The Shephard Type Problems for General L_p -Centroid Bodies

Zhang Juan¹ and Wang Wei-Dong^{1,2,*}

 Department of Mathematics, China Three Gorges University, Yichang, Hubei, 443002)
 (2. Three Gorges Mathematical Research Center, China Three Gorges University, Yichang, Hubei, 443002)

Communicated by Rong Xiao-chun

Abstract: In this paper, combining with the L_p -dual geominimal surface area and the general L_p -centroid bodies, we research the Shephard type problems for general L_p -centroid bodies.

Key words: Shephard type problem, general L_p -centroid body, L_p -dual geominimal surface area

2010 MR subject classification: 52A20, 52A39, 52A40

Document code: A

Article ID: 1674-5647(2019)01-0027-08 DOI: 10.13447/j.1674-5647.2019.01.04

1 Introduction

Let \mathcal{K}^n denote the set of convex bodies (compact, convex subsets with nonempty interiors) in Euclidean space \mathbf{R}^n . Let \mathcal{K}^n_o and \mathcal{K}^n_c respectively denote the set of convex bodies containing the origin in their interiors and the set of convex bodies whose centroids lie at the origin. Besides, for the set of star bodies (about the origin) and the set of star bodies whose centroids lie at the origin in \mathbf{R}^n , we write \mathcal{S}^n_o and \mathcal{S}^n_c , respectively. Let S^{n-1} denote the unit sphere in \mathbf{R}^n and V(K) denote the *n*-dimensional volume of a body K. For the standard unit ball B in \mathbf{R}^n , its volume is written by $\omega_n = V(B)$.

The notion of centroid body was introduced by $\text{Petty}^{[1]}$. In [2], for a compact set K, the centroid body, ΓK , of K is an origin-symmetric convex body whose support function is defined by

$$h(\Gamma K, u) = \frac{1}{V(K)} \int_{K} |u \cdot x| \mathrm{d}x, \qquad u \in S^{n-1}.$$

Received date: May 19, 2018. Foundation item: The NSF (11371224) of China.

^{*} Corresponding author.

E-mail address: 1615001934@qq.com (Zhang J), wangwd722@163.com (Wang W D).

The centroid body is one of the most important notions in the Brunn-Minkowski theory. In recent decades, the centroid bodies have attracted increasing attention (see [2] and [3]).

In 1997, Lutwak and Zhang^[4] introduced the notion of L_p -centroid bodies. For each compact star-shaped (about the origin) K in \mathbb{R}^n and real number $p \geq 1$, the L_p -centroid body, $\Gamma_p K$, of K is an origin-symmetric convex body whose support function is defined by

$$h(\Gamma_p K, u)^p = \frac{1}{c_{n,p} V(K)} \int_K |u \cdot x|^p dx$$

= $\frac{1}{c_{n,p} (n+p) V(K)} \int_{S^{n-1}} |u \cdot v|^p \rho(K, v)^{n+p} dS(v), \quad u \in S^{n-1}.$ (1.1)

Here

$$c_{n,p} = \frac{\omega_{n+p}}{\omega_2 \omega_n \omega_{p-1}},$$

and dS(v) denotes the standard spherical Lebesgue measure on S^{n-1} . Regarding the investigations of L_p -centroid bodies, we may refer to [5]–[14].

In 2005, Ludwig^[15] introduced a function $\varphi_{\tau} : \mathbf{R} \to [0, +\infty)$ by

$$\varphi_{\tau}(t) = |t| + \tau t \tag{1.2}$$

with a parameter $\tau \in [-1, 1]$.

