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1 Introduction and Main Results

In this paper, we use the standard notations and the fundamental results of Nevanlinna’s

theory (see [1]–[2]). Let f be a meromorphic function in the whole complex plane, we denote

by σ(f), λ(f) and λ
( 1

f

)
the order, the exponent of convergence of zeros and poles of f(z),

respectively.

Nevanlinna’s theory has been widely applied to the field of complex difference. Many

researchers studied the properties of meromorphic solutions of the following linear difference

equation by this theory

An(z)f(z + cn) + · · ·+A1(z)f(z + c1) +A0(z)f(z) = 0, (1.1)

where n ∈ N, cj (j = 1, · · · , n) are nonzero complex numbers which are different from

each other, and obtained lots of results concerning the growth and value distribution of

meromorphic solutions of (1.1) (see [3]–[9]). Therein Chiang and Feng[4] considered the

Received date: July 29, 2016.
Foundation item: The NSF (11661044, 11201195) of China, and the NSF (20132BAB201008) of Jiangxi

Province.
* Corresponding author.
E-mail address: 1518048835@qq.com (Tu H Q), liuhuifang73@sina.com (Liu H F).



16 COMM. MATH. RES. VOL. 34

case when there is only one dominating coefficient among all entire coefficients of (1.1), and

obtained the following result:

Theorem A[4] Let A0(z), · · · , An(z) be entire functions. If there exists an integer l (0 ≤
l ≤ n) such that

σ(Al) > max
0≤j≤n
j ̸=l

{σ(Aj)},

then every meromorphic solution f( ̸≡ 0) of (1.1) satisfies

σ(f) ≥ σ(Al) + 1.

When most coefficients of (1.1) have the same order, Qi et al.[9] studied the properties

of meromorphic solutions of the following linear difference equation

f(z + n) +
n−1∑
j=0

{Pj(e
A(z)) +Qj(e

−A(z))}f(z + j) = 0, (1.2)

and obtained the following results:

Theorem B[9] Let Pj(z) and Qj(z) (j = 0, 1, · · · , n − 1) be polynomials, A(z) be a poly-

nomial of degree k(≥ 1). If

deg(P0) > deg(Pj) or deg(Q0) > deg(Qj), j = 1, · · · , n− 1,

then each nontrivial meromorphic solution f(z) with finite order of (1.2) satisfies

σ(f) = λ(f − a) ≥ k + 1,

and so f assumes every nonzero complex value a ∈ C infinitely often.

Theorem C[9] Suppose that the assumptions of Theorem B are satisfied. If f(z) is a non-

trivial entire solution with finite order of (1.2) that satisfies λ(f) ≤ k, then σ(f) = k + 1.

Comparing Theorem A with Theorem B and Theorem C, we pose the following questions:

Question 1.1 When all coefficients of (1.1) have the form Pj(e
A(z))+Qj(e

−A(z))+Rj(z)

(j = 0, · · · , n), where Pj , Qj and A are polynomials, Rj are meromorphic functions, and

satisfy deg(Pl) > max
0≤j≤n
j ̸=l

{deg(Pj)} or deg(Ql) > max
0≤j≤n
j ̸=l

{deg(Qj)}, does the conclusion of

Theorem B hold?

Question 1.2 Theorem C provided a criterion which guarantee that each entire solution

of (1.2) has the smallest order. Then under the assumptions of Question 1.1, what else

condition can guarantee that each meromorphic solution of (1.1) has the smallest order?

In this paper, we investigate the above questions and obtain the following results.

Theorem 1.1 Let Aj(z) = Pj(e
A(z)) +Qj(e

−A(z)) +Rj(z) (j = 0, 1, · · · , n), where A(z)

are polynomials with degree k(≥ 1), Pj(z) and Qj(z) (j = 0, 1, · · · , n − 1) are polynomials,

Rj(z) are meromorphic functions of σ(Rj) < k and Aj(z) − Rj(z) ̸≡ 0. If there exists an

integer l ∈ {0, 1, · · · , n} such that

deg(Pl) > deg(Pj) or deg(Ql) > deg(Qj), j = 0, 1, · · · , n, j ̸= l,
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then every meromorphic solution f (̸≡ 0) with finite order of (1.1) satisfies σ(f) = λ(f−φ) ≥
k + 1, where φ(z)(̸≡ 0) is a meromorphic function with σ(φ) < k + 1.

