Unique Common Fixed Points for Two Weakly C^{*}-contractive Mappings on Partially Ordered 2-metric Spaces

PIAO YONG-JIE

(Department of Mathematics, College of Science, Yanbian University, Yanji, Jilin, 133002)

Communicated by Ji You-qing

Abstract: In this paper, we give existence theorems of common fixed points for two mappings with a weakly C^* -contractive condition on partially ordered 2-metric spaces and give a sufficient condition under which there exists a unique common fixed point.

Key words: 2-metric space, weak C*-contraction, common fixed point 2010 MR subject classification: 47H05, 47H10, 54E40 Document code: A Article ID: 1674-5647(2018)01-0077-12 DOI: 10.13447/j.1674-5647.2018.01.08

1 Introduction and Preliminaries

Gähler^{[1]–[3]} introduced the definition of 2-metric spaces and discussed the existence problems of fixed points. From then on, many authors discussed and obtained the existence problems of coincidence points and (common) fixed points with a variety of different forms. Especially, there have appeared a lot of useful results in recent years, see the references [4]–[16] and the related papers. All these results generalize and improve the corresponding fixed point theorem in metric spaces.

Definition 1.1^{[1]-[3]} A 2-metric space (X, d) consists of a nonempty set X and a function $d: X \times X \times X \to [0, +\infty)$ such that

- (i) for distant elements $x, y \in X$, there exists a $u \in X$ such that $d(x, y, u) \neq 0$;
- (ii) d(x, y, z) = 0 if and only if at least two elements in $\{x, y, z\}$ are equal;
- (iii) d(x, y, z) = d(u, v, w), where $\{u, v, w\}$ is any permutation of $\{x, y, z\}$;
- (iv) $d(x, y, z) \le d(x, y, u) + d(x, u, z) + d(u, y, z)$ for all $x, y, z, u \in X$.

Received date: Dec. 15, 2016.

Foundation item: The NSF (11361064) of China.

E-mail address: sxpyj@ybu.edu.cn (Piao Y J).

Definition 1.2^{[1]-[3]} A sequence $\{x_n\}_{n\in\mathbb{N}_+}$ in 2-metric space (X, d) is said to be a Cauchy sequence if for each $\varepsilon > 0$ there exists a positive integer $N \in \mathbb{N}_+$ such that $d(x_n, x_m, a) < \varepsilon$ for all $a \in X$ and n, m > N. A sequence $\{x_n\}_{n\in\mathbb{N}_+}$ is said to be convergent to $x \in X$ if for each $a \in X$, $\lim_{n \to +\infty} d(x_n, x, a) = 0$. And we write that $x_n \to x$ and call x the limit of $\{x_n\}_{n\in\mathbb{N}_+}$. A 2-metric space (X, d) is said to be complete if every Cauchy sequence in X is convergent.

Choudhury^[17] introduced the next definition in a real metric space:

Definition 1.3^[17] Let (X, d) be a metric space and $T: X \to X$ be a map. T is said to be weak C-contraction if there exists a continuous function $\varphi: [0, +\infty)^2 \to [0, +\infty)$ with $\varphi(s, t) = 0 \iff s = t = 0$ such that

$$d(Tx, Ty) \le \frac{1}{2}[d(x, Ty) + d(y, Tx)] - \varphi(d(x, Ty), d(y, Tx)), \quad x, y \in X.$$

Choudhury^[17] also proved that any map satisfying the weak C-contraction has a unique fixed point on a complete metric space (see [17], Theorem 2.1). Later, the above result was extended to the case in a complete ordered metric spaces (see [18], Theorems 2.1, 2.3 and 3.1).

In 2013, Definition 1.3 was extended to the case in a 2-metric space by Dung and Hang^[10] as follows:

Definition 1.4^[10] Let (X, \preceq, d) be a ordered 2-metric space, $T: X \to X$ a map. T is said to be weak C-contraction if there exists a continuous function $\varphi: [0, +\infty)^2 \to [0, +\infty)$ with $\varphi(s, t) = 0 \iff s = t = 0$ such that for any $x, y, a \in X$ with $x \preceq y$ or $y \preceq x$,

$$d(Tx, Ty, a) \le \frac{1}{2} [d(x, Ty, a) + d(y, Tx, a)] - \varphi(d(x, Ty, a), d(y, Tx, a)).$$

Dung and $\text{Hang}^{[10]}$ proved that any weakly C-contractive map has fixed points on complete ordered 2-metric spaces (see [10], Theorems 2.3, 2.4 and 2.5). The results generalized and improved the corresponding conclusions in [17]–[18].

