

−p(K)

V (K)
= inf

{
n
Ṽ−p(K, Q)

V (K)
V (Q∗)−

p
n : Q ∈ Wn

p

}
= inf

{
n
Ṽ−p(K, Γ τ,∗

p N)

V (K)
V (Γ τ

p N)−
p
n : Γ τ,∗

p N ∈ Wn
p

}
= inf

{
n
Ṽ−p(N, Γ τ,∗

p K)

V (N)
V (Γ τ

p N)−
p
n : Γ τ,∗

p N ∈ Wn
p

}
≤ inf

{
n
Ṽ−p(N, Γ τ,∗

p L)

V (N)
V (Γ τ

p N)−
p
n : Γ τ,∗

p N ∈ Wn
p

}
= inf

{
n
Ṽ−p(L, Γ

τ,∗
p N)

V (L)
V (Γ τ

p N)−
p
n : Γ τ,∗

p N ∈ Wn
p

}
=

ω
− p

n
n G̃◦

−p(L)

V (L)
.

This gives (3.2), and equality holds when

Γ τ
p K = Γ τ

p L.

Lemma 3.2 If K ∈ Kn
o , L ∈ Sn

o and p ≥ 1, then

Vp(K, Γ τ
p L) =

2

cn,pαn,p(n+ p)V (L)
Ṽ−p(L, Π

τ,∗
p K).

Proof. By (2.2), (1.3) and (2.6), we have

Vp(K, Γ τ
p L) =

1

n

∫
Sn−1

h(Γ τ
p L, u)

pdSp(K, u)

=
1

n

∫
Sn−1

1

cn,p(τ)(n+ p)V (L)

∫
Sn−1

φτ (u · v)pρ(L, v)n+pdS(v)dSp(K,u)

=
(1 + τ)p + (1− τ)p

nαn,pcn,p(τ)(n+ p)V (L)

∫
Sn−1

ρ(L, v)n+ph(Π τ
p K, v)pdS(v)

=
(1 + τ)p + (1− τ)p

nαn,pcn,p(τ)(n+ p)V (L)

∫
Sn−1

ρ(L, v)n+pρ(Π τ,∗
p K, v)−pdS(v)

=
2

αn,pcn,p(n+ p)V (L)
Ṽ−p(L, Π

τ,∗
p K).

This yields (3.3).
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Lemma 3.3 For K,L ∈ Sn
c and p ≥ 1, if Γ τ

p K ⊆ Γ τ
p L and L is the polar of general

Lp-projection body, then

V (K) ≤ V (L) (3.4)

with equality if and only if K = L.

Proof. For K,L ∈ Sn
c and p ≥ 1, if Γ τ

p K ⊆ Γ τ
p L, then for any M ∈ Kn

o , we know

Vp(M, Γ τ
p K) ≤ Vp(M, Γ τ

p L).

This together with (3.3), we get
1

V (K)
Ṽ−p(K, Π τ,∗

p M) ≤ 1

V (L)
Ṽ−p(L, Π

τ,∗
p M). (3.5)

Since L is the polar of general Lp-projection body, thus taking

Π τ,∗
p M = L

in (3.5), and according to (2.4) and (2.5), we have

V (K) ≥ Ṽ−p(K,L) ≥ V (K)
n+p
n V (L)−

p
n ,

i.e.,

V (K) ≤ V (L).

According to the equality condition of (2.5), we see that

V (K) = V (L)

if and only if K and L are dilates and

Γ τ
p K = Γ τ

p L,

these imply

K = L.

Hence, equality holds in (3.4) if and only if

K = L.

Theorem 3.2 For K, L ∈ Sn
c , p ≥ 1 and τ ∈ [−1, 1], if Γ τ

p K ⊆ Γ τ
p L and L is the polar

of general Lp-projection body, then

G̃◦
−p(K) ≤ G̃◦

−p(L) (3.6)

with equality if and only if

K = L.

Proof. For K, L ∈ Sn
c , p ≥ 1 and τ ∈ [−1, 1], if Γ τ

p K ⊆ Γ τ
p L, then from Theorem 3.1, we

know
G̃◦

−p(K)

V (K)
≤

G̃◦
−p(L)

V (L)
,

i.e.,

G̃◦
−p(K)

G̃◦
−p(L)

≤ V (K)

V (L)
. (3.7)

Since L is the polar of general Lp-projection body, thus from Lemma 3.3 and (3.7), we get

G̃◦
−p(K) ≤ G̃◦

−p(L).
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This is just inequality (3.6).

Now, we give the equality condition of inequality (3.6). If

G̃◦
−p(K) = G̃◦

−p(L),

then by (3.7) and Lemma 3.3 we obtain

1 ≤ V (K)

V (L)
≤ 1,

i.e.,

V (K) = V (L).

This combining with the equality condition of (3.4) yields K = L.

Conversely, if K = L, by definition (1.5), then we easily get

G̃◦
−p(K) = G̃◦

−p(L).

To sum up, we see that equality holds in (3.6) if and only if

K = L.

This completes the proof.

Putting τ = 0 in Theorem 3.2, we obtain a positive answer for the Shephard type problem

of Lp-centroid body as follows:

Corollary 3.1 For K, L ∈ Sn
c , p ≥ 1, if ΓpK ⊆ ΓpL and L is the polar of Lp-projection

body, then

G̃◦
−p(K) ≤ G̃◦

−p(L)

with equality if and only if

K = L.
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