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1 Introduction

Let A denote the class of functions of the form:

f(z) = z +
∞∑

n=2

anz
n, (1.1)

which are analytic in the open unit disk U = {z : |z| < 1}. We denote by S the class of all

functions f(z) ∈ A which are univalent in U .

It is well known that every function f ∈ S has an inverse f−1, defined by

f−1(f(z)) = z (z ∈ U)

and
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f(f−1(ω)) = ω

(
|ω| < r0(f), r0(f) ≥

1

4

)
.

The inverse functions g = f−1 is given by

f−1(ω) = ω − a2ω
2 + (2a22 − a3)ω

3 − (5a32 − 5a2a3 + a4)ω
4 + · · · . (1.2)

A function f ∈ A is said to be bi-univalent in U if both f(z) and f−1(z) are univalent

in U . Let Σ denote the class of all bi-univalent functions in unit disk U .

For each functions f ∈ S, the function

h(z) =
√
mf(zm) (z ∈ U, m ∈ N+)

is univalent and maps the unit disk U into a region with m-fold symmetry. A function is

said to be m-fold symmetric (see [1] and [2]) if it has the following normalized form:

f(z) = z +
∞∑
k=1

amk+1z
mk+1 (z ∈ U, m ∈ N+). (1.3)

Analogous to the concept of m-fold symmetric univalent functions, here we introduced

the concept of m-fold symmetric bi-univalent functions. For the normalized form of f given

by (1.3), Srivastava et al.[3] obtained the series expansion for f−1 as follows:

g(ω) = f−1(ω)

= ω − am+1ω
m+1 + [(m+ 1)a2m+1 − a2m+1]ω

2m+1

−
[
1

2
(m+ 1)(3m+ 2)a3m+1 − (3m+ 2)am+1a2m+1 + a3m+1

]
ω3m+1 + · · · . (1.4)

We denote by Σm the class of m-fold symmetric bi-univalent function in U . For m = 1,

the formula (1.4) coincides with the formula (1.2) of the class Σ . Some m-fold symmetric

bi-univalent functions are given as follows:(
zm

1− zm

) 1
m

, [− log(1− zm)]
1
m ,

[
1

2
log

(
1 + zm

1− zm

)] 1
m

.

The class of bi-univalent functions was first introduced and studied by Lewin[4] and was

showed that |a2| < 1.51. Brannan and Clunie[5] improved Lewin’s results to |a2| ≤
√
2

and later Netanyahu[6] proved that max{|a2|} =
4

3
if f(z) ∈ Σ . Recently, many authors

investigated the estimates of the coefficients |a2| and |a3| for various subclasses of bi-univalent
functions (see [7]–[9]). Not much is known about the bounds on general coefficient |an| for
n ≥ 4. In the literature, only few works determine general coefficient bounds |an| for the

analytic bi-univalent functions (see [10]–[14]).

In this paper, let P denote the class of analytic functions of the form

p(z) = 1 + p1z + p2z
2 + p3z

3 + · · · ,
and then

Re{p(z)} > 0 (z ∈ U).

By [2], the m-fold symmetric function p in the class P is given of the form:

p(z) = 1 + pmz + p2mz2m + p3mz3m + · · · .
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Throughout this paper, it is assumed that φ is an analytic function with positive real

part in the unit disk U such that φ(0) = 1, φ′(0) > 0, and φ(U) is symmetric with respect

to the real axis. The function φ has a series expansion of the form:

φ(z) = 1 +B1z +B2z
2 +B3z

3 + · · · (B1 > 0). (1.5)

Let u(z) and v(z) be two analytic functions in the unit disk U with

u(0) = v(0) and max{|u(z)|, |v(z)|} < 1.

We observe that

u(z) = bmzm + b2mz2m + b3mz3m + · · ·

and

v(z) = cmzm + c2mz2m + c3mz3m + · · · .