Definition 1.5 Let (X, \leq, d) be a ordered 2-metric space and $S, T: X \to X$ be two maps. S, T are said to be weakly C^* -contractive maps if there exists a continuous function $\varphi: [0, +\infty)^2 \to [0, +\infty)$ with $\varphi(s, t) = 0 \iff s = t = 0$ such that for any $x, y, a \in X$ with $x \leq y$ or $y \leq x$,

 $d(Sx, Ty, a) \leq kd(x, y, a) + l[d(x, Ty, a) + d(y, Sx, a)] - \varphi(d(x, Ty, a), d(y, Sx, a)),$ where k and l are two real numbers satisfying l > 0 and $0 < k + l \leq 1 - l$.

Obviously, if S = T and k = 0 and $l = \frac{1}{2}$, then Definition 1.5 becomes Definition 1.3.

Definition 1.6^[10] Let (X, d) be a 2-metric space and $a, b \in X, r > 0$. The set $B(a, b; r) = \{x \in X : d(a, b, x) < r\}$

is said to be a 2-ball with centers a and b and radius r. Each 2-metric d on X generalizes a topology τ on X whose base is the family of 2-balls. τ is said to be a 2-metric topology.

Lemma 1.1^{[13]-[14]} If a sequence $\{x_n\}_{n \in \mathbb{N}_+}$ in a 2-metric space (X, d) is convergent to x, then

$$\lim_{n \to +\infty} d(x_n, b, c) = d(x, b, c), \qquad b, c \in X.$$

Lemma 1.2^[19] Let $\{x_n\}_{n \in \mathbf{N}_+}$ be a sequence in (X, d) satisfying $\lim_{n \to \infty} d(x_n, x_{n+1}, a) = 0$ for any $a \in X$. If $\{x_n\}$ is not Cauchy, then there exists an $a \in X$ and an $\epsilon > 0$ such that for any $i \in \mathbf{N}_+$, there exist $m(i), n(i) \in \mathbf{N}_+$ with m(i) > n(i) > i such that $d(x_{m(i)}, x_{n(i)}, a) > \epsilon$, but $d(x_{m(i)-1}, x_{n(i)}, a) \le \epsilon$.

Lemma 1.3^[6] $\lim_{n\to\infty} x_n = x$ in 2-metric space (X, d) if and only if $\lim_{n\to\infty} x_n = x$ in 2-metric topology space X.

Lemma 1.4^[6] Let X and Y be two 2-metric spaces and $T: X \to Y$ be a map. If T is continuous, then $\lim_{n\to\infty} x_n = x$ implies $\lim_{n\to\infty} Tx_n = Tx$.

Lemma 1.5^[6] Each 2-metric space is T_2 -space.

The purpose of this paper is to use the method in [10] to discuss and study the existence problems of common fixed points for two maps satisfying weakly C^* -contractive condition on ordered 2-metric spaces and give a sufficient condition under which there exists a unique common fixed point.

2 Unique Common Fixed Points

Let $\varphi : [0, +\infty) \times [0, +\infty) \to [0, +\infty)$ be a continuous function with $\varphi(x, y) = 0 \Leftrightarrow x = y = 0$. $\varphi(x, y) = \frac{x+y}{2}$ and $\varphi(x, y) = \frac{\max\{x, y\}}{2}$ for any $x, y \in [0, \infty)$ satisfy the above conditions.

Now, we discuss the existence problems of unique common fixed point for two maps on non-complete 2-metric spaces without ordered relation.

Theorem 2.1 Let (X, d) be a 2-metric space and $S, T: X \to X$ be two maps. Suppose that

$$d(Sx, Ty, a) \le kd(x, y, a) + l[d(x, Ty, a) + d(y, Sx, a)] - \varphi(d(x, Ty, a), d(y, Sx, a)), \quad x, y, a \in X,$$
(2.1)

where k, l are two real numbers such that l > 0 and $0 < k + l \le 1 - l$. If S(X) or T(X) is complete, then S and T have a unique common fixed point.

Proof. Take any element $x_0 \in X$ and construct a sequence $\{x_n\}$ satisfying

$$x_{2n+1} = Sx_{2n}, \quad x_{2n+2} = Tx_{2n+1}, \qquad n = 0, 1, 2, \cdots$$

For any $n = 0, 1, 2, \cdots$ and $a \in X$, by (2.1), we can get

$$d(x_{2n+1}, x_{2n+2}, a)$$

$$= d(Sx_{2n}, Tx_{2n+1}, a)$$

$$\leq kd(x_{2n}, x_{2n+1}, a) + l[d(x_{2n}, x_{2n+2}, a) + d(x_{2n+1}, x_{2n+1}, a)]$$

$$- \varphi(d(x_{2n}, x_{2n+2}, a), d(x_{2n+1}, x_{2n+1}, a))$$

$$= kd(x_{2n}, x_{2n+1}, a) + ld(x_{2n}, x_{2n+2}, a) - \varphi(d(x_{2n}, x_{2n+2}, a), 0)$$

$$\leq kd(x_{2n}, x_{2n+1}, a) + ld(x_{2n}, x_{2n+2}, a). \qquad (2.2)$$

Take $a = x_{2n}$ in (2.2), we obtain

$$d(x_{2n}, x_{2n+1}, x_{2n+2}) = 0, \qquad n = 0, 1, 2, \cdots$$
 (2.3)