Theorem 1.2 Let Aj(z) (j = 0, 1, · · · , n) and l satisfy the conditions of Theorem 1.1. If

f (̸≡ 0) is a meromorphic solution with finite order of (1.1) that satisfies max
{
λ(f), λ

( 1

f

)}
≤ k, then σ(f) = k + 1.

Considering the non-homogeneous linear difference equation

An(z)f(z + cn) + · · ·+A1(z)f(z + c1) +A0(z)f(z) = F (z), (1.3)

we obtain the following result.

Theorem 1.3 Let Aj(z) (j = 0, 1, · · · , n) and l satisfy the conditions of Theorem 1.1,

and let F (z)(̸≡ 0) be a meromorphic function with σ(F ) < k + 1. Then each meromorphic

solution f(z) with finite order of (1.3) satisfies λ(f) = σ(f) ≥ k+1 with at most one possible

exceptional solution f0 satisfying σ(f0) < k + 1.

2 Lemmas

We need the following lemmas for the proof of the above theorems.

Lemma 2.1 [4] Let η1, η2 be two arbitrary complex numbers, and f(z) be a meromorphic

function of finite order. Let ε > 0 be given. Then there exists a subset E ⊂ (1,+∞) with

finite logarithmic measure such that for all |z| = r ̸∈ E ∪ [0, 1], we have

exp{−rσ(f)−1+ε} ≤
∣∣∣∣f(z + η1)

f(z + η2)

∣∣∣∣ ≤ exp{rσ(f)−1+ε}.

Lemma 2.2 [10] Let f(z) be a non-constant meromorphic function. Then for all irreducible

rational functions in f

R(z, f) =
P (z, f)

Q(z, f)
=

p∑
i=0

ai(z)f
i

q∑
j=0

bj(z)f j

with meromorphic coefficients ai(z), bj(z) (i = 0, · · · , p, j = 0, · · · , q), we have

T (r, R(z, f)) = max{p, q}T (r, f) +O(Ψ(r)) + S(r, f),

where Ψ(r) = max
i,j

{T (r, ai), T (r, bj)}.

Lemma 2.3 [10] Let g : [0,+∞) → R, h : [0,+∞) → R be monotone increasing functions

such that g(r) ≤ h(r) outside of an exceptional set E of finite logarithmic measure. Then,

for any α > 1, there exists an r0 > 0 such that g(r) ≤ h(αr) holds for all r > r0.
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Lemma 2.4 [11] Let fj(z) (j = 1, · · · , n + 1, n ≥ 2) be meromorphic functions, gj(z)

(j = 1, · · · , n) be entire functions, and satisfy

(i)
n∑

j=0

fj(z)e
gj(z) ≡ fn+1;

(ii) when 1 ≤ j < k ≤ n, gj(z)− gk(z) is not a constant;

(iii) when 1 ≤ j ≤ n+ 1, 1 ≤ h < k ≤ n,

T (r, fj) = o{T (r, exp{gh − gk})}, r → ∞, r ̸∈ E,

where E ⊂ (1, ∞) is of finite linear measure or finite logarithmic measure.

Then fj(z) ≡ 0 (j = 1, · · · , n+ 1).

Lemma 2.5 [12] Let f(z) be a meromorphic function of order σ(f) = σ < ∞. Then for

any given ε > 0, there exists a set E ⊂ (1, ∞) of finite linear measure such that for all

|z| = r ̸∈ [0, 1] ∪E, and r sufficiently large, we have

exp{−rσ+ε} ≤ |f(z)| ≤ exp{rσ+ε}.

Lemma 2.6 [4] Let f be a non-constant meromorphic function with finite order, and η be

a nonzero complex number. Then for each ε > 0, we have

T (r, f(z + η)) = T (r, f) +O(rσ(f)−1+ε) +O(log r).

Lemma 2.7 Let Aj (j = 0, · · · , n) be meromorphic functions, and f (̸≡ 0) be a meromor-

phic solution with finite order of the difference equation

An(z)f(z + cn) + · · ·+A0(z)f(z + c0) = 0, (2.1)

where c0, · · · , cn are distinct complex numbers. If σ(f) > max
0≤j≤n

{σ(Aj)}+ 1, then

max
{
λ(f), λ

( 1

f

)}
≥ σ(f)− 1.

