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1 Introduction

1.1 Background

This paper is a sequel to [1], in which the notion of Lie 2-bialgeras was introduced. The

main purpose of this paper is to give an equivalent condition for Lie 2-bialgebras. Generally

speaking, a Lie 2-bialgebra is a Lie 2-algebra endowed with a Lie 2-coalgebra structure,

satisfying certain compatibility conditions. As we all know, a Lie bialgebra structure on

a Lie algebra (g, [ · , · ]) consists of a cobracket δ : g → g ∧ g, which squares to zero, and

satisfies the compatibility condition: for all x, y, z ∈ g,

δ([x, y]) = [x, δ(y)]− [y, δ(x)].

Consequently, one may ask what is a Lie 2-bialgebra. A Lie 2-bialgebra is a pair of 2-terms of

L∞-algebra structure underlying a 2-vector space and its dual. The compatibility conditions

are described by big bracket (see [1]). And an L∞-algebra structure on a Z-graded vector

space can be found in [2]–[4]. This description of Lie 2-bialgebras seems to be elegant, but

one cannot get directly the maps twisted between them and compatibility conditions. This

is what we will explore in this paper.
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This paper is organized as follows: In Section 1, we recall the notion of big bracket, which

has a fundamental role in this paper. Then, we introduce the basic concepts in Section 2

which is closely related to our result, that is, Lie 2-algebras and Lie 2-coalgebras, most of

which can be found in [3]. Finally, in Section 3, we give an equivalent description of Lie

2-bialgebras, whose compatibility conditions are given by big bracket.

1.2 The Big Bracket

We introduce the following Notations.

(1) Let V be a graded vector space. The degree of a homogeneous vector e is denoted

by |e|.
(2) On the symmetric algebra S •(V ), the symmetric product is denoted by ⊙.

It is now necessary to recall the notion of big bracket underlying the graded vector spaces

[1]. Let V =
⊕
k∈Z

Vk be a Z-graded vector space, and V [i] be its degree-shifted one. Now, we

focus on the symmetric algebra S •(V [2] ⊕ V ∗[1]), denoted by S •. In order to equip S •

with a Lie bracket, i.e., the Schouten bracket, denoted by { · , · }, we define a bilinear map

{ · , · } : S • ⊗ S • → S • by:

(1) {v, v′} = {ε, ε′} = 0, {v, ε} = (−1)|v|⟨v | ε⟩, v, v′ ∈ V [2], ε, ε′ ∈ V ∗[1];

(2) {e1, e2} = −(−1)(|e1|+3)(|e2|+3){e2, e1}, ei ∈ S •;

(3) {e1, e2 ⊙ e3} = {e1, e2} ⊙ e3 + (−1)(|e1|+3)|e2|e2 ⊙ {e1, e3}, ei ∈ S •.

Clearly, { · , · } has degree 3, and all homogeneous elements ei ∈ S • satisfy the following

modified Jacobi identity:

{e1, {e2, e3}} = {{e1, e2}, e3}+ (−1)(|e1|+3)(|e2|+3){e2, {e1, e3}}. (1.1)

Hence, (S •, ⊙, { · , · }) becomes a Schouten algebra, or a Gerstenhaber algebra, see [1] and

[4] for more details. Note that the big bracket here is different from that in [5], which is

defined on S •(V ⊕ V ∗) without degree shifting.

For element F ∈ Sp(V [2]) ⊙ Sq(V ∗[1]), we define the following multilinear map: for all

xi ∈ S •(V [2]),

DF : S •(V [2])⊗ · · · ⊗ S •(V [2])︸ ︷︷ ︸
q-tuples

→ S •(V [2])

by

DF (x1, · · · , xq) = {{· · · {{F, x1}, x2}, · · · , xq−1}, xq}.

Lemma 1.1 The following equations hold:

(1) |DF (x1, x2, · · · , xq)| = |x1|+ |x2|+ · · ·+ |xq|+ |F |+ 3q;

(2) DF (x1, · · · , xi, xi+1, · · · , xq) = (−1)(|xi|+3)(|xi+1|+3)DF (x1, · · · , xi+1, xi, · · · , xq).

