Coefficient Estimates for a Class of m-fold Symmetric Bi-univalent Function Defined by Subordination

Guo Dong ${ }^{1}$, Tang Huo^{2}, Ao En ${ }^{2}$ and Xiong Liang-Peng ${ }^{3}$
(1. Foundation Department, Chuzhou Vocational and Technical College, Chuzhou, Anhui, 239000)
(2. School of Mathematics and Statistics, Chifeng University, Chifeng, Inner Mongolia, 024000)
(3. School of Mathematics and Statistics, Wuhan University, Wuhan, 430072)

Communicated by Ji You-qing

Abstract

In this paper, we investigate the coefficient estimates of a class of m-fold bi-univalent function defined by subordination. The results presented in this paper improve or generalize the recent works of other authors.

Key words: analytic function, univalent function, coefficient estimate, m-fold symmetric bi-univalent function, subordination
2010 MR subject classification: 30C45
Document code: A
Article ID: 1674-5647(2019)01-0057-08
DOI: 10.13447/j.1674-5647.2019.01.06

1 Introduction

Let \mathcal{A} denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z:|z|<1\}$. We denote by \mathcal{S} the class of all functions $f(z) \in \mathcal{A}$ which are univalent in U.

It is well known that every function $f \in \mathcal{S}$ has an inverse f^{-1}, defined by

$$
f^{-1}(f(z))=z \quad(z \in U)
$$

and

$$
f\left(f^{-1}(\omega)\right)=\omega \quad\left(|\omega|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right) .
$$

The inverse functions $g=f^{-1}$ is given by

$$
\begin{equation*}
f^{-1}(\omega)=\omega-a_{2} \omega^{2}+\left(2 a_{2}^{2}-a_{3}\right) \omega^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) \omega^{4}+\cdots . \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in U if both $f(z)$ and $f^{-1}(z)$ are univalent in U. Let Σ denote the class of all bi-univalent functions in unit disk U.

For each functions $f \in \mathcal{S}$, the function

$$
h(z)=\sqrt{m} f\left(z^{m}\right) \quad\left(z \in U, m \in \mathbf{N}^{+}\right)
$$

is univalent and maps the unit disk U into a region with m-fold symmetry. A function is said to be m-fold symmetric (see [1] and [2]) if it has the following normalized form:

$$
\begin{equation*}
f(z)=z+\sum_{k=1}^{\infty} a_{m k+1} z^{m k+1} \quad\left(z \in U, m \in \mathbf{N}^{+}\right) \tag{1.3}
\end{equation*}
$$

Analogous to the concept of m-fold symmetric univalent functions, here we introduced the concept of m-fold symmetric bi-univalent functions. For the normalized form of f given by (1.3), Srivastava et al. ${ }^{[3]}$ obtained the series expansion for f^{-1} as follows:

$$
\begin{align*}
g(\omega)= & f^{-1}(\omega) \\
= & \omega-a_{m+1} \omega^{m+1}+\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right] \omega^{2 m+1} \\
& -\left[\frac{1}{2}(m+1)(3 m+2) a_{m+1}^{3}-(3 m+2) a_{m+1} a_{2 m+1}+a_{3 m+1}\right] \omega^{3 m+1}+\cdots . \tag{1.4}
\end{align*}
$$

We denote by Σ_{m} the class of m-fold symmetric bi-univalent function in U. For $m=1$, the formula (1.4) coincides with the formula (1.2) of the class Σ. Some m-fold symmetric bi-univalent functions are given as follows:

$$
\left(\frac{z^{m}}{1-z^{m}}\right)^{\frac{1}{m}}, \quad\left[-\log \left(1-z^{m}\right)\right]^{\frac{1}{m}}, \quad\left[\frac{1}{2} \log \left(\frac{1+z^{m}}{1-z^{m}}\right)\right]^{\frac{1}{m}}
$$