Based on L_p -centroid bodies and function (1.2), Feng *et al.*^[16] defined a corresponding notion of general L_p -centroid bodies in [16]. For $K \in \mathcal{S}_o^n$, $p \ge 1$ and $\tau \in [-1, 1]$, the general L_p -centroid body, $\Gamma_p^{\tau} K$, of K is a convex body whose support function is defined by

$$h(\Gamma_{p}^{\tau}K, u)^{p} = \frac{1}{c_{n,p}(\tau)V(K)} \int_{K} \varphi_{\tau}(u \cdot x)^{p} dx$$

= $\frac{1}{c_{n,p}(\tau)(n+p)V(K)} \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^{p} \rho(K, v)^{n+p} dS(v),$ (1.3)

where

$$c_{n,p}(\tau) = \frac{1}{2}c_{n,p}[(1+\tau)^p + (1-\tau)^p].$$

The normalization is chosen such that

$$\Gamma_p^{\tau} B = B, \qquad \tau \in [-1, 1]$$

and

$$\Gamma_p^0 K = \Gamma_p K.$$

For the more investigations of general L_p -centroid bodies, see [16]–[18].

Combined with L_p -mixed volume, Lutwak^[19] gave the definition of L_p -geominimal surface area. For $K \in \mathcal{K}_o^n$, $p \ge 1$, the L_p -geominimal surface area, $G_p(K)$, of K is defined by

$$\omega_n^{\frac{p}{n}}G_p(K) = \inf\left\{nV_p(K,Q)V(Q^*)^{\frac{p}{n}} : Q \in \mathcal{K}_o^n\right\}.$$

Here $V_p(M, N)$ denotes the L_p -mixed volume of $M, N \in \mathcal{K}_o^n$. When $p = 1, G_1(K)$ is just the classical counterpart which was introduced by Petty^[20]. The L_p -geominimal surface area have got many results from these articles (see [21]–[24]).

According to the notion of L_p -geominimal surface area and L_p -dual mixed volume, Wang and Qi^[25] introduced the definition of L_p -dual geominimal surface area. For $K \in S_c^n$, $p \ge 1$, the L_p -dual geominimal surface area, $\widetilde{G}_{-p}(K)$, of K is defined by

$$\omega_n^{-\frac{p}{n}} \widetilde{G}_{-p}(K) = \inf \left\{ n \widetilde{V}_{-p}(K, Q) V(Q^*)^{-\frac{p}{n}} : Q \in \mathcal{K}_c^n \right\}.$$
(1.4)

Here $\widetilde{V}_{-p}(M, N)$ denotes the L_p -dual mixed volume of $M, N \in \mathcal{S}_o^n$. For the studies of L_p -dual geominimal surface area, some results have been obtained in many articles (see [26]–[32]).

Let \mathcal{W}_p^n denote the set of the polar of all L_p -centroid bodies. Because of the polar of L_p -centroid body is the origin-symmetric, thus

$$\mathcal{W}_p^n \subseteq \mathcal{K}_c^n$$

For the convenience of our work, we improve the definition (1.4) from $Q \in \mathcal{K}_c^n$ to $Q \in \mathcal{W}_p^n$ as follows:

If $Q \in \mathcal{W}_p^n$ in (1.4), we write $\widetilde{G}_{-p}^{\circ}(K)$ by

$$\omega_n^{-\frac{p}{n}} \widetilde{G}_{-p}^{\circ}(K) = \inf \left\{ n \widetilde{V}_{-p}(K, Q) V(Q^*)^{-\frac{p}{n}} : Q \in \mathcal{W}_p^n \right\}.$$
 (1.5)

In this paper, associated with the L_p -dual geominimal surface area (1.5), we research the Shephard type problem for the general L_p -centroid bodies. In Section 2, we recall some notations and background material. In Section 3, we give and prove main results.

2 Notation and Background Material

2.1 Support Function, Radial Function and Polar of Convex Bodies

Let **R** be the set of real numbers. If $K \in \mathcal{K}^n$, then the support function of K,

$$h_K = h(K, \cdot) : \mathbf{R}^n \to \mathbf{R},$$

is defined by (see [2])

$$h(K, \boldsymbol{x}) = \max\{\boldsymbol{x} \cdot \boldsymbol{y} : \boldsymbol{y} \in K\}, \qquad \boldsymbol{x} \in \mathbf{R}^n$$

where $\boldsymbol{x} \cdot \boldsymbol{y}$ denotes the standard inner product of \boldsymbol{x} and \boldsymbol{y} in \mathbf{R}^{n} .