By using (2.3) and Definition 1.1(iv), we obtain from (2.2) that

 $d(x_{2n+1}, x_{2n+2}, a) \le kd(x_{2n}, x_{2n+1}, a) + l[d(x_{2n}, x_{2n+1}, a) + d(x_{2n+1}, x_{2n+2}, a)],$ which implies

$$d(x_{2n+1}, x_{2n+2}, a) \leq \frac{k+l}{1-l} d(x_{2n}, x_{2n+1}, a)$$

$$\leq d(x_{2n}, x_{2n+1}, a), \qquad n = 0, 1, 2, \cdots, a \in X.$$
(2.4)

Similarly, for any $n = 0, 1, 2, \cdots$ and $a \in X$, by (2.1), we have

$$d(x_{2n+3}, x_{2n+2}, a) = d(Sx_{2n+2}, Tx_{2n+1}, a)$$

$$\leq kd(x_{2n+2}, x_{2n+1}, a) + l[d(x_{2n+2}, x_{2n+2}, a) + d(x_{2n+1}, x_{2n+3}, a)] - \varphi(d(x_{2n+2}, x_{2n+2}, a), d(x_{2n+1}, x_{2n+3}, a))$$

$$= kd(x_{2n+2}, x_{2n+1}, a) + ld(x_{2n+1}, x_{2n+3}, a) - \varphi(0, d(x_{2n+1}, x_{2n+3}, a))$$

$$\leq kd(x_{2n+2}, x_{2n+1}, a) + ld(x_{2n+1}, x_{2n+3}, a). \qquad (2.5)$$

Take $a = x_{2n+1}$ in (2.5), we obtain

$$d(x_{2n+1}, x_{2n+2}, x_{2n+3}) = 0, \qquad n = 0, 1, 2, \cdots$$
(2.6)

By using (2.6) and Definition 1.1(iv), we obtain from (2.5) that

 $d(x_{2n+3}, x_{2n+2}, a) \le kd(x_{2n+2}, x_{2n+1}, a) + l[d(x_{2n+1}, x_{2n+2}, a) + d(x_{2n+2}, x_{2n+3}, a)],$ which implies

$$d(x_{2n+3}, x_{2n+2}, a) \leq \frac{k+l}{1-l} d(x_{2n+1}, x_{2n+2}, a)$$

$$\leq d(x_{2n+1}, x_{2n+2}, a), \qquad n = 0, 1, 2, \cdots, a \in X.$$
(2.7)

Combining (2.3), (2.4), (2.6) and (2.7), we have

$$\begin{cases} d(x_n, x_{n+1}, x_{n+2}) = 0, \\ d(x_{n+1}, x_{n+2}, a) \le d(x_n, x_{n+1}, a), \end{cases} \qquad n = 0, 1, 2, \cdots, a \in X.$$
(2.8)

For any fixed $a \in X$, let $c_n(a) = d(x_n, x_{n+1}, a)$, $n = 0, 1, 2, \cdots$ Then, by (2.8), $\{c_n(a)\}_{n=0}^{\infty}$ is a non-increasing non-negative real sequence. Hence there is a real number $\xi(a) \geq 0$ such that

$$\lim_{n \to \infty} c_n(a) = \xi(a).$$

It is easy to obtain

$$\xi(a) \le c_{2n+1}(a)$$

$$= d(x_{2n+1}, x_{2n+2}, a)$$

$$= d(Sx_{2n}, Tx_{2n+1}, a)$$

$$\leq kd(x_{2n}, x_{2n+1}, a) + ld(x_{2n}, x_{2n+2}, a) - \varphi[d(x_{2n}, x_{2n+2}, a), 0]$$

$$\leq kd(x_{2n}, x_{2n+1}, a) + ld(x_{2n}, x_{2n+2}, a)$$

$$\leq kd(x_{2n}, x_{2n+1}, a) + l[d(x_{2n}, x_{2n+1}, a) + d(x_{2n+1}, x_{2n+2}, a)].$$
(2.9)

Let $n \to \infty$. Then from the first to third line, fifth line, sixth line in (2.9), we obtain

 $(k+2l)\xi(a) \le \xi(a) \le k\xi(a) + l \lim_{n \to \infty} d(x_{2n}, x_{2n+2}, a) \le k\xi(a) + 2l\xi(a).$

Hence

$$\lim_{n \to \infty} d(x_{2n}, x_{2n+2}, a) = 2\,\xi(a)$$

Let $n \to \infty$ again. Then from (2.9), we obtain

$$+ 2l\xi(a) \le \xi(a) \le k\xi(a) + 2l\xi(a) - \varphi(2\xi(a), 0) \le k\xi(a) + 2l\xi(a)$$