The class of bi-univalent functions was first introduced and studied by Lewin ${ }^{[4]}$ and was showed that $\left|a_{2}\right|<1.51$. Brannan and Clunie ${ }^{[5]}$ improved Lewin's results to $\left|a_{2}\right| \leq \sqrt{2}$ and later Netanyahu ${ }^{[6]}$ proved that $\max \left\{\left|a_{2}\right|\right\}=\frac{4}{3}$ if $f(z) \in \Sigma$. Recently, many authors investigated the estimates of the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for various subclasses of bi-univalent functions (see [7]-[9]). Not much is known about the bounds on general coefficient $\left|a_{n}\right|$ for $n \geq 4$. In the literature, only few works determine general coefficient bounds $\left|a_{n}\right|$ for the analytic bi-univalent functions (see [10]-[14]).

In this paper, let \mathcal{P} denote the class of analytic functions of the form

$$
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots,
$$

and then

$$
\operatorname{Re}\{p(z)\}>0 \quad(z \in U)
$$

By [2], the m-fold symmetric function p in the class \mathcal{P} is given of the form:

$$
p(z)=1+p_{m} z+p_{2 m} z^{2 m}+p_{3 m} z^{3 m}+\cdots .
$$

Throughout this paper, it is assumed that φ is an analytic function with positive real part in the unit disk U such that $\varphi(0)=1, \varphi^{\prime}(0)>0$, and $\varphi(U)$ is symmetric with respect to the real axis. The function φ has a series expansion of the form:

$$
\begin{equation*}
\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots \quad\left(B_{1}>0\right) \tag{1.5}
\end{equation*}
$$

Let $u(z)$ and $v(z)$ be two analytic functions in the unit disk U with

$$
u(0)=v(0) \quad \text { and } \quad \max \{|u(z)|,|v(z)|\}<1
$$

We observe that

$$
u(z)=b_{m} z^{m}+b_{2 m} z^{2 m}+b_{3 m} z^{3 m}+\cdots
$$

and

$$
v(z)=c_{m} z^{m}+c_{2 m} z^{2 m}+c_{3 m} z^{3 m}+\cdots
$$

We also observe that

$$
\begin{equation*}
\left|b_{m}\right| \leq 1, \quad\left|b_{2 m}\right| \leq 1-\left|b_{m}\right|^{2}, \quad\left|c_{m}\right| \leq 1, \quad\left|c_{2 m}\right| \leq 1-\left|c_{m}\right|^{2} \tag{1.6}
\end{equation*}
$$

Making some simple computations, we have

$$
\begin{equation*}
\varphi(u(z))=1+B_{1} b_{m} z^{m}+\left(B_{1} b_{2 m}+B_{2} b_{m}^{2}\right) z^{2 m}+\cdots \quad(|z|<1) \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(v(w))=1+B_{1} c_{m} w^{m}+\left(B_{1} c_{2 m}+B_{2} c_{m}^{2}\right) w^{2 m}+\cdots \quad(|w|<1) \tag{1.8}
\end{equation*}
$$

Recently, many researchers (e.g., [15]-[19]) have introduced and investigated a lot of interesting subclass of m-fold symmetric bi-univalent functions. Motivated by them, we investigate the estimates $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ for function belonging to the new general subclass $\mathcal{H}_{\Sigma, m}(\varphi)$ of Σ_{m}. A new subclass $\mathcal{H}_{\Sigma, m}(\varphi)$ of Σ_{m} is defined as follows:

Definition 1.1 ${ }^{[15]}$ A function $f \in \Sigma_{m}$ given by (1.3) is said to be in the class $\mathcal{H}_{\Sigma, m}(\varphi)$ if it satisfies

$$
\begin{array}{ll}
f^{\prime}(z) \prec \varphi(z) & (z \in U) \\
g^{\prime}(\omega) \prec \varphi(\omega) & (\omega \in U)
\end{array}
$$

where the function g is given by (1.4).
For various special choices of the function $\varphi(z)$ and for the case of $m=1$, our function class $\mathcal{H}_{\Sigma, m}(\varphi)$ reduces the following known function classes.
(1) In the case of $m=1$ in Definition 1.1, one has