Proof. Since the degree of big bracket is 3, we apply this fact q-times to obtain (1).

If q = 2, by (1.1), we have

{x1, {x2, F}} = {{x1, x2}, F}+ (−1)(|x1|+3)(|x2|+3){x2, {x1, F}}

= (−1)(|x1|+3)(|x2|+3){x2, {x1, F}}.
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It is easy to check that if {x1, {x2, F}} = {{F, x2}, x1}, then
{x2, {x1, F}} = {{F, x1}, x2};

and if {x1, {x2, F}} = −{{F, x2}, x1}, then
{x2, {x1, F}} = −{{F, x1}, x2}.

By induction, we conclude the proof.

Lemma 1.2 For any E ∈ Sk(V [2]) ⊙ Sl(V ∗[1]), F ∈ Sp(V [2]) ⊙ Sq(V ∗[1]), we have for

all xi ∈ S •(V [2]),

D{E,F}(x1, · · · , xn)

=
∑

σ∈sh-(q,l−1)

ε(σ)DE(DF (xσ(1), · · · , xσ(q)), xσ(q+1), · · · , xσ(n))

− (−1)(|E|+3)(|F |+3)
∑

σ∈sh-(l,q−1)

ε(σ)DF (DE(xσ(1), · · · , xσ(l)), xσ(l+1), · · · , xσ(n)),

where n = q+ l−1, and here sh-(j, n−j) denotes the collection of all (j, n−j)-shuffles, and

ε(σ) means that a sign change (−1)(|xi|+3)(|xi+1|+3) happens if the place of two successive

elements xi, xi+1 are changed.

Proof. If n = 1, by (1.1), we get that

{{E, F}, x} = {E, {F, x}} − (−1)(|E|+3)(|F |+3){F, {E, x}}.
If n ≥ 2, by (1.1) and Lemma 1.1, the result can be derived easily.

2 Lie 2-algebras and Lie 2-coagebras

2.1 Lie 2-algebras

We now pay special attention to L∞-algebra structure restricted to 2-terms V = θ⊕g, where

θ is of degree 1, and g is of degree 0, while the shifted vector space V [2] and V ∗[1] should be

considered. One can read [1] and [6] for more details of L∞-algebras, where the notion of

L∞-algebra is called an SH (strongly homotopy) Lie algebras. And the degrees of elements

in g, θ, g∗, and θ∗ can be easily obtained by a straight computation (see [1] and [4]). The

following concept is taken from [1] and [6]:

Definition 2.1 A Lie 2-algebra structure on a 2-graded vector spaces g and θ consists of

the following maps:

(1) a linear map ϕ : θ → g;

(2) a bilinear skew-symmetric map [ · , · ] : g ∧ g → g;

(3) a bilinear skew-symmetric map · ≻ · : g ∧ θ → θ;

(4) a trilinear skew-symmetric map h : g ∧ g ∧ g → θ,

such that the following equations are satisfied: for all x, y, z, w ∈ g, u, v ∈ θ,

(a) [[x, y], z] + c.p.+ ϕh(x, y, z) = 0;

(b) y ≻ (x ≻ u)− x ≻ (y ≻ u) + [x, y] ≻ u+ h(ϕ(u), x, y) = 0;
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(c) ϕ(u) ≻ v + ϕ(v) ≻ u = 0;

(d) ϕ(x ≻ u) = [x, ϕ(u)];

(e) h([x, y], z, w) + c.p. = −w ≻ h(x, y, z) + c.p.,

where c.p. stands for cyclic permutation.

In the sequel, we denote a Lie 2-algebra by (θ, g; ϕ, [ · , · ], · ≻ ·, h) or simply (θ, g).

One may be confused with these notions since in [1] the same notions are used to denote

the strict Lie 2-algebras, which are different from our weak sense. But in this paper, the

notions denote the weak cases without other statements.