Hence we have

(k

$$\varphi(2\xi(a),\,0)=0.$$

So $\xi(a) = 0$ by the property of φ , that is,

$$\lim_{n \to \infty} d(x_n, x_{n+1}, a) = 0, \qquad a \in X.$$
(2.10)

By Definition 1.1(ii),

$$d(x_0, x_1, x_0) = 0$$

which implies that

$$d(x_1, x_2, x_0) = 0$$

by (2.8). Hence, by the mathematical induction,

$$d(x_n, x_{n+1}, x_0) = 0, \qquad n = 0, 1, 2, \cdots$$
 (2.11)

And for any fixed point $m \ge 1$,

$$d(x_{m-1}, x_m, x_m) = 0$$

Hence, by (2.8) and the mathematical induction, we have

$$d(x_n, x_{n+1}, x_m) = 0, \qquad n \ge m - 1.$$
(2.12)

For $0 \le n < m-1$, since $m-1 \ge n+1$, using (2.12), we obtain

$$d(x_{m-1}, x_m, x_{n+1}) = d(x_{m-1}, x_m, x_n) = 0.$$
(2.13)

Hence

$$d(x_n, x_{n+1}, x_m) \le d(x_n, x_{n+1}, x_{m-1}) + d(x_n, x_m, x_{m-1}) + d(x_{n+1}, x_m, x_{m-1})$$

= $d(x_n, x_{n+1}, x_{m-1}).$

So, by the mathematical induction, we have

$$d(x_n, x_{n+1}, x_m) \le d(x_n, x_{n+1}, x_{m-1})$$

$$\le d(x_n, x_{n+1}, x_{m-2})$$

$$\le \cdots$$

$$\le d(x_n, x_{n+1}, x_{n+1})$$

$$= 0,$$

that is,

$$d(x_n, x_{n+1}, x_m) = 0, \qquad 0 \le n < m - 1.$$
(2.14)

Combining (2.11), (2.12) and (2.14), we obtain

= 0.

$$d(x_n, x_{n+1}, x_m) = 0, \qquad n, m = 0, 1, 2, \cdots$$
(2.15)

For any
$$i, j, k = 0, 1, 2, \cdots$$
 (we can assume $i < j$), by (2.8) and (2.15), we have

$$\begin{aligned} d(x_i, x_j, x_k) &\leq d(x_i, x_j, x_{j-1}) + d(x_{j-1}, x_j, x_k) + d(x_i, x_{j-1}, x_k) \\ &= d(x_i, x_{j-1}, x_k) \\ &\leq \cdots \\ &\leq d(x_i, x_{i+2}, x_k) \\ &\leq d(x_i, x_{i+1}, x_k) + d(x_{i+1}, x_{i+2}, x_k) + d(x_i, x_{i+1}, x_{i+2}) \end{aligned}$$

Hence

$$d(x_i, x_j, x_k) = 0, \qquad i, j, k = 0, 1, 2, \cdots$$
 (2.16)

Suppose that $\{x_n\}$ is not Cauchy, then by Lemma 1.2, there exists a $b \in X$ and an $\epsilon > 0$ such that for any natural number k, there exist two natural numbers m(k), n(k) satisfying m(k) > n(k) > k such that the following holds

$$d(x_{m(k)}, x_{n(k)}, b) > \epsilon, \qquad d(x_{m(k)-1}, x_{n(k)}, b) \le \epsilon.$$
 (2.17)

By (2.16) and (2.17), we have

$$\begin{aligned} \epsilon &< d(x_{m(k)}, x_{n(k)}, b) \\ &\leq d(x_{m(k)}, x_{m(k)-1}, b) + d(x_{m(k)-1}, x_{n(k)}, b) \\ &\leq d(x_{m(k)}, x_{m(k)-1}, b) + \epsilon. \end{aligned}$$

Let $k \to \infty$. Then by (2.10) and from the above, we obtain

$$\lim_{k \to \infty} d(x_{m(k)}, x_{n(k)}, b) = \lim_{k \to \infty} d(x_{m(k)-1}, x_{n(k)}, b) = \epsilon.$$
(2.18)

By Definition 1.1(iv) and (2.16), we have

$$d(x_{n(k)}, x_{m(k)-1}, b)$$

$$\leq d(x_{n(k)}, x_{n(k)-1}, b) + d(x_{m(k)-1}, x_{n(k)-1}, b)$$

$$\leq d(x_{n(k)}, x_{n(k)-1}, b) + d(x_{m(k)-1}, x_{m(k)}, b) + d(x_{m(k)}, x_{n(k)-1}, b)$$
(2.19)

and

$$d(x_{n(k)-1}, x_{m(k)}, b) \le d(x_{m(k)}, x_{n(k)}, b) + d(x_{n(k)-1}, x_{n(k)}, b).$$
(2.20)

Letting $k \to \infty$ in (2.19) and (2.20), and using (2.10) and (2.18), we have

$$\lim_{k \to \infty} d(x_{m(k)}, x_{n(k)}, b) = \lim_{k \to \infty} d(x_{m(k)-1}, x_{n(k)}, b) = \lim_{k \to \infty} d(x_{m(k)}, x_{n(k)-1}, b) = \epsilon.$$
(2.21)