$$
\mathcal{H}_{\Sigma, m}(\varphi)=\mathcal{H}_{\Sigma, 1}(\varphi)=\mathcal{H}_{\Sigma}(\varphi)
$$

studied by Ali et al. ${ }^{[13]}$.
(2) In the case of $m=1$ and $\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\gamma}(0<\gamma \leq 1)$ in Definition 1.1, one has

$$
\mathcal{H}_{\Sigma, m}(\varphi)=\mathcal{H}_{\Sigma, 1}\left(\left(\frac{1+z}{1-z}\right)^{\gamma}\right)
$$

studied by Srivastava et al. ${ }^{[14]}$.
(3) In the case of $m=1$ and $\varphi(z)=\frac{1+(1-2 \gamma) z}{1-z}(0 \leq \gamma<1)$ in Definition 1.1, one has

$$
\mathcal{H}_{\Sigma, m}(\varphi)=\mathcal{H}_{\Sigma, 1}\left(\frac{1+(1-2 \gamma) z}{1-z}\right)
$$

studied by Srivastava et al. ${ }^{[14]}$.
(4) In the case of $\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}(0<\alpha \leq 1)$ in Definition 1.1, one has

$$
\mathcal{H}_{\Sigma, m}(\varphi)=\mathcal{H}_{\Sigma, m}\left(\left(\frac{1+z}{1-z}\right)^{\alpha}\right)=\mathcal{H}_{\Sigma_{m}}^{\alpha}
$$

investigated by Srivastava et al. ${ }^{[19]}$.
(5) In the case of $\varphi(z)=\frac{1+(1-2 \beta) z}{1-z}(0 \leq \beta<1)$ in Definition 1.1, one has

$$
\mathcal{H}_{\Sigma, m}(\varphi)=\mathcal{H}_{\Sigma, m}\left(\frac{1+(1-2 \beta) z}{1-z}\right)=\mathcal{H}_{\Sigma_{m}}^{\beta}
$$

investigated by Srivastava et al. ${ }^{[19]}$.

2 Coefficient Estimates

Theorem 2.1 Let $f(z)$ given by (1.3) be in the class $\mathcal{H}_{\Sigma, m}(\varphi)$. Then

$$
\begin{align*}
& \qquad a_{m+1} \left\lvert\, \leq \min \left\{\frac{B_{1}}{m+1}, \sqrt{\frac{2 B_{1}+2\left|B_{2}\right|}{(2 m+1)(m+1)}}, \Omega_{1}\right\}\right., \tag{2.1}\\
& \leq\left\{\begin{array}{ll}
\left|a_{2 m+1}\right| \\
\leq & B_{1}<\frac{2(m+1)}{2 m+1} ; \\
\min \left\{\frac{B_{1}}{2 m+1},\right. & B_{1}^{2} \\
2(m+1)
\end{array}\left(1-\frac{2(m+1)}{(2 m+1) B_{1}}\right) \frac{B_{1}+\left|B_{2}\right|}{2 m+1}+\frac{B_{1}}{2 m+1}, \Omega_{2}\right\}, \\
& B_{1} \geq \frac{2(m+1)}{2 m+1}, \tag{2.2}
\end{align*} .
$$

where

$$
\begin{aligned}
& \Omega_{1}=\frac{B_{1} \sqrt{2 B_{1}}}{\sqrt{(m+1)\left[2(m+1) B_{1}+\left|(2 m+1) B_{1}^{2}-2(m+1) B_{2}\right|\right]}}, \\
& \Omega_{2}=\left(1-\frac{2(m+1)}{(2 m+1) B_{1}}\right) \frac{B_{1}^{3}}{2(m+1) B_{1}+\left|(2 m+1) B_{1}^{2}-2(m+1) B_{2}\right|}+\frac{B_{1}}{2 m+1} .
\end{aligned}
$$