We should point out that the notion of Lie 2-algebras stands for different meaning in

different literatures. The notion of semidirect Lie 2-algebras is not a special case of our

Lie 2-algebras in [2], where Baez and Crans treat semidirect Lie 2-algebras as a 2-vector

space endowed with a skew-symmetric bilinear map satisfying the Jacobi identity up to a

completely antisymmetric trilinear map called Jacobiator, which also makes sense in terms

of its Jacobiator identity. By contract our definition of Lie 2-algebras is that of 2-term

L∞-algebra in [1] and [6]. The reader should distinguish these concepts. However, Baez and

Crans[2] have given a one-to-one correspondence between the notion of Lie 2-algebras and

2-term L∞-algebra.

Before we prove a proposition, we give the following lemma.

Lemma 2.1 There is a bijection between the linear maps ϕ, [ · , · ], · ≻ · and h of Lie 2-

algebra and the data ε1001, ε
12
00, ε

01
11 and ε0310, where ε

10
01 ∈ θ∗⊙g, ε1200 ∈ (⊙2g∗)⊙g, ε0111 ∈ g∗⊙θ∗⊙θ

and ε0310 ∈ (⊙3g∗)⊙ θ.

Proof. If the data ε1001, ε
12
00, ε

01
11 and ε0310 are given, then we let ϕ(u) = Dε1001

(u), [x, y] =

Dε1200
(x, y), x ≻ u = Dε0111

(x, u), h(x, y, z) = Dε0310
(x, y, z) for all x, y, z ∈ g, u, v ∈ θ.

Conversely, for all x, y, z ∈ g, u ∈ θ, if the structure maps ϕ, [ · , · ], · ≻ · and h are given,

we take ε1001 = fθ ⊙ ϕ(u), where ⟨u | fθ⟩ = 1. So, we have

Dε1001
(u) = {ε1001, u} = ϕ(u).

Similarly, we take ε1200 = f11
g ⊙ f21

g ⊙ [x, y], ε0111 = fg ⊙ fθ ⊙ (x ≻ u) and ε0310 = f12
g ⊙ f22

g ⊙
f32
g ⊙ h(x, y, z) such that

⟨x | f21
g ⟩ = ⟨y | f11

g ⟩ = 1,

⟨u | fθ⟩ = ⟨x | fg⟩ = 1,

⟨x | f32
g ⟩ = ⟨y | f22

g ⟩ = ⟨z | f12
g ⟩ = 1.

By the language of big bracket, a Lie 2-algebra can be described in a beautiful manner:

Proposition 2.1 A Lie 2-algebra structure on a pair of graded vector spaces θ and g is

a solution l = ε1001 + ε1200 + ε0111 + ε0310 to the equation

{l, l} = 0,

where ε1001 ∈ θ∗⊙g, ε1200 ∈ (⊙2g∗)⊙g, ε0111 ∈ g∗⊙θ∗⊙θ and ε0310 ∈ (⊙3g∗)⊙θ. Here the bracket

stands for the big bracket described in Section 1.2. Moreover, if ε0310 = 0, we call it a strict

Lie 2-algebra.
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Proof. By Lemma 2.1, it is easy to see that ϕ(u) = Dε1001
(u), [x, y] = Dε1200

(x, y), x ≻ u =

Dε0111
(x, u) and h(x, y, z) = Dε0310

(x, y, z) for all x, y, z ∈ g, u, v ∈ θ.

Since l = ε1001 + ε1200 + ε0111 + ε0310, we get

{l, l} = {ε1200, ε1200}+ {ε0111, ε0111}+ 2{ε1001, ε1200}+ 2{ε1001, ε0111}

+ 2{ε1001, ε0310}+ 2{ε1200, ε0111}+ 2{ε1200, ε0310}+ 2{ε0111, ε0310}.