Proof. Suppose that max
{
λ(f), λ

( 1

f

)}
< σ(f) − 1. From the Hadamard factorization

theorem we get

f(z) =
d1(z)

d2(z)
eh(z) = d(z)eh(z), (2.2)

where d1(z) and d2(z) respectively are the canonical products (or polynomials) formed by

zeros or poles of f(z), such that

σ(d1) = λ(d1) = λ(f), σ(d2) = λ(d2) = λ
( 1

f

)
, (2.3)

and h(z) is a polynomial. By (2.2) and (2.3), we get

σ(f) = deg h. (2.4)

Let

h(z) = amzm + am−1z
m−1 + · · ·+ a0, (2.5)

where am, · · · , a0 are constants, am ̸= 0, and m is a positive integer. Then, by (2.4) and

the conditions of Lemma 2.7, we get m ≥ 2.
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Substituting (2.2) into (2.1), we get
n∑

j=0

Aj(z)d(z + cj)e
h(z+cj) = 0. (2.6)

By Lemma 2.6 and (2.3)–(2.5), we get

σ(Aj(z)d(z + cj)) ≤ max{σ(Aj), σ(d1), σ(d2)}

< σ(f)− 1

= m− 1, j = 0, · · · , n. (2.7)

On the other hand, by (2.5), we get

deg{h(z + cj)− h(z + ct)} = m− 1 ≥ 1, cj ̸= ct, 0 ≤ j < t ≤ n. (2.8)

Thus, by (2.7) and (2.8), we get

T (r, Aj(z)d(z + cj)) = o{T (r, eh(z+ck)−h(z+ct))}, 0 ≤ j ≤ n, 0 ≤ k < t ≤ n. (2.9)

Then by Lemma 2.4, (2.6), (2.8) and (2.9), we get

Aj(z)d(z + cj) ≡ 0, j = 0, · · · , n.
This is a contradiction. Lemma 2.7 is thus proved.

Lemma 2.8 [8] Let f(z) be a meromorphic solution with finite order of (1.3). If

max{σ(F ), σ(Aj), j = 0, 1, · · · , n} < σ(f),

then λ(f) = σ(f).

3 Proofs of Results

3.1 Proof of Theorem 1.1

Suppose that

A(z) = akz
k + ak−1z

k−1 + · · ·+ a0,

Pj(z) = ajpjz
pj + ajpj−1z

pj−1 + · · ·+ aj0, j = 0, 1, · · · , n,

Qj(z) = bjqjz
qj + bjqj−1z

qj−1 + · · ·+ bj0, j = 0, 1, · · · , n.
Let f(z) be a nontrivial meromorphic solution of (1.1) such that σ(f) = σ < ∞. Firstly, we

prove σ(f) ≥ k+1. From Lemma 2.1, for any given ε > 0, there exists a set E1 ⊂ (1,∞) of

finite logarithmic measure such that for all z satisfying |z| = r ̸∈ [0, 1] ∪E1, we have∣∣∣∣f(z + cj)

f(z + cl)

∣∣∣∣ ≤ exp{rσ−1+ε}, j ̸= l. (3.1)

Set σ1 = max{σ(Rj) : j = 0, · · · , n}. Then by Lemma 2.5, for any given ε
(
0 < ε <

k − σ1

2

)
,

there exists a set E2 ⊂ (1, ∞) of finite linear measure such that for all |z| = r ̸∈ [0, 1] ∪ E2

and r sufficiently large, we have

|Rj(z)| ≤ exp{rσ1+ε}, j = 0, 1, · · · , n. (3.2)

Now we discuss the following two cases.
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Case 1. If deg(Pl) >deg(Pj) (j = 0, 1, · · · , n, j ̸= l), then we take a suitable z such that

|z| = r and akz
k = |ak|rk, so for r sufficiently large and r ̸∈ [0, 1] ∪ E1 ∪E2, we have

|Aj(z)| ≤ |Pj(e
A(z))|+ |Qj(e

−A(z))|+ |Rj(z)|

≤ |ajpj | exp{pjrk|ak|(1 + o(1))}(1 + o(1)) + exp{rσ1+ε}

= |ajpj | exp{pjrk|ak|(1 + o(1))}(1 + o(1)), j ̸= l (3.3)

and

|Al(z)| ≥ |Pl(e
A(z))| − |Ql(e

−A(z))| − |Rl(z)|

≥ |alpl
| exp{plrk|ak|(1 + o(1))}(1− o(1))− exp{rσ1+ε}

= |alpl
| exp{plrk|ak|(1 + o(1))}(1− o(1)). (3.4)