Proof. Let $f \in \mathcal{H}_{\Sigma, m}(\varphi)$ and $g=f^{-1}$. Then there are analytic functions $u: U \rightarrow U$, and $v: U \rightarrow U$ with $u(0)=v(0)=0$ satisfying the following conditions:

$$
\begin{equation*}
f^{\prime}(z)=\varphi(u(z)), \quad g^{\prime}(\omega)=\varphi(v(\omega)) . \tag{2.3}
\end{equation*}
$$

Since

$$
f^{\prime}(z)=1+(m+1) a_{m+1} z^{m}+(2 m+1) a_{2 m+1} z^{2 m}+\cdots
$$

and

$$
g^{\prime}(\omega)=1-(m+1) a_{m+1} \omega^{m}+(2 m+1)\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right] \omega^{2 m}+\cdots,
$$

it follows from (1.7), (1.8) and (2.3) that

$$
\begin{equation*}
(m+1) a_{m+1}=B_{1} b_{m}, \tag{2.4}
\end{equation*}
$$

$$
\begin{align*}
& (2 m+1) a_{2 m+1}=B_{1} b_{2 m}+B_{2} b_{m}^{2} \tag{2.5}\\
& -(m+1) a_{m+1}=B_{1} c_{m} \tag{2.6}\\
& (2 m+1)(m+1) a_{m+1}^{2}-(2 m+1) a_{2 m+1}=B_{1} c_{2 m}+B_{2} c_{m}^{2} \tag{2.7}
\end{align*}
$$

From (2.4) and (2.6), we find that

$$
\begin{align*}
& b_{m}=-c_{m}, \tag{2.8}\\
& a_{m+1}^{2}=\frac{B_{1}^{2}\left(b_{m}^{2}+c_{m}^{2}\right)}{2(m+1)^{2}} . \tag{2.9}
\end{align*}
$$

By using the inequalities given by (1.6) in (2.9) for the coefficients b_{m} and c_{m}, we obtain

$$
\begin{equation*}
\left|a_{m+1}\right| \leq \frac{B_{1}}{m+1} . \tag{2.10}
\end{equation*}
$$

Adding (2.5) to (2.7), we have

$$
\begin{equation*}
(2 m+1)(m+1) a_{m+1}^{2}=B_{1}\left(b_{2 m}+c_{2 m}\right)+B_{2}\left(b_{m}^{2}+c_{m}^{2}\right) \tag{2.11}
\end{equation*}
$$

Applying the inequalities given by (1.6) in (2.11) for the coefficients $c_{m}, c_{2 m}, b_{m}$ and $b_{2 m}$, we have

$$
\begin{equation*}
\left|a_{m+1}\right| \leq \sqrt{\frac{2 B_{1}+2\left|B_{2}\right|}{(2 m+1)(m+1)}} \tag{2.12}
\end{equation*}
$$

Substituting (2.8) and (2.9) into (2.11), we get

$$
\begin{equation*}
b_{m}^{2}=\frac{(1+m) B_{1}\left(b_{2 m}+c_{2 m}\right)}{(2 m+1) B_{1}^{2}-2(m+1) B_{2}} . \tag{2.13}
\end{equation*}
$$

From (2.8), (2.9) and (2.13), we get

$$
\begin{equation*}
(m+1)\left[(2 m+1) B_{1}^{2}-2(m+1) B_{2}\right] a_{m+1}^{2}=B_{1}^{3}\left(b_{2 m}+c_{2 m}\right) . \tag{2.14}
\end{equation*}
$$

Further, the equations (2.8) and (2.14) together with the equation (1.6) yield

$$
\begin{equation*}
\left|(m+1)\left[(2 m+1) B_{1}^{2}-2(m+1) B_{2}\right] a_{m+1}^{2}\right| \leq 2 B_{1}^{3}\left(1-\left|b_{m}\right|^{2}\right) \tag{2.15}
\end{equation*}
$$