By Lemma 1.2, we have

D{l, l}(x, y, z) = D{ε1200, ε1200}(x, y, z) + 2D{ε1001, ε0310}(x, y, z)

= 2(Dε1200
(Dε1200

(x, y), z) + c.p.) + 2Dε1001
(Dε0310

(x, y, z))

= 2([[x, y], z] + c.p.+ ϕ(h(x, y, z)));

D{l, l}(x, y, u) = 2D{ε1001, ε0310}(x, y, u) +D{ε0111, ε0111}(x, y, u) + 2D{ε1200, ε0111}(x, y, u)

= 2Dε0310
(Dε1001

(u), x, y) + 2(−Dε0111
(Dε0111

(x, u), y) +Dε0111
(Dε0111

(y, u), x))

+ 2Dε0111
(Dε1200

(x, y), u)

= 2(h(ϕ(u), x, y) + y ≻ (x ≻ u)− x ≻ (y ≻ u) + [x, y] ≻ u);

D{l, l}(x, u) = 2D{ε1001, ε1200}(x, u) + 2D{ε1001, ε0111}(x, u)

= 2Dε1200
(Dε1001

(u), x) + 2Dε1001
(Dε0111

(x, u)

= 2([ϕ(u), x] + ϕ(x ≻ u));

D{l, l}(u, v) = 2D{ε1001, ε0111}(u, v)

= 2(Dε0111
(Dε1001

(u), v) +Dε0111
(Dε1001

(v), u))

= 2(ϕ(u) ≻ v + ϕ(v) ≻ u);

D{l, l}(x, y, z, w) = 2D{ε1200, ε0310}(x, y, z, w) + 2D{ε0111, ε0310}(x, y, z, w)

= 2(Dε0310
(Dε1200

(x, y), z, w) + c.p.+Dε0111
(Dε0310

(x, y, z), w) + c.p.)

= 2(h([x, y], z, w) + c.p.+ w ≻ h(x, y, z) + c.p.).

Hence, {l, l} = 0 if and only if the right hand side of these equations vanish, which implies

that (θ, g) is a Lie 2-algebra.

Remark 2.1 Note that in [1], a strict Lie 2-algebra is equivalent to a Lie algebra crossed

module. Similarly, one may ask what is a Lie 2-algebra crossed module, this work has been

solved in [8]. The reader can read this for more details.

Example 2.1 Let V3 be a 3-dimensional vector space. Then we can construct a Lie

2-algebra as follows:

O : R → V3 is the trivial map;

[ · , · ] : V3 × V3 → V3 is the crossed product;

· ≻ · : V3 ∧R → R is given by α ≻ k = k(αe), where e = (1, 1, 1);

h : V3 ∧ V3 ∧ V3 → R is its mixed product.

One can easily check that R⊕ V3 becomes a Lie 2-algebra.
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2.2 Lie 2-coalgebras

As we all know, if (g∗, [ · , · ]∗) is a Lie algebra, then (g, δ) is a Lie coalgebra, where ⟨x |
[ξ, ς]∗⟩ = −⟨δ(x) | ξ ∧ ς⟩ for all x ∈ g, ξ, ς ∈ g∗. Similar to the relation between Lie algebras

and Lie coalgebras, if (g∗, θ∗) is a Lie 2-algebra, then we call (θ, g) a Lie 2-coalgebra.

Besides, we have the following:

Proposition 2.2 A Lie 2-coalgebra structure on a pair of graded vector spaces θ and g

is a solution c = ε1001 + ε0021 + ε1110 + ε0130 ∈ S (−4) to the equation

{c, c} = 0,

where ε1001 ∈ θ∗ ⊙ g, ε0021 ∈ θ∗ ⊙ (⊙2θ), ε1110 ∈ g∗ ⊙ g⊙ θ and ε0130 ∈ g∗ ⊙ (⊙3θ).

We would give an equivalent condition of a Lie 2-coalgebra by the language of maps and

compatibility conditions. The following notations are taken from [1]:

(1) Wk = {w ∈ g ∧ (∧k−1θ) : ιξιϕ∗ςw = −ιςιϕ∗ξw}, k ≥ 1, ξ, ς ∈ g∗;

(2) The bilinear map: for all x ∈ g, u ∈ θ,

Dϕ : ∧• (g⊕ θ) → ∧•(g⊕ θ)

defined by

Dϕ(x+ u) = ϕ(u)

is a degree-0 derivation with respect to the wedge product.

The maps and compatibility conditions of a Lie 2-coalgebra can be summarized as follows.