We also observe that

|bm| ≤ 1, |b2m| ≤ 1− |bm|2, |cm| ≤ 1, |c2m| ≤ 1− |cm|2. (1.6)

Making some simple computations, we have

φ(u(z)) = 1 +B1bmzm + (B1b2m +B2b
2
m)z2m + · · · (|z| < 1) (1.7)

and

φ(v(w)) = 1 +B1cmwm + (B1c2m +B2c
2
m)w2m + · · · (|w| < 1). (1.8)

Recently, many researchers (e.g., [15]–[19]) have introduced and investigated a lot of

interesting subclass of m-fold symmetric bi-univalent functions. Motivated by them, we

investigate the estimates |am+1| and |a2m+1| for function belonging to the new general

subclass HΣ ,m(φ) of Σm. A new subclass HΣ ,m(φ) of Σm is defined as follows:

Definition 1.1 [15] A function f ∈ Σm given by (1.3) is said to be in the class HΣ ,m(φ)

if it satisfies

f ′(z) ≺ φ(z) (z ∈ U),

g′(ω) ≺ φ(ω) (ω ∈ U),

where the function g is given by (1.4).

For various special choices of the function φ(z) and for the case of m = 1, our function

class HΣ ,m(φ) reduces the following known function classes.

(1) In the case of m = 1 in Definition 1.1, one has

HΣ ,m(φ) = HΣ ,1(φ) = HΣ (φ)

studied by Ali et al.[13].

(2) In the case of m = 1 and φ(z) =

(
1 + z

1− z

)γ

(0 < γ ≤ 1) in Definition 1.1, one has

HΣ ,m(φ) = HΣ ,1

((
1 + z

1− z

)γ)
studied by Srivastava et al.[14].

(3) In the case of m = 1 and φ(z) =
1 + (1− 2γ)z

1− z
(0 ≤ γ < 1) in Definition 1.1, one

has
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HΣ ,m(φ) = HΣ ,1

(
1 + (1− 2γ)z

1− z

)
studied by Srivastava et al.[14].

(4) In the case of φ(z) =

(
1 + z

1− z

)α

(0 < α ≤ 1) in Definition 1.1, one has

HΣ ,m(φ) = HΣ ,m

((
1 + z

1− z

)α)
= Hα

Σm

investigated by Srivastava et al.[19].

(5) In the case of φ(z) =
1 + (1− 2β)z

1− z
(0 ≤ β < 1) in Definition 1.1, one has

HΣ ,m(φ) = HΣ ,m

(
1 + (1− 2β)z

1− z

)
= Hβ

Σm

investigated by Srivastava et al.[19].

2 Coefficient Estimates

Theorem 2.1 Let f(z) given by (1.3) be in the class HΣ ,m(φ). Then

|am+1| ≤ min

{
B1

m+ 1
,

√
2B1 + 2|B2|

(2m+ 1)(m+ 1)
, Ω1

}
, (2.1)

|a2m+1|

≤


B1

2m+ 1
, B1 <

2(m+ 1)

2m+ 1
;

min

{
B2

1

2(m+ 1)
,

(
1− 2(m+ 1)

(2m+ 1)B1

)
B1 + |B2|
2m+ 1

+
B1

2m+ 1
, Ω2

}
, B1 ≥ 2(m+ 1)

2m+ 1
,

(2.2)
where

Ω1 =
B1

√
2B1√

(m+ 1)[2(m+ 1)B1 + |(2m+ 1)B2
1 − 2(m+ 1)B2|]

,

Ω2 =

(
1− 2(m+ 1)

(2m+ 1)B1

)
B3

1

2(m+ 1)B1 + |(2m+ 1)B2
1 − 2(m+ 1)B2|

+
B1

2m+ 1
.