On the other hand, it is easy to know that

$$d(x_{m(k)-1}, x_{n(k)-1}, b) \le d(x_{m(k)-1}, x_{m(k)}, b) + d(x_{m(k)}, x_{n(k)-1}, b)$$

and

$$d(x_{m(k)-1}, x_{n(k)}, b) \le d(x_{n(k)}, x_{n(k)-1}, b) + d(x_{m(k)-1}, x_{n(k)-1}, b)$$

NO. 1

Letting $k \to \infty$ in the above two inequalities, and using (2.10) and (2.21), we obtain

$$\lim_{k \to \infty} d(x_{m(k)-1}, x_{n(k)-1}, b) = \epsilon.$$
(2.22)

Using (2.10), we can assume that the parity of m(k) and n(k) is different. Let m(k) be odd and n(k) be even. We obtain

$$\begin{aligned} \epsilon &\leq d(x_{m(k)}, x_{n(k)}, b) \\ &= d(Sx_{m(k)-1}, Tx_{n(k)-1}, b) \\ &\leq kd(x_{m(k)-1}, x_{n(k)-1}, b) + l[d(x_{m(k)-1}, x_{n(k)}, b) + d(x_{n(k)-1}, x_{m(k)}, b)] \\ &- \varphi(d(x_{m(k)-1}, x_{n(k)}, b), d(x_{n(k)-1}, x_{m(k)}, b)) \end{aligned}$$

$$\leq kd(x_{m(k)-1}, x_{n(k)-1}, b) + l[d(x_{m(k)-1}, x_{n(k)}, b) + d(x_{n(k)-1}, x_{m(k)}, b)].$$

Let $k \to \infty$ in the above inequality. Then by (2.21) and (2.22), we have

$$(k+2l)\epsilon \le \epsilon \le (k+2l)\epsilon - \varphi(\epsilon, \epsilon) \le (k+2l)\epsilon,$$

which implies that $\varphi(\epsilon, \epsilon) = 0$, i.e., $\epsilon = 0$. This is a contradiction. Hence $\{x_n\}$ is a Cauchy sequence.

Suppose that SX is complete. Since $x_{2n+1} = Sx_{2n} \in SX$ for all $n = 0, 1, 2, \cdots$, there exists a $u \in SX$ such that $x_{2n+1} \to u$ as $n \to \infty$. And since $\{x_n\}$ is a Cauchy sequence and the following holds

 $d(x_{2n+2}, u, a)$

d(u,

 $\leq d(x_{2n+1}, x_{2n+2}, a) + d(x_{2n+1}, u, a) + d(x_{2n+1}, x_{2n+2}, u), \qquad n = 0, 1, 2, \cdots, a \in X,$ so $x_{2n+2} \to u$ as $n \to \infty$.

By Lemma 1.1 and (2.1), for any $a \in X$, one has

$$Tu, a) = \lim_{n \to \infty} d(x_{2n+1}, Tu, a)$$

= $\lim_{n \to \infty} d(Sx_{2n}, Tu, a)$
 $\leq \lim_{n \to \infty} \{kd(x_{2n}, u, a) + l[d(x_{2n}, Tu, a) + d(u, Sx_{2n}, a)]$
 $- \varphi[d(x_{2n}, Tu, a), d(u, Sx_{2n}, a)]\}$
= $ld(u, Tu, a) - \varphi[d(u, Tu, a), 0]$
 $\leq ld(u, Tu, a).$

Hence

$$d(u, Tu, a) = 0, \qquad a \in X_{t}$$

so Tu = u.

Similarly, we have

$$d(Su, u, a) = \lim_{n \to \infty} d(Su, x_{2n+2}, a)$$

= $\lim_{n \to \infty} d(Su, Tx_{2n+1}, a)$
 $\leq \lim_{n \to \infty} \{kd(u, x_{2n+1}, a) + l[d(u, Tx_{2n+1}, a) + d(x_{2n+1}, Su, a)]$
 $- \varphi[d(u, Tx_{2n+1}, a), d(x_{2n+1}, Su, a)]\}$
= $ld(u, Su, a) - \varphi[0, d(u, Su, a)]$
 $\leq ld(u, Su, a).$

Hence

$$d(u, Su, a) = 0, \qquad a \in X.$$

Therefore Su = u. So we have Tu = Su = u, that is, u is a common fixed point of S and T.