Theorem 2.1 A Lie 2-coalgebra structure on (θ, g) is equivalent to the following linear

maps δ : g → W2 ⊂ g ∧ θ, ω : θ → θ ∧ θ, and η : g → θ ∧ θ ∧ θ such that

(1) Dϕω = δϕ;

(2) ω2 = ηϕ;

(3) (ω + δ)δ = Dϕη;

(4) ωη = ηδ.

Here we regard both ω and δ as degree-1 derivations on ∧•(g⊕θ), and η as degree-2 by letting

ω|g = 0, δ|θ = 0 and η|θ = 0.

Proof. According to Proposition 2.1, a Lie 2-coalgebra structure on (θ, g) is equivalent to

the fact that (g∗, θ∗) is a Lie 2-algebra, which consists of the following linear maps:

ϕT : g∗ → θ∗;

[ · , · ]∗ : θ∗ ∧ θ∗ → θ∗;

· ◃ · : θ∗ ∧ g∗ → g∗;

m : θ∗ ∧ θ∗ ∧ θ∗ → g∗,

such that for all ξ, ς ∈ g∗, κ, κ1, κ2, κ3, κ4 ∈ θ∗,

(a) [[κ1, κ2]∗, κ3]∗ + c.p.− ϕTm(κ1, κ2, κ3) = 0;

(b) κ2 ◃ (κ1 ◃ ξ)− κ1 ◃ (κ2 ◃ ξ) + [κ1, κ2]∗ ◃ ξ −m(ϕT (ξ), κ1, κ2) = 0;

(c) ϕT (ξ) ◃ ς = −ϕT (ς) ◃ ξ;

(d) ϕT (κ ◃ ξ) = [κ, ϕT (ξ)]∗;
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(e) m([κ1, κ2]∗, κ3, κ4) + c.p. = −κ4 ◃ m(κ1, κ2, κ3) + c.p.

Then a triple of linear maps (δ, ω, η) is defined by: for all x ∈ g, u ∈ θ, ξ, ς ∈ g∗,

κ, κ1, κ2, κ3 ∈ θ∗,

⟨δ(x) | ξ ∧ κ⟩ = ⟨x | κ ◃ ξ⟩,

⟨ω(u) | κ1 ∧ κ2⟩ = −⟨u | [κ1, κ2]∗⟩,

⟨η(x) | κ1 ∧ κ2 ∧ κ3⟩ = −⟨x | m(κ1, κ2, κ3)⟩.
Note that

⟨δϕ(u) | ξ ∧ κ⟩ = ⟨ϕ(u) | κ ◃ ξ⟩

= − ⟨u | ϕT (κ ◃ ξ)⟩,

⟨Dϕω(u) | ξ ∧ κ⟩ = − ⟨ω(u) | ϕT (ξ) ∧ κ⟩

= − ⟨u | [κ, ϕT (ξ)]∗⟩.
So, Dϕω = δϕ is equivalent to (d).

⟨ω2(u) | κ1 ∧ κ2 ∧ κ3⟩ = − ⟨ω(u) | [κ1, κ2]∗ ∧ κ3 + c.p.⟩

= ⟨u | [[κ1, κ2]∗, κ3]∗ + c.p.⟩,

⟨ηϕ(u) | κ1 ∧ κ2 ∧ κ3⟩ = − ⟨ϕ(u) | m(κ1, κ2, κ3)⟩

= ⟨u | ϕTm(κ1, κ2, κ3)⟩.
Hence, ω2 = ηϕ is equivalent to (a).

⟨ωδ(x) | ξ ∧ κ1 ∧ κ2⟩ = ⟨ωδ(x) | κ1 ∧ κ2 ∧ ξ⟩

= − ⟨δ(x) | [κ1, κ2]∗ ∧ ξ⟩

= ⟨x | [κ1, κ2]∗ ◃ ξ⟩,

⟨δδ(x) | ξ ∧ κ1 ∧ κ2⟩ = ⟨δ(x) | (κ1 ◃ ξ) ∧ κ2 − (κ2 ◃ ξ) ∧ κ1⟩

= ⟨x | κ2 ◃ (κ1 ◃ ξ)− κ1 ◃ (κ2 ◃ ξ)⟩,

⟨Dϕη(x) | ξ ∧ κ1 ∧ κ2⟩ = − ⟨η(x) | ϕT (ξ) ∧ κ1 ∧ κ2⟩

= ⟨x | m(ϕT (ξ), κ1, κ2)⟩.
Therefore, (ω + δ)δ = Dϕη if and only if (b) holds.