Proof. Let f ∈ HΣ ,m(φ) and g = f−1. Then there are analytic functions u : U → U , and

v : U → U with u(0) = v(0) = 0 satisfying the following conditions:

f ′(z) = φ(u(z)), g′(ω) = φ(v(ω)). (2.3)

Since

f ′(z) = 1 + (m+ 1)am+1z
m + (2m+ 1)a2m+1z

2m + · · ·

and

g′(ω) = 1− (m+ 1)am+1ω
m + (2m+ 1)[(m+ 1)a2m+1 − a2m+1]ω

2m + · · · ,

it follows from (1.7), (1.8) and (2.3) that

(m+ 1)am+1 = B1bm, (2.4)
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(2m+ 1)a2m+1 = B1b2m +B2b
2
m, (2.5)

− (m+ 1)am+1 = B1cm, (2.6)

(2m+ 1)(m+ 1)a2m+1 − (2m+ 1)a2m+1 = B1c2m +B2c
2
m. (2.7)

From (2.4) and (2.6), we find that

bm = −cm, (2.8)

a2m+1 =
B2

1(b
2
m + c2m)

2(m+ 1)2
. (2.9)

By using the inequalities given by (1.6) in (2.9) for the coefficients bm and cm, we obtain

|am+1| ≤
B1

m+ 1
. (2.10)

Adding (2.5) to (2.7), we have

(2m+ 1)(m+ 1)a2m+1 = B1(b2m + c2m) +B2(b
2
m + c2m). (2.11)

Applying the inequalities given by (1.6) in (2.11) for the coefficients cm, c2m, bm and b2m,

we have

|am+1| ≤

√
2B1 + 2|B2|

(2m+ 1)(m+ 1)
. (2.12)

Substituting (2.8) and (2.9) into (2.11), we get

b2m =
(1 +m)B1(b2m + c2m)

(2m+ 1)B2
1 − 2(m+ 1)B2

. (2.13)

From (2.8), (2.9) and (2.13), we get

(m+ 1)[(2m+ 1)B2
1 − 2(m+ 1)B2]a

2
m+1 = B3

1(b2m + c2m). (2.14)

Further, the equations (2.8) and (2.14) together with the equation (1.6) yield

|(m+ 1)[(2m+ 1)B2
1 − 2(m+ 1)B2]a

2
m+1| ≤ 2B3

1(1− |bm|2). (2.15)

From (2.4) and (2.15), we obtain

|am+1| ≤
B1

√
2B1√

(m+ 1)[2(m+ 1)B1 + |(2m+ 1)B2
1 − 2(m+ 1)B2|]

. (2.16)

Now, from (2.10), (2.12) and (2.16), we get

|am+1| ≤ min

{
B1

m+ 1
,

√
2B1 + 2|B2|

(2m+ 1)(m+ 1)
,

B1

√
2B1√

(m+ 1)[2(m+ 1)B1 + |(2m+ 1)B2
1 − 2(m+ 1)B2|]

}
.

Next, in order to find the bound on |a2m+1|, by substituting (2.7) from (2.5), we get

a2m+1 =
m+ 1

2
a2m+1 +

B1

2(2m+ 1)
(b2m − c2m). (2.17)

Then, in view of (2.4), (2.8) and (2.9), applying the inequalities in (1.6) for the coefficients

b2m and c2m, we get

|a2m+1| ≤
m+ 1

2
|am+1|2 +

B1

2(2m+ 1)
(|b2m|+ |c2m|)

≤ m+ 1

2
|am+1|2 +

B1

2m+ 1
(1− |bm|2)
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≤
(
m+ 1

2
− (m+ 1)2

(2m+ 1)B1

)
|am+1|2 +

B1

2m+ 1
. (2.18)

From (2.10), (2.12), (2.16) and (2.18), we have the assertion (2.2). This completes the

proof of Theorem 2.1.

Remark 2.1 The estimates of the coefficients |am+1| and |a2m+1| of Theorem 2.1 is the

improvement of the estimates obtained in Theorem 1 of [15].

Setting φ(z) =

(
1 + z

1− z

)α

(0 < α ≤ 1) in Theorem 2.1, we have the following corollary.

