A New Post-Processing Technique for Finite Element Methods with *L*²-Superconvergence

Wei Pi, Hao Wang* and Xiaoping Xie

School of Mathematics, Sichuan University, No. 24 South Section One, Yihuan Road, Chengdu 610065, China.

Received 17 January 2019; Accepted (in revised version) 20 May 2019.

Abstract. A simple post-processing technique for finite element methods with L^2 -superconvergence is proposed. It provides more accurate approximations for solutions of twoand three-dimensional systems of partial differential equations. Approximate solutions can be constructed locally by using finite element approximations u_h provided that u_h is superconvergent for a locally defined projection $\tilde{P}_h u$. The construction is based on the least-squares fitting algorithm and local L^2 -projections. Error estimates are derived and numerical examples illustrate the effectiveness of this approach for finite element methods.

AMS subject classifications: 65N30, 65N15

Key words: Finite element method, post-processing, least-square fitting, L^2 -superconvergence.

1. Introduction

The post-processing of approximate solutions is a commonly used procedure to obtain more accurate approximations for important quantities in numerical methods for partial differential equations [4–6, 22, 23]. Post-processing or/and recovery techniques have been developed for plenty of finite element methods with superconvergence [1, 7, 8, 10, 12, 13, 15, 18, 20]. In particular, for the Raviart-Thomas and Brezzi-Douglas-Marini mixed elements methods for second order elliptic problems, the post-processed approximations with improved accuracy are constructed via element-by-element solution of local problems with respect to the finite element solutions of the scalar variable and the Lagrange multiplier [1, 8]. In contrast to the post-processing methods [1, 8], Stenberg [18] proposed an approach based on solving local problems with respect to the mixed finite element approximations of the scalar variable and its gradient. Following ideas of [18], Cockburn *et al.* [12, 13] developed an element-by-element post-processing of the scalar variable for the elliptic problems and velocity variable in the Stokes problem for HDG methods.

http://www.global-sci.org/eajam

^{*}Corresponding author. *Email addresses:* 5124425930qq.com (W. Pi), wangh@scu.edu.cn (H. Wang), xpxie@scu.edu.cn (X. Xie)

Bramble and Xu [7] proposed a general post-processing technique for various mixed finite element methods with the superconvergence estimate

$$\|\widetilde{P}_{h}u - u_{h}\|_{L^{p}(\Omega)} \le Ch^{k+2} |\log h|^{\mu_{1}}$$
(1.1)

and the gradient approximation estimate

$$\|\nabla u - (\nabla u)_h\|_{L^p(\Omega)} \le Ch^{k+1} |\log h|^{\mu_2},$$

where *u* is the exact solution of a system of partial differential equations on a domain $\Omega \subset \Re^2$, C > 0 a generic constant, which depends on *u* but not on the mesh size *h*; μ_1, μ_2 are nonnegative constants and $u_h \in W_h$ and $(\nabla u)_h \in V_h$ are finite element approximations of *u* and ∇u , respectively. Moreover, W_h and V_h are finite-dimensional subspaces of $L^p(\Omega)$, $p \ge 1$, W_h consists of discontinuous piecewise polynomials of degree at most $k \ge 0$, and \tilde{P}_h is a locally defined operator, which is invariant on polynomials of degree *k*. Under a regularity condition for *u*, the post-processed approximation u_h^* obtained from u_h and $(\nabla u)_h$, satisfies the estimate

$$\|u - u_h^*\|_{L^p(\Omega)} \le C \left(\|\widetilde{P}_h u - u_h\|_{L^p(\Omega)} + h \|\nabla u - (\nabla u)_h\|_{L^p(\Omega)} + h^{k+2} \right)$$

Further, Zienkiewicz and Zhu [22, 23] used the well-known gradient recovery technique, usually referred to as superconvergence patch recovery (SPR), to post-process the gradient ∇u_h of the finite element solution u_h . They constructed an SPR-recovered gradient by a local discrete least-squares fitting of polynomials of degree k to the gradient values at sampling points on element patches. The superconvergence properties of this technique was discussed in Refs. [14,19,21]. Zhang and Naga [20] introduced a different gradient recovery method called the polynomial preserving recovery (PPR). To determine a recovered gradient, the method uses the least-squares algorithm to assign a polynomial of degree k+1to the solution at chosen nodal points and computes the corresponding partial derivatives. Under certain conditions, the PPR post-processed gradient $G_h u_h$ satisfies the superconvergence estimate

$$\|\nabla u - G_h u_h\|_{L^{\infty}(\Omega_0)} \le C\left(h^{k+1} |\log h|^{\bar{r}} + h^{k+\sigma}\right),$$

where σ is a positive constant, $\Omega_0 \subset \subset \Omega$, $\bar{r} = 1$ if k = 1 and $\bar{r} = 0$ if $k \ge 2$.