⟨ωη(x) | κ1 ∧ κ2 ∧ κ3 ∧ κ4⟩ = − ⟨η(x) | [κ1, κ2]∗ ∧ κ3 ∧ κ4 + c.p.⟩

= ⟨x | m([κ1, κ2]∗, κ3, κ4) + c.p.⟩,

⟨ηδ(x) | κ1 ∧ κ2 ∧ κ3 ∧ κ4⟩ = − ⟨δ(x) | m(κ1, κ2, κ3) ∧ κ4 + c.p.⟩

= − ⟨x | κ4 ◃ m(κ1, κ2, κ3) + c.p.⟩.
Thus, ωη = ηδ if and only if (e) holds.

Meanwhile, since ιξιϕ∗ςw = (ξ∧ϕ∗(ς))w, we have that δ(x) ∈ W2 if and only if (c) holds.

3 Lie 2-bialgebras

3.1 Basic Concepts

The following concept is taken from [1].
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Definition 3.1 A Lie 2-bialgebra structure on a pair of graded vector spaces θ and g is

a solution ϵ = ε1001 + ε1200 + ε0111 + ε0310 + ε0021 + ε1110 + ε0130 ∈ S (−4) to the equation

{ϵ, ϵ} = 0,

where ε1001 ∈ θ∗ ⊙ g, ε0021 ∈ θ∗ ⊙ (⊙2θ), ε1110 ∈ g∗ ⊙ g⊙ θ, ε0130 ∈ g∗ ⊙ (⊙3θ), ε1200 ∈ (⊙2g∗)⊙ g,

ε0111 ∈ g∗ ⊙ θ∗ ⊙ θ and ε0310 ∈ (⊙3g∗)⊙ θ.

In particular, if both ε0310 and ε0130 vanish, we call it a strict Lie 2-bialgebra.

It is known that if (g, [ · , · ], δ) is a Lie bialgebra, then (g, [ · , · ]) is a Lie algebra and

(g, δ) is a Lie coalgebra. Similarly, we have the following lemma which can also be found in

[1].

Lemma 3.1 If (θ, g; ϵ) is a Lie 2-bialgebra, then (θ, g; l), where l = ε1001+ ε1200 + ε0111 + ε0310
is a Lie 2-algebra, and (θ, g; c), where c = ε1001+ε0021+ε1110+ε1130 ∈ S (−4) is a Lie 2-coalgebra.

In the view of the proof of Lemma 3.2 below, this fact can be obtained easily.

3.2 Main Theorem

Before we state and prove our main theorem, we give the following lemma.

Lemma 3.2 If (θ, g; ϵ) is a Lie 2-bialgebra, then it is equivalent to the following equations:

{ε1200 + ε0111 + ε0310 + ε1001, ε1200 + ε0111 + ε0310 + ε1001} = 0, (3.1)

{ε1001 + ε0021 + ε1110 + ε0130, ε1001 + ε0021 + ε1110 + ε0130} = 0, (3.2)

{ε1200, ε1110}+ {ε1200, ε0130}+ {ε0111, ε0021}

+ {ε0111, ε1110}+ {ε0111, ε0130}+ {ε0310, ε0021}+ {ε0310, ε1110} = 0. (3.3)

Proof. Let a = ε1200 + ε0111 + ε0310 and b = ε0021 + ε1110 + ε0130. Then we have

{ε, ε} = {l + c− ε1001, l + c− ε1001}

= {l, l}+ {c, c}+ 2{l, c} − 2{l, ε1001} − 2{c, ε1001}+ {ε1001, ε1001}

= {l, l}+ {c, c}+ 2{a, b}.
By examining each component, we have that {l, l} ∈ Sp(V ∗[1])⊙ V [2], {c, c} ∈ Sq(V [2])⊙
V ∗[1] and {a, b} ∈ Sk(V ∗[1])⊙ Sl(V [2]), where p, q, k, l ≥ 2.