From (2.4) and (2.15), we obtain

$$
\begin{equation*}
\left|a_{m+1}\right| \leq \frac{B_{1} \sqrt{2 B_{1}}}{\sqrt{(m+1)\left[2(m+1) B_{1}+\left|(2 m+1) B_{1}^{2}-2(m+1) B_{2}\right|\right]}} \tag{2.16}
\end{equation*}
$$

Now, from (2.10), (2.12) and (2.16), we get

$$
\begin{aligned}
\left|a_{m+1}\right| \leq \min \{ & \frac{B_{1}}{m+1}, \sqrt{\frac{2 B_{1}+2\left|B_{2}\right|}{(2 m+1)(m+1)}}, \\
& \left.\frac{B_{1} \sqrt{2 B_{1}}}{\sqrt{(m+1)\left[2(m+1) B_{1}+\left|(2 m+1) B_{1}^{2}-2(m+1) B_{2}\right|\right]}}\right\} .
\end{aligned}
$$

Next, in order to find the bound on $\left|a_{2 m+1}\right|$, by substituting (2.7) from (2.5), we get

$$
\begin{equation*}
a_{2 m+1}=\frac{m+1}{2} a_{m+1}^{2}+\frac{B_{1}}{2(2 m+1)}\left(b_{2 m}-c_{2 m}\right) . \tag{2.17}
\end{equation*}
$$

Then, in view of (2.4), (2.8) and (2.9), applying the inequalities in (1.6) for the coefficients $b_{2 m}$ and $c_{2 m}$, we get

$$
\begin{aligned}
\left|a_{2 m+1}\right| & \leq \frac{m+1}{2}\left|a_{m+1}\right|^{2}+\frac{B_{1}}{2(2 m+1)}\left(\left|b_{2 m}\right|+\left|c_{2 m}\right|\right) \\
& \leq \frac{m+1}{2}\left|a_{m+1}\right|^{2}+\frac{B_{1}}{2 m+1}\left(1-\left|b_{m}\right|^{2}\right)
\end{aligned}
$$

$$
\begin{equation*}
\leq\left(\frac{m+1}{2}-\frac{(m+1)^{2}}{(2 m+1) B_{1}}\right)\left|a_{m+1}\right|^{2}+\frac{B_{1}}{2 m+1} \tag{2.18}
\end{equation*}
$$

From (2.10), (2.12), (2.16) and (2.18), we have the assertion (2.2). This completes the proof of Theorem 2.1.

Remark 2.1 The estimates of the coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ of Theorem 2.1 is the improvement of the estimates obtained in Theorem 1 of [15].

Setting $\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(0<\alpha \leq 1)$ in Theorem 2.1, we have the following corollary.
Corollary 2.1 Let $f(z)$ given by (1.3) be in the class $\mathcal{H}_{\Sigma, m}\left(\left(\frac{1+z}{1-z}\right)^{\alpha}\right)=\mathcal{H}_{\Sigma_{m}}^{\alpha}$. Then

$$
\begin{aligned}
& \left|a_{m+1}\right| \leq \min \left\{\frac{2 \alpha}{m+1}, \sqrt{\frac{4 \alpha+4 \alpha^{2}}{(2 m+1)(m+1)}}, \frac{2 \alpha}{\sqrt{(m+1)(m+1+m \alpha)}}\right\} \\
& \left|a_{2 m+1}\right| \leq \begin{cases}\frac{2 \alpha}{2 m+1}, & 0<\alpha<\frac{m+1}{2 m+1} \\
\frac{6 m \alpha^{2}+2 \alpha^{2}}{(2 m+1)(m+1+m \alpha)}, & \frac{m+1}{2 m+1} \leq \alpha \leq 1\end{cases}
\end{aligned}
$$

Remark 2.2 The estimates of the coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ of Corollary 2.1 is the improvement of the estimates obtained in Theorem 2 of [19].

Setting $\varphi(z)=\frac{1+(1-2 \beta) z}{1-z}(0 \leq \beta<1)$ in Theorem 2.1, we have the following corollary.