If K is a compact star shaped (about the origin) in \mathbb{R}^n , then its radial function,

$$\rho_K = \rho(K, \cdot) : \mathbf{R}^n \setminus \{0\} \to [0, +\infty),$$

is defined by ([3])

$$\rho(K, \boldsymbol{x}) = \max\{\lambda \ge 0 : \lambda \boldsymbol{x} \in K\}, \qquad \boldsymbol{x} \in \mathbf{R}^n \setminus \{0\}.$$

If ρ_K is positive and continuous, K is called a star body (with respect to origin).

If E is a nonempty subset and contains the origin in \mathbb{R}^n , then the polar set, E^* , of E is defined by (see [2] and [3])

$$E^* = \{ \boldsymbol{x} \in \mathbf{R}^n : \boldsymbol{x} \cdot \boldsymbol{y} \le 1, \ \boldsymbol{y} \in E \}.$$

Meanwhile, it is easy to get that $(K^*)^* = K$ for $K \in \mathcal{K}^n_o$.

From the above definitions, we see that if $K \in \mathcal{K}_o^n$, then ([2] and [3])

$$h(K^*, \cdot) = \frac{1}{\rho(K, \cdot)}, \qquad \rho(K^*, \cdot) = \frac{1}{h(K, \cdot)}.$$
(2.1)

Associated with (2.1), if $K, L \in \mathcal{K}_o^n$ and $K \subseteq L$, then $K^* \supseteq L^*$.

2.2 L_p -mixed Volume and L_p -dual Mixed Volume

If $K, L \in \mathcal{K}_o^n$, then for $p \ge 1$, the L_p -mixed volume, $V_p(K, L)$, of K and L is given by (see [33])

$$V_p(K, L) = \frac{1}{n} \int_{S^{n-1}} h(L, u)^p \mathrm{d}S_p(K, u).$$
(2.2)

Here $S_p(K, \cdot)$ denotes the L_p -surface area measure of K.

In 1996, Lutwak^[19] introduced the notion of L_p -dual mixed volume as follows: If $K, L \in \mathcal{S}_o^n$, $p \ge 1$, the L_p -dual mixed volume, $\widetilde{V}_{-p}(K, L)$, of K and L is given by

$$\widetilde{V}_{-p}(K, L) = \frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n+p} \rho(L, u)^{-p} \mathrm{d}S(u).$$
(2.3)

From (2.3) it is easy to see that

$$\widetilde{V}_{-p}(K,K) = V(K) = \frac{1}{n} \int_{S^{n-1}} \rho(K,u)^n \mathrm{d}S(u).$$
(2.4)

The L_p -dual Minkowski's inequality can be stated as follows:

Theorem 2.1^[19] If $K, L \in S_{\alpha}^{n}, p \geq 1$, then

$$\widetilde{V}_{-p}(K, L) \ge V(K)^{\frac{n+p}{n}} V(L)^{-\frac{p}{n}}$$
(2.5)

with equality if and only if K and L are dilates.

2.3 General L_p -projection Body

For $K \in \mathcal{K}_o^n$, $p \ge 1$, the L_p -projection body, $\Pi_p K$, of K is an origin-symmetric convex body whose support function is given by (see [9])

$$h(\Pi_p K, u)^p = \frac{1}{n\omega_n c_{n-2,p}} \int_{S^{n-1}} |u \cdot v|^p \mathrm{d}S_p(K, v), \qquad u, v \in S^{n-1}$$