Hence, we have {ϵ, ϵ} = 0 if and only if {l, l} = 0, {c, c} = 0 and {a, b} = 0. Expanding

these three terms gives the desired result. The proof is completed.

Our main theorem is now ready to be stated.

Theorem 3.1 Given a Lie 2-coalgebra structure (δ, ω, η) on a Lie 2-algebra (θ, g; ϕ,

[ · , · ], · ≻ ·, h), it forms a Lie 2-bialgebra if and only if the following equations are satisfied:

for all x, y, z ∈ g, u ∈ θ,

(1) δ([x, y]) = [[x, δ(y)]]− [[δ(x), y]];

(2) η([x, y]) = x ≻ η(y)− y ≻ η(x);

(3) ω(x ≻ u) = x ≻ ω(u) + δ(x) ≻ u;

(4) ωh(x, y, z) = h(δ(x)y, z) + c.p.
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Proof. Let ε = ε1200 + ε0111 + ε0310 + ε1001 + ε0021 + ε1110 + ε0130 ∈ S (−4).

According to Proposition 2.1, {l, l} = 0 is equivalent to the fact that (θ, g) is a Lie

2-algebra, where ϕ(u) = Dε1001
(u), [x, y] = Dε1200

(x, y), x ≻ u = Dε0111
(x, u) and h(x, y, z) =

Dε0310
(x, y, z) for all x, y, z ∈ g, u ∈ θ. And Proposition 2.2 implies that {c, c} = 0 is

equivalent to (θ, g) being a Lie 2-coalgebra, i.e., (g∗, θ∗) is a Lie 2-algebra.

Hence, by Lemma 3.2, it suffices to prove that (3.3) is equivalent to the four conditions

in this theorem.

For any E ∈ Sk(V ∗[1]) ⊙ Sl(V [2]), we introduce a multilinear map
∨
DE dual to DE by:

for all ξi ∈ S •(V ∗[1]),

∨
DE(ξ1, ξ2, · · · , ξl) = {{· · · {{E, ξ1}, ξ2}, · · · , ξl−1}, ξl}.

Then the triple of linear maps (δ, ω, η) is introduced by: for all x ∈ g, u ∈ θ, κ, κ1, κ2, κ3 ∈
θ∗, ξ ∈ g∗,

⟨δ(x) | ξ ∧ κ⟩ = ⟨x | κ ◃ ξ⟩

=

{
x,

∨
Dε1110

(κ, ξ)

}
= {x, {{ε1110, κ}, ξ}}

= {{x, {ε1110, κ}}, ξ}

= {{{x, ε1110}, κ}, ξ}

= {ξ, {{x, ε1110}, κ}}

= − {{{ε1110, x}, ξ}, κ}

= − {{Dε1110
(x), ξ}, κ},

⟨ω(u) | κ1 ∧ κ2⟩ = − ⟨u | [κ1, κ2]∗⟩

= −
{
u,

∨
Dε0021

(κ1, κ2)

}
= − {u, {{ε0021, κ1}, κ2}}

= − {{u, {ε0021, κ1}}, κ2}

= − {{{u, ε0021}, κ1}, κ2}

= {{{ε0021, u}, κ1}, κ2}

= {{Dε0021
(u), κ1}, κ2},

⟨η(x) | κ1 ∧ κ2 ∧ κ3⟩ = − ⟨x | m(κ1, κ2, κ3)⟩

= −
{
x,

∨
Dε0130

(κ1, κ2, κ3)

}
= − {x, {{{ε0130, κ1}, κ2}, κ3}}

= − {{x, {{ε0130, κ1}, κ2}}, κ3}

= − {{{x, {ε0130, κ1}}, κ2}, κ3}

= − {{{{ε0130, x}, κ1}, κ2}, κ3}

= − {{{Dε0130
(x), κ1}, κ2}, κ3}.
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Since the left hand side of (3.3) belongs to (⊙2g∗) ⊙ g ⊙ θ + (⊙2θ) ⊙ g∗ ⊙ θ∗ + (⊙2g∗) ⊙
(⊙3θ) + (⊙3g∗)⊙ (⊙2θ), we have