If v is also a common fixed point of S and T and $u \neq v$, then there exists an $a^* \in X$ such that $d(u, v, a^*) > 0$. By (2.1), we have

$$\begin{aligned} d(u, v, a^*) &= d(Su, Tv, a^*) \\ &\leq kd(u, v, a^*) + l[d(u, Tv, a^*) + d(v, Su, a^*)] - \varphi[d(u, Tv, a^*), d(v, Su, a^*)] \\ &= (k+2l)d(u, v, a^*) - \varphi[d(u, v, a^*), d(u, v, a^*)] \\ &\leq d(u, v, a^*) - \varphi[d(u, v, a^*), d(u, v, a^*)] \\ &\leq d(u, v, a^*). \end{aligned}$$

Hence

$$\varphi[d(u, v, a^*), d(u, v, a^*)] = 0,$$

which implies that

$$d(u, v, a^*) = 0$$

by the property of φ . This is a contradiction to the choice of a^* . So u is the unique common fixed point of S and T.

Similarly, we can prove the same result for TX being complete. The proof is completed.

Remark 2.1 If l = 0 and $\varphi(x, y) = 0$ for any $x, y \in [0, +\infty)$, then Theorem 2.1 becomes Banach type common fixed point theorem; if k = 0 and $\varphi(x, y) = 0$ for any $x, y \in [0, +\infty)$, then Theorem 2.1 is Kannan type common fixed point theorem; if k = 0 and $l = \frac{1}{2}$, then Theorem 2.1 is the variant result of Theorem 2.3 in [10]. Hence Theorem 2.1 greatly generalizes and improves some (common) fixed point theorems.

From now, we discuss the existence problems of common fixed points for two mappings on non-complete ordered 2-metric spaces.

Theorem 2.2 Let (X, \leq, d) be an ordered 2-metric space and $S, T: X \to X$ be two maps. Suppose that for each comparable elements $x, y \in X$,

$$d(Sx, Ty, a) \le kd(x, y, a) + l[d(x, Ty, a) + d(y, Sx, a)] - \varphi[d(x, Ty, a), d(y, Sx, a)], \quad a \in X,$$
(2.23)

where k, l are two real numbers satisfying l > 0 and $0 < k + l \le 1 - l$. If S and T satisfy the following conditions:

(i) for each $x \in X$, $x \preceq Sx$ and $x \preceq Tx$;

(ii) S and T are both continuous;

(iii) S(X) or T(X) is complete,

then S and T have a common fixed point.

Proof. Take an element $x_0 \in X$. Using (i), we have

 $x_0 \leq Sx_0 =: x_1, \ x_1 \leq Tx_1 =: x_2, \ x_2 \leq Sx_2 =: x_3, \ x_3 \leq Tx_3 =: x_4, \ \cdots$ Hence we obtain a sequence $\{x_n\}$ satisfying

 $x_{2n+1} = Sx_{2n}, \quad x_{2n+2} = Tx_{2n+1}, \quad x_n \preceq x_{n+1}, \qquad n = 0, 1, 2, \cdots$ (2.24)

For each $m, n = 0, 1, 2, \dots, x_n$ and x_m are comparable by (2.24), hence modifying the derivation process of Theorem 2.1, we can prove that $\{x_n\}$ is a Cauchy sequence.

Suppose that SX is complete. Since $x_{2n+1} = Sx_{2n} \in SX$ for all $n = 0, 1, 2, \cdots$, there exists a $u \in SX$ such that $x_{2n+1} \to u$ as $n \to \infty$. And since $\{x_n\}$ is Cauchy and

 $d(x_{2n+2}, u, a)$

 $\leq d(x_{2n+1}, x_{2n+2}, a) + d(x_{2n+1}, u, a) + d(x_{2n+1}, x_{2n+2}, u), \quad n = 0, 1, 2, \dots, a \in X,$ so $x_{2n+2} \to u$ as $n \to \infty$. Hence, by (ii), we have

$$u = \lim_{n \to \infty} x_{2n+1} = \lim_{n \to \infty} Sx_{2n} = S \lim_{n \to \infty} x_{2n} = Su,$$

$$u = \lim_{n \to \infty} x_{2n+2} = \lim_{n \to \infty} Tx_{2n+1} = T \lim_{n \to \infty} x_{2n+1} = Tu.$$

Therefore, u is a common fixed point of S and T.

Similarly, we can prove the same result for TX being complete. The proof is completed. The following result is the non-continuous version of Theorem 2.2.

Theorem 2.3 Let (X, \leq, d) be a ordered 2-metric space and $S, T: X \to X$ be two maps. Suppose that (2.23) holds. If S and T satisfy:

(i) for each $x \in X$, $x \preceq Sx$ and $x \preceq Tx$;

(ii) if $\{x_n\}$ is non-decreasing sequence and $\lim_{n \to \infty} x_n = x$, then for each $n, x_n \leq x$;

(iii) S(X) or T(X) is complete,

then S and T have a common fixed point.