In 2005, Ludwig^[15] introduced the general L_p -projection body by the function $\varphi_{\tau}(t)$: For $K \in \mathcal{K}_o^n$, $p \ge 1$, the general L_p -projection body, $\Pi_p^{\tau} K \in \mathcal{K}_o^n$, of K is given by

$$h(\Pi_p^{\tau}K, u)^p = \alpha_{n,p}(\tau) \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^p \mathrm{d}S_p(K, v), \qquad (2.6)$$

where

$$\alpha_{n,p}(\tau) = \frac{\alpha_{n,p}}{(1+\tau)^p + (1-\tau)^p},$$

with

$$\alpha_{n,p} = \frac{1}{c_{n,p}(n+p)\omega_n}$$

The normalization is chosen such that

 $\Pi_p^{\tau} B = B, \quad \tau \in [-1, 1], \qquad \Pi_p^0 K = \Pi_p K.$

3 Main Theorems and Proofs

Lemma 3.1^[16] If $K, L \in S_o^n, p \ge 1$ and $\tau \in [-1, 1]$, then

$$\frac{\tilde{V}_{-p}(K,\,\Gamma_p^{\tau,*}L)}{V(K)} = \frac{\tilde{V}_{-p}(L,\,\Gamma_p^{\tau,*}K)}{V(L)}.$$
(3.1)

For $K, L \in \mathcal{S}_c^n, p \ge 1$ and $\tau \in [-1, 1]$, if $\Gamma_p^{\tau} K \subseteq \Gamma_p^{\tau} L$, then Theorem 3.1

$$\frac{\widetilde{G}_{-p}^{\circ}(K)}{V(K)} \le \frac{\widetilde{G}_{-p}^{\circ}(L)}{V(L)},\tag{3.2}$$

equality holds when

$$\Gamma_p^{\tau}K = \Gamma_p^{\tau}L.$$

Proof. For $K, L \in \mathcal{S}_c^n, p \ge 1$ and $\tau \in [-1, 1]$, if $\Gamma_p^{\tau} K \subseteq \Gamma_p^{\tau} L$, then $\rho(\Gamma_p^{\tau,*}K, \cdot) \ge \rho(\Gamma_p^{\tau,*}L, \cdot)$

with equality if and only if

$$\Gamma_p^{\tau,*}K = \Gamma_p^{\tau,*}L.$$
(3.3)
From (1.5) and (3.1), taking $Q = \Gamma^{\tau,*}N$, we get

$$\begin{aligned} \frac{\omega_n^{-\frac{p}{n}} \widetilde{G}_{-p}^{\circ}(K)}{V(K)} &= \inf \left\{ n \frac{\widetilde{V}_{-p}(K,Q)}{V(K)} V(Q^*)^{-\frac{p}{n}} : Q \in \mathcal{W}_p^n \right\} \\ &= \inf \left\{ n \frac{\widetilde{V}_{-p}(K,\Gamma_p^{\tau,*}N)}{V(K)} V(\Gamma_p^{\tau}N)^{-\frac{p}{n}} : \Gamma_p^{\tau,*}N \in \mathcal{W}_p^n \right\} \\ &= \inf \left\{ n \frac{\widetilde{V}_{-p}(N,\Gamma_p^{\tau,*}K)}{V(N)} V(\Gamma_p^{\tau}N)^{-\frac{p}{n}} : \Gamma_p^{\tau,*}N \in \mathcal{W}_p^n \right\} \\ &\leq \inf \left\{ n \frac{\widetilde{V}_{-p}(N,\Gamma_p^{\tau,*}L)}{V(N)} V(\Gamma_p^{\tau}N)^{-\frac{p}{n}} : \Gamma_p^{\tau,*}N \in \mathcal{W}_p^n \right\} \\ &= \inf \left\{ n \frac{\widetilde{V}_{-p}(L,\Gamma_p^{\tau,*}N)}{V(L)} V(\Gamma_p^{\tau}N)^{-\frac{p}{n}} : \Gamma_p^{\tau,*}N \in \mathcal{W}_p^n \right\} \\ &= \inf \left\{ n \frac{\widetilde{V}_{-p}(L,\Gamma_p^{\tau,*}N)}{V(L)} V(\Gamma_p^{\tau}N)^{-\frac{p}{n}} : \Gamma_p^{\tau,*}N \in \mathcal{W}_p^n \right\} \\ &= \frac{\omega_n^{-\frac{p}{n}} \widetilde{G}_{-p}^{\circ}(L)}{V(L)}. \end{aligned}$$