Corollary 2.1 Let f(z) given by (1.3) be in the class HΣ ,m

((
1 + z

1− z

)α)
= Hα

Σm
. Then

|am+1| ≤ min

{
2α

m+ 1
,

√
4α+ 4α2

(2m+ 1)(m+ 1)
,

2α√
(m+ 1)(m+ 1 +mα)

}
,

|a2m+1| ≤


2α

2m+ 1
, 0 < α <

m+ 1

2m+ 1
;

6mα2 + 2α2

(2m+ 1)(m+ 1 +mα)
,

m+ 1

2m+ 1
≤ α ≤ 1.

Remark 2.2 The estimates of the coefficients |am+1| and |a2m+1| of Corollary 2.1 is the

improvement of the estimates obtained in Theorem 2 of [19].

Setting φ(z) =
1 + (1− 2β)z

1− z
(0 ≤ β < 1) in Theorem 2.1, we have the following

corollary.

Corollary 2.2 Let f(z) given by (1.3) be in the class HΣ ,m

(
1 + (1− 2β)z

1− z

)
= Hβ

Σm
.

Then

|am+1| ≤ min

{
2(1− β)

m+ 1
,

√
8(1− β)

(2m+ 1)(m+ 1)
,

2(1− β)√
(m+ 1)[m+ 1 + |m− β(2m+ 1)|]

}
,

|a2m+1| ≤


2(1− β)

2m+ 1
,

m

2m+ 1
< β < 1;

4(1− β)

2m+ 1
− 2(m+ 1)

(2m+ 1)2
, 0 ≤ β ≤ m

2m+ 1
.

Remark 2.3 The estimates of the coefficients |am+1| and |a2m+1| of Corollary 2.2 is the

improvement of the estimates obtained in Theorem 3 of [19].

Setting m = 1 in Theorem 2.1, we have the following corollary.

Corollary 2.3 Let f(z) given by (1.3) be in the class HΣ ,1(φ) = HΣ (φ). Then

|a2| ≤ min

{
B1

2
,

√
B1 + |B2|

3
,

B1

√
B1√

4B1 + |3B2
1 − 4B2|

}
,
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|a3| ≤



B1

3
, B1 <

4

3
;

min

{
B2

1

4
,

(
1− 4

3B1

)
B1 + |B2|

3
+

B1

3
,(

1− 4

3B1

)
B3

1

4B1 + |3B2
1 − 4B2|

+
B1

3

}
, B1 ≥ 4

3
.

Remark 2.4 The estimates of the coefficients |a2| and |a3| of Corollary 2.3 is the im-

provement of the estimates obtained in Theorem 2.1 of [13].

Setting m = 1 and φ(z) =

(
1 + z

1− z

)γ

(0 < γ ≤ 1) in Theorem 2.1, we have the following

corollary.

Corollary 2.4 Let f(z) given by (1.3) be in the class HΣ ,1

((
1 + z

1− z

)γ)
. Then

|a2| ≤
√
2γ√

2 + γ
,

|a3| ≤


2γ

3
, 0 < γ <

2

3
;

8γ2

6 + 3γ
,

2

3
≤ γ ≤ 1.

Remark 2.5 The estimates for |a3| asserted by Corollary 2.4 are more accurate than

those given by Theorem 1 in Srivastava et al.[14].

Setting m = 1 and φ(z) =
1 + (1− 2γ)z

1− z
(0 ≤ γ < 1) in Theorem 2.1, we have the

following corollary.

Corollary 2.5 Let f(z) given by (1.3) be in the class HΣ ,1

(
1 + (1− 2γ)z

1− z

)
. Then

|a2| ≤
√
2(1− γ)√

2 + |1− 3γ|
,

|a3| ≤


2(1− γ)

3
,

1

3
< γ < 1;

8− 12γ

9
, 0 ≤ γ ≤ 1

3
.

Remark 2.6 The estimates for |a2| and |a3| asserted by Corollary 2.5 are more accurate

than those given by Theorem 2 in Srivastava et al.[14].
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