{{D{ε1200, ε1110}+{ε1200, ε0130}+{ε0111, ε0021}+{ε0111, ε1110}+{ε0111, ε0130}+{ε0310, ε0021}+{ε0310, ε1110}(x, y), ξ}, κ}

= {{D{ε1200, ε1110}(x, y) +D{ε0111, ε1110}(x, y), ξ}, κ}

= {{Dε1110
(Dε1200

(x, y)) +Dε1200+ε0111
(Dε1110

(x), y)−Dε1200+ε0111
(Dε1110

(y), x), ξ}, κ}

= ⟨−δ([x, y]) + [[x, δ(y)]]− [[δ(x), y]] | ξ ∧ κ⟩,

{{D{ε1200, ε1110}+{ε1200, ε0130}+{ε0111, ε0021}+{ε0111, ε1110}+{ε0111, ε0130}+{ε0310, ε0021}+{ε0310, ε1110}(x, u), κ1}, κ2}

= {{D{ε0111, ε0021}(x, y) +D{ε0111, ε1110}(x, y), κ1}, κ2}

= {{Dε0021
(Dε0111

(x, u)) +Dε0111
(Dε0021

(u), x) +Dε0111
(Dε1110

(x), u), κ1}, κ2}

= ⟨ω(x ≻ u)− x ≻ ω(u)− δ(x) ≻ u | κ1 ∧ κ2⟩,

{{{D{ε1200, ε1110}+{ε1200, ε0130}+{ε0111, ε0021}+{ε0111, ε1110}+{ε0111, ε0130}+{ε0310, ε0021}+{ε0310, ε1110}(x, y), κ1}, κ2}, κ3}

= {{{D{ε1200, ε0130}(x, y) +D{ε0111, ε0130}(x, y), κ1}, κ2}, κ3}

= {{{Dε0130
(Dε1200

(x, y)) +Dε0111
(Dε0130

(x), y)−Dε0111
(Dε0130

(y), x), κ1}, κ2}, κ3}

= ⟨−η([x, y])− y ≻ η(x) + x ≻ η(y) | κ1 ∧ κ2 ∧ κ3⟩,

{{D{ε1200, ε1110}+{ε1200, ε0130}+{ε0111, ε0021}+{ε0111, ε1110}+{ε0111, ε0130}+{ε0310, ε0021}+{ε0310, ε1110}(x, y, z), κ1}, κ2}

= {{D{ε0310, ε0021}(x, y, z) +D{ε0310, ε1110}(x, y, z), κ1}, κ2}

= {{Dε0021
(Dε0310

(x, y, z)) +Dε0310
(Dε1110

(x), y, z) + c.p., κ1}, κ2}

= ⟨ωh(x, y, z)− h(δ(x), y, z) + c.p. | κ1 ∧ κ2⟩.
Hence, it follows that (3.3) is equivalent to that the triple (δ, ω, η) satisfies four compatibility

conditions. This concludes the proof.

In the following, we give two examples of Lie 2-bialgebras to end up this paper. The first

is a strict one.

Example 3.1 Consider a 2-term complex (g → g/h, π), where g is a Lie algebra and h

is one of its ideal and π is the canonical map. Equip the trivial action of g on g/h, then

(g → g/h, π) is a strict Lie 2-algebra.

As in [3], any Lie 2-bialgebra structure underlying (g → g/h, π) is equivalently assigning

a Lie 2-algebra structure on ((g/h)∗ → g∗, πT ).

Example 3.2 Following Example 2.1, we can construct a Lie 2-coalgebra structure on

(R → V3). Let R∗ be a dual space of R, then we can equip a Lie bracket [f, g] = fg − gf

on R∗. Hence R∗ becomes an abelian Lie algebra, then we endow the trivial action of R∗

on V ∗
3 and the trivial homotopy map. One can check that the maps in Example 2.1 and

above make (R → V3) become a Lie 2-bialgebra.
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