Corollary 2.2 Let $f(z)$ given by (1.3) be in the class $\mathcal{H}_{\Sigma, m}\left(\frac{1+(1-2 \beta) z}{1-z}\right)=\mathcal{H}_{\Sigma_{m}}^{\beta}$. Then

$$
\begin{aligned}
& \left|a_{m+1}\right| \leq \min \left\{\frac{2(1-\beta)}{m+1}, \sqrt{\frac{8(1-\beta)}{(2 m+1)(m+1)}}, \frac{2(1-\beta)}{\sqrt{(m+1)[m+1+|m-\beta(2 m+1)|]}}\right\}, \\
& \left|a_{2 m+1}\right| \leq \begin{cases}\frac{2(1-\beta)}{2 m+1}, & \frac{m}{2 m+1}<\beta<1 ; \\
\frac{4(1-\beta)}{2 m+1}-\frac{2(m+1)}{(2 m+1)^{2}}, & 0 \leq \beta \leq \frac{m}{2 m+1} .\end{cases}
\end{aligned}
$$

Remark 2.3 The estimates of the coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ of Corollary 2.2 is the improvement of the estimates obtained in Theorem 3 of [19].

Setting $m=1$ in Theorem 2.1, we have the following corollary.
Corollary 2.3 Let $f(z)$ given by (1.3) be in the class $\mathcal{H}_{\Sigma, 1}(\varphi)=\mathcal{H}_{\Sigma}(\varphi)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{B_{1}}{2}, \sqrt{\frac{B_{1}+\left|B_{2}\right|}{3}}, \frac{B_{1} \sqrt{B_{1}}}{\sqrt{4 B_{1}+\left|3 B_{1}^{2}-4 B_{2}\right|}}\right\},
$$

$$
\left|a_{3}\right| \leq \begin{cases}\frac{B_{1}}{3}, & B_{1}<\frac{4}{3} \\ \min \left\{\frac{B_{1}^{2}}{4},\left(1-\frac{4}{3 B_{1}}\right) \frac{B_{1}+\left|B_{2}\right|}{3}+\frac{B_{1}}{3},\right. & \\ \left.\left(1-\frac{4}{3 B_{1}}\right) \frac{B_{1}^{3}}{4 B_{1}+\left|3 B_{1}^{2}-4 B_{2}\right|}+\frac{B_{1}}{3}\right\}, & B_{1} \geq \frac{4}{3}\end{cases}
$$

Remark 2.4 The estimates of the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of Corollary 2.3 is the improvement of the estimates obtained in Theorem 2.1 of [13].

Setting $m=1$ and $\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\gamma}(0<\gamma \leq 1)$ in Theorem 2.1, we have the following corollary.

Corollary 2.4 Let $f(z)$ given by (1.3) be in the class $\mathcal{H}_{\Sigma, 1}\left(\left(\frac{1+z}{1-z}\right)^{\gamma}\right)$. Then

$$
\begin{aligned}
& \left|a_{2}\right| \leq \frac{\sqrt{2 \gamma}}{\sqrt{2+\gamma}}, \\
& \left|a_{3}\right| \leq \begin{cases}\frac{2 \gamma}{3}, & 0<\gamma<\frac{2}{3}, \\
\frac{8 \gamma^{2}}{6+3 \gamma}, & \frac{2}{3} \leq \gamma \leq 1 .\end{cases}
\end{aligned}
$$

Remark 2.5 The estimates for $\left|a_{3}\right|$ asserted by Corollary 2.4 are more accurate than those given by Theorem 1 in Srivastava et al. ${ }^{[14]}$.

Setting $m=1$ and $\varphi(z)=\frac{1+(1-2 \gamma) z}{1-z}(0 \leq \gamma<1)$ in Theorem 2.1, we have the following corollary.