Proof. By the derivation process of Theorem 2.2, we can construct a non-decreasing sequence $\{x_n\}$ satisfying (2.24). Suppose that SX is complete. Then there exists a $u \in SX$ such that $x_{2n+1} \to u$ as $n \to \infty$ and $x_{2n+2} \to u$ as $n \to \infty$ (see the proof of Theorem 2.2), hence $\lim_{n\to\infty} x_n = u$. Therefore, $x_n \leq u$ for all $n = 0, 1, 2, \cdots$ by (ii). Since x_{2n} and u are comparable, by (2.23), for any $a \in X$,

$$d(u, Tu, a) = \lim_{n \to \infty} d(x_{2n+1}, Tu, a)$$

= $\lim_{n \to \infty} d(Sx_{2n}, Tu, a)$
 $\leq \lim_{n \to \infty} \{kd(x_{2n}, u, a) + l[d(x_{2n}, Tu, a) + d(u, Sx_{2n}, a)]$
 $- \varphi[d(x_{2n}, Tu, a), d(u, Sx_{2n}, a)]\}$
= $ld(u, Tu, a) - \varphi[d(u, Tu, a), 0]$
 $\leq ld(u, Tu, a).$

Hence

$$d(u, Tu, a) = 0, \qquad a \in X.$$

So Tu = u.

NO. 1

Similarly, Since u and x_{2n+1} are comparable, we have

$$d(Su, u, a) = \lim_{n \to \infty} d(Su, x_{2n+2}, a)$$

= $\lim_{n \to \infty} d(Su, Tx_{2n+1}, a)$
 $\leq \lim_{n \to \infty} \{kd(u, x_{2n+1}, a) + l[d(u, Tx_{2n+1}, a) + d(x_{2n+1}, Su, a)]$
 $- \varphi[d(u, Tx_{2n+1}, a), d(x_{2n+1}, Su, a)]\}$
= $ld(u, Su, a) - \varphi[0, d(u, Su, a)]$
 $\leq ld(u, Su, a).$

Hence

$$d(u, Su, a) = 0, \qquad a \in X.$$

So Su = u. Therefore Tu = Su = u, i.e., u is a common fixed point of S and T. The proof is completed.

Now, we give a sufficient condition under which there exists a unique common fixed point for two mappings in Theorems 2.2 and 2.3.

Theorem 2.4 Suppose that all of the conditions in Theorem 2.2 or Theorem 2.3 hold. Furthermore, if

(I) for each $x, y \in X$, there exists a $z \in X$ such that z and x are comparable, z and y are comparable;

(II) $u \prec v$ implies that $S^n u \preceq v$ and $T^n u \preceq v$ for all $n = 1, 2, \cdots$, then S and T have a unique common fixed point.

Proof. From Theorems 2.2 and 2.3 we know that S and T have a common fixed point u. Suppose that v is another common fixed point of S. Then $u \neq v$.

Case 1. u and v are comparable.

Since $u \neq v$, there exists an $a^* \in X$ such that $d(u, v, a^*) > 0$. By (2.23), we have

$$\begin{split} d(u, v, a^*) &= d(Su, Tv, a^*) \\ &\leq kd(u, v, a^*) + l[d(u, Tv, a^*) + d(v, Su, a^*)] \\ &- \varphi[d(u, Tv, a^*), \ d(v, Su, a^*)] \\ &= (k+2l)d(u, v, a^*) - \varphi[d(u, v, a^*), \ d(u, v, a^*)] \\ &\leq d(u, v, a^*) - \varphi[d(u, v, a^*), \ d(u, v, a^*)] \\ &\leq d(u, v, a^*). \end{split}$$

Hence

$$\varphi[d(u, v, a^*), d(u, v, a^*)] = 0,$$

which implies $d(u, v, a^*) = 0$ by the property of φ . This is a contradiction to the choice of a^* . Therefore, u is the unique common fixed point of S and T.

Case 2. u and v are not comparable.

By (I), there exists a $w \in X$ such that w and u are comparable and w and v are also comparable. Hence $w \neq u$ and $w \neq v$. Assume that $u \prec w$. Then by (II) and the condition

(i) in Theorem 2.2 or Theorem 2.3, we obtain that for each $n = 1, 2, \dots$,

$$S^n u \preceq w \preceq T w \preceq T^2 w \preceq \cdots \preceq T^n w,$$

which means that $S^n u$ and $T^n w$ are comparable. By (2.23), for each fixed $a \in X$, we have

$$\begin{aligned} &d(u, T^{n}w, a) \\ &= d(SS^{n-1}u, TT^{n-1}w, a) \\ &\leq kd(S^{n-1}u, T^{n-1}w, a) + l[d(S^{n-1}u, TT^{n-1}w, a) + d(SS^{n-1}u, T^{n-1}w, a)] \\ &- \varphi[d(S^{n-1}u, TT^{n-1}w, a), d(SS^{n-1}u, T^{n-1}w, a)] \\ &= kd(u, T^{n-1}w, a) + l[d(u, T^{n}w, a) + d(u, T^{n-1}w, a)] \\ &- \varphi[d(u, T^{n}w, a), d(u, T^{n-1}w, a)] \\ &\leq kd(u, T^{n-1}w, a) + l[d(u, T^{n}w, a) + d(u, T^{n-1}w, a)]. \end{aligned}$$

$$(2.25)$$

Hence

$$d(u, T^n w, a) \le \frac{k+l}{1-l} d(u, T^{n-1} w, a) \le d(u, T^{n-1} w, a), \qquad n = 1, 2, \cdots, \ a \in X.$$