This gives (3.2), and equality holds when

$$\Gamma_p^{\tau} K = \Gamma_p^{\tau} L.$$

If $K \in \mathcal{K}_o^n$, $L \in \mathcal{S}_o^n$ and $p \ge 1$, then $V_p(K, \Gamma_p^{\tau}L) = \frac{2}{c_{n,p}\alpha_{n,p}(n+p)V(L)}\widetilde{V}_{-p}(L, \Pi_p^{\tau,*}K).$ Lemma 3.2

$$\begin{split} Proof. \quad & \text{By (2.2), (1.3) and (2.6), we have} \\ & V_p(K, \, \Gamma_p^{\tau}L) = \frac{1}{n} \int_{S^{n-1}} h(\Gamma_p^{\tau}L, \, u)^p \mathrm{d}S_p(K, \, u) \\ & = \frac{1}{n} \int_{S^{n-1}} \frac{1}{c_{n,p}(\tau)(n+p)V(L)} \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^p \rho(L, \, v)^{n+p} \mathrm{d}S(v) \mathrm{d}S_p(K, \, u) \\ & = \frac{(1+\tau)^p + (1-\tau)^p}{n\alpha_{n,p}c_{n,p}(\tau)(n+p)V(L)} \int_{S^{n-1}} \rho(L, \, v)^{n+p} h(\Pi_p^{\tau}K, \, v)^p \mathrm{d}S(v) \\ & = \frac{(1+\tau)^p + (1-\tau)^p}{n\alpha_{n,p}c_{n,p}(\tau)(n+p)V(L)} \int_{S^{n-1}} \rho(L, \, v)^{n+p} \rho(\Pi_p^{\tau,*}K, \, v)^{-p} \mathrm{d}S(v) \\ & = \frac{2}{\alpha_{n,p}c_{n,p}(n+p)V(L)} \widetilde{V}_{-p}(L, \, \Pi_p^{\tau,*}K). \end{split}$$
This yields (3.3).

This yields (3.3).

$$V(K) \le V(L) \tag{3.4}$$

with equality if and only if K = L.

Proof. For
$$K, L \in \mathcal{S}_c^n$$
 and $p \ge 1$, if $\Gamma_p^{\tau} K \subseteq \Gamma_p^{\tau} L$, then for any $M \in \mathcal{K}_o^n$, we know $V_p(M, \Gamma_p^{\tau} K) \le V_p(M, \Gamma_p^{\tau} L)$.

This together with (3.3), we get

$$\frac{1}{V(K)}\tilde{V}_{-p}(K, \Pi_{p}^{\tau,*}M) \le \frac{1}{V(L)}\tilde{V}_{-p}(L, \Pi_{p}^{\tau,*}M).$$
(3.5)

Since L is the polar of general L_p -projection body, thus taking

$$\Pi_p^{\tau,*}M = I$$

in (3.5), and according to (2.4) and (2.5), we have

$$V(K) \ge \widetilde{V}_{-p}(K,L) \ge V(K)^{\frac{n+p}{n}} V(L)^{-\frac{p}{n}},$$

i.e.,

$$V(K) \le V(L).$$

According to the equality condition of (2.5), we see that

$$V(K) = V(L)$$

if and only if K and L are dilates and

$$\Gamma_p^{\tau} K = \Gamma_p^{\tau} L,$$

these imply

K = L.

Hence, equality holds in (3.4) if and only if

$$K = L.$$

Theorem 3.2 For $K, L \in S_c^n$, $p \ge 1$ and $\tau \in [-1, 1]$, if $\Gamma_p^{\tau}K \subseteq \Gamma_p^{\tau}L$ and L is the polar of general L_p -projection body, then

$$\widetilde{G}_{-p}^{\circ}(K) \le \widetilde{G}_{-p}^{\circ}(L) \tag{3.6}$$

with equality if and only if

K = L.