By (1.1), (3.1), (3.3) and (3.4), we get for all z satisfying akz
k = |ak|rk and |z| = r ̸∈

[0, 1] ∪E1 ∪ E2, when r sufficiently large,

|alpl
| exp{plrk|ak|(1 + o(1))}(1− o(1))

≤ |Al(z)|

≤
n∑

j=0
j ̸=l

|Aj(z)|
∣∣∣∣f(z + j)

f(z + l)

∣∣∣∣
≤ M exp{rσ−1+ε} exp{Nrk|ak|(1 + o(1))}, (3.5)

where M > 0 is a constant, N = max{pj : j = 0, · · · , n, j ̸= l}. By pl > N and (3.5), we

get, for sufficiently large r ̸∈ [0, 1] ∪E1 ∪ E2,

|alpl
|

2M
exp{(pl −N)rk|ak|(1 + o(1))} ≤ exp{rσ−1+ε}. (3.6)

By (3.6) and Lemma 2.3, we get k ≤ σ − 1 + ε, which implies σ(f) = σ ≥ k + 1.

Case 2. If deg(Ql) >deg(Qj) (j = 0, 1, · · · , n, j ̸= l), then we take a suitable z such

that |z| = r and akz
k = −|ak|rk. By the similar method as in the proof of Case 1, we can

obtain σ(f) ≥ k + 1.

In the following, we prove that λ(f − φ) = σ(f).

Set g(z) = f(z)− φ(z). Substituting f(z) = g(z) + φ(z) into (1.1), we obtain

An(z)g(z + cn) + · · ·+A1(z)g(z + c1) +A0(z)g(z) = −H(z), (3.7)

where

H(z) = An(z)φ(z + cn) + · · ·+A1(z)φ(z + c1) +A0(z)φ(z).

If H(z) ≡ 0, then φ(z) is a nonzero meromorphic solution of (1.1). Thus, by the above

proof, we get

σ(φ) ≥ k + 1.

This is absurd. Hence,

H(z) ̸≡ 0. (3.8)

On the other hand, by Lemma 2.2, we get

T (r, Pj(e
A) +Qj(e

−A) = (pj + qj)T (r, eA) + S(r, eA), j = 0, · · · , n. (3.9)
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Since eA is of the regular growth, by (3.9), we get T (r,Aj) = (pj + qj)T (r, e
A) + S(r, eA)

(j = 0, · · · , n). Hence we get

σ(Aj) = σ(eA) = k, j = 0, · · · , n. (3.10)

Then by (3.10) and Lemma 2.6, we get

σ(H) ≤ max{k, σ(φ)} < k + 1 ≤ σ(f) = σ(g). (3.11)

So by Lemma 2.8, (3.7), (3.8), (3.10) and (3.11), we obtain

λ(f − φ) = λ(g) = σ(g) = σ(f) ≥ k + 1.

Theorem 1.1 is thus proved.

3.2 Proof of Theorem 1.2

Let f( ̸≡ 0) be a meromorphic solution with finite order of (1.1). Then by Theorem 1.1 we

get

σ(f) ≥ k + 1. (3.12)

Suppose that σ(f) > k + 1. By (3.10) we get

σ(f) > max
0≤j≤n

{σ(Aj)}+ 1. (3.13)

Then combining with Lemma 2.7 and (3.13), we get

max
{
λ(f), λ

( 1

f

)}
≥ σ(f)− 1 > k.

This contradicts the hypothesis of Theorem 1.2. Hence we get σ(f) = k + 1. Theorem 1.2

is thus proved.

3.3 Proof of Theorem 1.3

Suppose that f0 is a meromorphic solution of (1.3) with σ(f0) < k + 1. If f∗(z)(̸≡ f0(z)) is

another meromorphic solution of (1.3) satisfying σ(f∗) < k + 1, then

σ(f∗ − f0) ≤ max{σ(f∗, σ(f0)} < k + 1,

and f∗ − f0 is a solution of the corresponding homogeneous equation (1.1) to (1.3). By

Theorem 1.1, we have

σ(f∗ − f0) ≥ k + 1,

a contradiction. Hence (1.3) possesses at most one exceptional solution f0 with σ(f0) < k+1.

Now Suppose that f is a meromorphic solution of (1.3) with k + 1 ≤ σ(f) < ∞. Com-

bining (3.10), we have

σ(f) > max{σ(Aj), σ(F )}.

Hence, by Lemma 2.8, we get

λ(f) = σ(f).

Theorem 1.3 is thus proved.
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