This shows that $\{d(u, T^n w, a)\}_{n=1}^{\infty}$ is a non-increasing non-negative real number sequence. Hence there exists $M(a) \ge 0$ such that

$$\lim_{n \to \infty} d(u, T^n w, a) = M(a).$$
(2.26)

Letting $n \to \infty$ in (2.25) and using (2.26), we obtain

$$M(a) \le (k+2l)M(a) - \varphi(M(a), M(a)) \le M(a) - \varphi(M(a), M(a)) \le M(a).$$

Hence

$$\varphi(M(a), M(a)) = 0,$$

which implies M(a) = 0, i.e.,

$$\lim_{n \to \infty} d(u, T^n w, a) = 0, \qquad a \in X.$$

Therefore,

 $\lim_{n \to \infty} T^n w = u.$

If u in the above derivation process is replaced by v, then we similarly obtain

$$\lim_{n \to \infty} T^n w = v.$$

Hence u = v by Lemma 1.5, which is a contradiction. So u is the unique common fixed point of S and T.

References

- Gähler V S. 2-metrische Räume und ihre topolodische struktur. Math Nachr., 1963/1964, 26: 115–118.
- [2] Gähler V S. Linera 2-normierte Räume. Math Nachr., 1965, 28: 1-43.
- [3] Gähler V S. Über die uniformisierbarkeit 2-metrischer Räume. Math Nachr., 1965, 28: 235– 244.
- [4] Aliouche A, Simpson C. Fixe points and lines in 2-metric spaces. Adv. Math., 2012, 229: 668–690.
- [5] Deshpande B, Chouhan X. Common fxie point theorems for hybrid pairs of mappings with some weaker conditions in 2-metric spaces. *Fasc. Math.*, 2011, 46: 37–55.

- [6] Lahiri B K, Das P, Dey L K. Cantor's theorem in 2-metric spaces ad its applications to fixed point problems. *Taiwanese J. Math.*, 2011, 15: 337–352.
- [7] Singh S L, Mishra S N, Stofile S. Suzuki contraction theorem on a 2-metric space. J. Adv. Math. Stud., 2012, 5(1): 71–76.
- [8] Liu Z Q, Zhang F R. Characterizations of common fixed point in 2-metric spaces. *Rostock. Math. Kollog.*, 2001, 55: 49-64.
- [9] Singh S L, Mishra S N, Stofile S. Erratum to "Suzuki contraction theorem on a 2-metric space". J. Adv. Math. Stud., 2012, 5(2): 138.
- [10] Dung N V, Hang V T L. Fixed point theorems for weak c-contractions in partial ordered 2-metric spaces. Fixed Point Theory Appl., Doi: 1186/1687-1812-2013-161.
- [11] Nguyen V Dung, Nguyen T Hieu, Nguyen T Thanh Ly, Vo D thinh. Remarks on fixed point problems of 2-metric spaces. *Fixed Point Theory Appl.*, Doi: 1186/1687-1812-2013-167.
- [12] Piao Y J, Jin Y F. New unique common fixed point results for four mappings with Φ-contractive type in 2-metric spaces. Appl. Math., 2012, 3(7): 734–737.
- [13] Piao Y J. Uniqueness of common gixed points for a family of maps with ϕ_j -quasi contractive type in 2-metric spaces (in Chinese). Acta Math. Sci., 2012, A32(6): 1079–1085.
- [14] Jin H L, Piao Y J. Four mappings satisfying Ψ-contractive type condition and having unique common fixed point on 2-metric spaces. Adv. Pure Math., 2013, 3: 277–281.
- [15] Piao Y J. Common fixed point for two mappings satisfying some expansive conditions on 2-metric spaces (in Chinese). J. Systems Sci. Math. Sci., 2013, 33(11): 1370–1379.
- [16] Piao Y J. Fixed point theorems for contractive and expansive mappings of Geraghty type on 2-metric spaces. Adv. Fixed Point Theory, 2016, 6(2): 123–135.
- [17] Choudhury B S. Unique fixed point theorem for weakly C-contractive mappings. Kathmandu Univ J. Sci. Engi. Tech., 2009, 5: 6–13.
- [18] Harjani J, López B, Sadarangani K. Fixed point theorems for weakly C-contractive mappings in ordered metric spaces. Comput. Math. Appl., 2011, 61: 790–796.
- [19] Zhang D, Gu F. The common fixed point theorems for a class of Φ-contraction conditions mappings in 2-metric spaces (in Chinese). J. Jiangxi Norm. Univ. Nat. Sci. Ed., 2011, 35(6): 595–600.