Proof. For $K, L \in \mathcal{S}_c^n, p \ge 1$ and $\tau \in [-1, 1]$, if $\Gamma_p^{\tau}K \subseteq \Gamma_p^{\tau}L$, then from Theorem 3.1, we know

$$\frac{G_{-p}^{\circ}(K)}{V(K)} \le \frac{G_{-p}^{\circ}(L)}{V(L)},$$

i.e.,

$$\frac{\widetilde{G}_{-p}^{\circ}(K)}{\widetilde{G}_{-p}^{\circ}(L)} \le \frac{V(K)}{V(L)}.$$
(3.7)

Since L is the polar of general L_p -projection body, thus from Lemma 3.3 and (3.7), we get $\widetilde{G}_{-p}^{\circ}(K) \leq \widetilde{G}_{-p}^{\circ}(L).$

This is just inequality (3.6).

Now, we give the equality condition of inequality (3.6). If

$$\widetilde{\widetilde{G}}_{-p}^{\circ}(K) = \widetilde{G}_{-p}^{\circ}(L),$$

then by (3.7) and Lemma 3.3 we obtain

$$1 \le \frac{V(K)}{V(L)} \le 1,$$

i.e.,

$$V(K) = V(L).$$

This combining with the equality condition of (3.4) yields K = L.

Conversely, if K = L, by definition (1.5), then we easily get

$$\widetilde{G}^{\circ}_{-p}(K) = \widetilde{G}^{\circ}_{-p}(L)$$

To sum up, we see that equality holds in (3.6) if and only if

$$K = L$$

This completes the proof.

Putting $\tau = 0$ in Theorem 3.2, we obtain a positive answer for the Shephard type problem of L_{v} -centroid body as follows:

Corollary 3.1 For $K, L \in \mathcal{S}_c^n, p \ge 1$, if $\Gamma_p K \subseteq \Gamma_p L$ and L is the polar of L_p -projection body, then

$$\widetilde{G}^{\circ}_{-p}(K) \le \widetilde{G}^{\circ}_{-p}(L)$$

with equality if and only if

K = L.

References

- [1] Petty C M. Centroid surfaces. Pacific J. Math., 1961, 11(3): 1535–1547.
- [2] Gardner R J. Geometric Tomography. Second Edition. Encyclopedia of Mathematics and Its Applications, 58. New York: Cambridge University Press, 2006.
- [3] Schneider R. Convex Bodies: the Brunn-Minkowski Theory. Second Expanded Edition. Encyclopedia of Mathematics and Its Applications, 151. Cambridge: Cambridge University Press, 2014.
- [4] Lutwak E, Zhang G Y. Blaschke-Santaló inequalities. J. Differential Geom., 1997, 47: 1–16.
- [5] Campi S, Gronchi P. The L^p-Busemann-Petty centroid inequality. Adv. Math., 2002, 167(1): 128–141.
- [6] Campi S, Gronchi P. On the reverse L^p-Busemann-Petty centroid inequality. Mathematika, 2002, 49(1-2): 1–11.
- [7] Feng Y B, Wang W D. Shephard type problems for L_p-centroid bodies. Math. Inequal. Appl., 2014, 17(3): 865–877.
- [8] Feng Y B, Wang W D. The Shephard type problems and monotonicity for L_p-mixed centroid body. Indian J. Pure Appl. Math., 2014, 45(3): 265–284.
- [9] Lutwak E, Yang D, Zhang G Y. L_p affine isoperimetric inequalities. J. Differential Geom., 2000, 56(1): 111–132.
- [10] Wang W D, Leng G S. Monotonicity of L_p-centroid body (in Chinese). J. Systems Sci. Math. Sci., 2008, 28(2): 154–162.