Corollary 2.5 Let $f(z)$ given by (1.3) be in the class $\mathcal{H}_{\Sigma, 1}\left(\frac{1+(1-2 \gamma) z}{1-z}\right)$. Then

$$
\begin{aligned}
& \left|a_{2}\right| \leq \frac{\sqrt{2}(1-\gamma)}{\sqrt{2+|1-3 \gamma|}}, \\
& \left|a_{3}\right| \leq \begin{cases}\frac{2(1-\gamma)}{3}, & \frac{1}{3}<\gamma<1 ; \\
\frac{8-12 \gamma}{9}, & 0 \leq \gamma \leq \frac{1}{3}\end{cases}
\end{aligned}
$$

Remark 2.6 The estimates for $\left|a_{2}\right|$ and $\left|a_{3}\right|$ asserted by Corollary 2.5 are more accurate than those given by Theorem 2 in Srivastava et al. ${ }^{[14]}$.

References

[1] Koepf W. Coefficients of symmetric functions of bounded boundary rotation. Proc. Amer. Math. Soc., 1989, 105: 324-329.
[2] Pommerenke C. On the coefficients of close-to-convex functions. Michigan Math. J., 1962, 9: 259-269.
[3] Srivastava H M, Sivasubramanian S, Sivakumar R. Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions. Tbilisi Math. J., 2014, 7(2): 1-10.
[4] Lewin M. On a coefficient problem for bi-univalent functions. Proc. Amer. Math. Soc., 1967, 18(1): 63-68.
[5] Brannan D A, Clunie J G. Aspects of Contemporary Complex Analysis. Proceedings of the NATO Advanced Study Instute Held at the University of Durham, Durham: July 1-20, 1979, New York: Academic Press, 1980.
[6] Netanyahu E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$. Arch. Rational. Mech. Anal., 1969, 32: 100-112.
[7] Peng Z G, Han Q Q. On the coefficients of several classes of bi-univalent functions. Acta. Math. Sci. Ser. B, 2014, 34(1): 228-240.
[8] Guo D, Li Z T. On the coefficients of several classes of bi-univalent functions defined by convolution. Comm. Math. Res., 2018, 34(1): 65-76.
[9] Srivastava H M, Gaboury S, Ghanim F. Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afr. Mat., 2017, 28: 693-706.
[10] Bulut S. Faber polynomial coefficient estimates for a comprehensive subcalss of analytic biunivalent functions. C. R. Math. Acad. Sci. Paris, 2014, 352(6): 479-484.
[11] Hamidi S G, Jahangiri J M. Faber polynomial coefficient estimates for analytic bi-close-toconvex functions. C. R. Math. Acad. Sci. Paris, 2014, 352(1): 17-20.
[12] Jahangiri J M, Hamidi S G. Coefficient estimates for certain classes of bi-univalent functions. International Journal of Mathematics and Mathematical Sciences, vol.2013, Article ID 190560, 4 pages, 2013.
[13] Ali R M, Lee S K, Ravichandran V, Subramanian S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl. Math. Lett., 2012, 25: 344-351.
[14] Srivastava H M, Mishra A K, Gochhayat P. Certain subclasses of analytic and biunivalent functions. Appl. Math. Lett., 2010, 23: 1188-1192.
[15] Tang H, Srivastava H M, Sivasubramanian S, Gurusamy P. The Fekete-Szegö functional problems for some subclasses of m-fold symmetric bi-univalent functions. J. Math. Inequalities, 2016, 10(4): 1063-1092.
[16] Srivastava H M, Gaboury S, Ghanim F. Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions. Acta. Math. Sci., 2016, 36B(3): 863-871.
[17] Sümer E S. Coefficient bounds for subclasses of m-fold symmetric analytic bi-univalent functions. Turkish J. Math., 2016, 40: 641-646.
[18] Bulut S. Coefficient estimates for general subclasses of m-fold symmetric analytic bi-univalent functions. Turkish J. Math., 2016, 40: 1386-1397.
[19] Srivastava H M, Sivasubramanian S, Sivakumar R. Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions. Tbilisi Math. J., 2014, 7(2): 1-10.