- [11] Wang W D, Leng G S. Some affine isoperimetric inequalities associated with L_p -affine surface area. Houston J. Math., 2008, **34**(2): 443–453.
- [12] Wang W D, Lu F H, Leng G S. A type of monotonicity on the L_p centroid body and L_p projection body. *Math. Inequal. Appl.*, 2005, 8(4): 735–742.
- [13] Wang W D, Lu F H, Leng G S. On monotonicity properties of the L_p-centroid bodies. Math. Inequal. Appl., 2013, 16(3): 645–655.
- [14] Yuan J, Zhao L Z, Leng G S. Inequalities for L_p -centroid body. Taiwan. J. Math., 2007, **11**(5): 1315–1325.
- [15] Ludwig M. Minkowski valuations. Trans. Amer. Math. Soc., 2005, 357: 4191–4213.
- [16] Feng Y B, Wang W D, Lu F H. Some inequalities on general L_p-centroid bodies. Math. Inequal. Appl., 2015, 18(1): 39–49.
- [17] Pei Y N, Wang W D. Shephard type problems for general L_p -centroid bodies. J. Inequal. Appl., 2015, **2015**: 1–13.
- [18] Wang W D, Li T. Volume extremals of general L_p-centroid bodies. J. Math. Inequal., 2017, 11(1): 193–207.
- [19] Lutwak E. The Brunn-Minkowski-Firey theory II: affine and geominimal surface areas. Adv. Math., 1996, 118(2): 244–294.
- [20] Petty C M. Geominimal surface area. Geom. Dedicata, 1974, 3(1): 77–97.
- [21] Ye D P, Zhu B C, Zhou J Z. The mixed L_p geominimal surface areas for multiple convex bodies. *Indiana Univ. Math. J.*, 2013, **64**(5): 1513–1552.
- [22] Zhu B C, Li N, Zhou J Z. Isoperimetric inequalities for L_p geominimal surface area. Glasg. Math. J., 2011, 53(3): 717–726.
- [23] Zhu B C, Zhou J Z, Xu W X. Affine Isoperimetric Inequalities for L_p Geominimal Surface Area. Real and Complex Submanifolds, 167–176, Springer Proc. Math. Stat., 106, Tokyo: Springer, 2014.
- [24] Zhu B C, Zhou J Z, Xu W X. L_p mixed geominimal surface area. J. Math. Anal. Appl., 2015, 422: 1247–1263.
- [25] Wang W D, Qi C. L_p-dual geominimal surface area. J. Inequal. Appl., 2011, 2011: 1–10.
- [26] Chen H P, Wang W D. L_p-dual mixed geominimal surface area. Wuhan Univ. J. Nat. Sci., 2017, 22(4): 307–312.
- [27] Feng Y B, Wang W D. L_p-dual mixed geominimal surface area. Glasg. Math. J., 2014, 56: 229–239.
- [28] Guo J S, Feng Y B. L_p-dual geominimal surface area and general L_p-centroid bodies. J. Inequal. Appl., 2015, 2015(1): 9pp.
- [29] Li Y N, Wang W D. The L_p-dual mixed geominimal surface area for multiple star bodies. J. Inequal. Appl., 2014, 2014(456): 10pp.
- [30] Shen Z H, Li Y N, Wang W D. L_p-dual geominimal surface areas for the general L_p-intersection bodies. J. Nonlinear Sci. Appl., 2017, 10(7): 3519–3529.
- [31] Wan X Y, Wang W D. L_p-dual geominimal surface area (in Chinese). Wuhan Univ. J. Nat. Sci., 2013, 59(6): 515–518.
- [32] Yan L, Wang W D, Si L. L_p-dual mixed geominimal surface areas. J. Nonlinear Sci. Appl., 2016, 9(3): 1143–1152.
- [33] Lutwak E. The Brunn-Minkowski-Firey theory I: mixed volumes and the Minkowski problem. J. Differential Geom., 1993, 38(1): 131–150.