However, to the best of authors' knowledge, there is no post-processing technique, which uses only u_h to construct a superconvergent post-processed approximation u_h^* . Here, we present a general post-processing technique for direct construction of the improved approximation of u. The method is based on the least-squares algorithm and the local L^2 -projection to determine a fitting polynomial from the finite element solution u_h . Our analysis depends only on a superconvergence result similar to (1.1) and the main result is proved in general approximation-theoretic settings. Therefore, its application is not restricted to the above mentioned finite element methods.

The rest of the paper is organised as follows. Section 2 contains necessary notations. Section 3 is devoted to the construction of the post-processed approximation, the error estimation, and the verification of assumptions. Finally, numerical results in Section 4 are aimed to verify the performance of the post-processing method proposed.

2. Notations

Let Ω be a bounded domain in \mathbb{R}^n , n = 2, 3. For any bounded domain $D \subset \mathbb{R}^n$, n = 2, 3and a nonnegative integer m, we denote by $H^m(D)$ the usual m-order Sobolev space on Dand let $\|\cdot\|_{m,D}$ and $|\cdot|_{m,D}$ refer to the corresponding norm and semi-norm, respectively. In particular, $H^0(D)$ is the space of square integrable functions $L^2(D)$ with the inner product $(\cdot, \cdot)_D$ and the norm $\|\cdot\|_{0,D}$. If $D = \Omega$, we write $\|\cdot\|_m := \|\cdot\|_{m,\Omega}$ and $|\cdot|_m := |\cdot|_{m,\Omega}$. By $\mathscr{P}_m(D)$ we denote the set of all polynomials on D of degree at most m.

Let \mathscr{T}_h be a shape regular partition of the domain Ω , which consists of closed polygons T— cf. [11], with the mesh size $h = \max_{T \in \mathscr{T}_h} h_T$, where h_T is the diameter of T. The partition \mathscr{T}_h can be conforming or nonconforming, which allows hanging nodes. Let $\mathscr{N}_h = \{x_i : i = 1, 2, ..., n_h\}$ be the set of all nodes of the partition \mathscr{T}_h . For any $x_i \in \mathscr{N}_h$, we denote by h_i the length of the longest edge attached to x_i and let M_i be the patch defined by

$$M_i = M_i(\alpha) := \bigcup_{T \in \mathscr{T}_h, T \subseteq B_{\alpha h_i}(\mathbf{x}_i)} T$$

where $B_{\alpha h_i}(x_i)$, $\alpha > 0$ is the ball

$$B_{ah_i}(\mathbf{x}_i) := \{ \mathbf{x} \in \Omega : | \mathbf{x} - \mathbf{x}_i | \le ah_i \}$$

If $n_i = n_i(\alpha)$ is the number of elements in the patch M_i , we set

$$\mathbb{M}_h := \{M_i : i = 1, 2, \dots, n_h\}$$

For any $T \in \mathscr{T}_h$ and for any integer $j \ge 0$, let $P_T^j : L^2(T) \longrightarrow \mathscr{P}_j(T)$ be the usual L^2 orthogonal projection. Define $P_{M_i}^j : L^2(M_i) \longrightarrow L^2(M_i)$, such that for any $v \in L^2(M_i)$ the
relation

$$\left(\mathbf{P}_{M_i}^j \boldsymbol{\nu}\right)\Big|_T = P_T^j(\boldsymbol{\nu}|_T) \quad \text{for all} \quad T \in M_i$$
(2.1)

holds.

Throughout this paper, the notation $a \leq b$ ($a \geq b$) means that $a \leq Cb$ ($a \geq Cb$) with a constant *C*, which depends on *u* but not on the mesh size *h*.

3. Main Results

Let us assume that every patch $M_i \in \mathbb{M}_h$ satisfies the following conditions.

Condition 3.1. For a given integer $k \ge 0$, there exists a nonnegative integer $j \le k$, such that for any $q \in \mathcal{P}_{k+1}(M_i)$, $M_i \in \mathbb{M}_h$, the inequality

$$\|q\|_{0,M_{i}} \lesssim \|\mathbf{P}_{M_{i}}^{j}q\|_{0,M_{i}}$$
(3.1)

holds.

Condition 3.2. Any $v \in H^{k+2}(M_i)$, $i = 1, 2, ..., n_h$ satisfies the inequality

$$\inf_{w \in \mathscr{P}_{k+1}(M_i)} \|v - w\|_{0, M_i} \lesssim h^{k+2} |v|_{k+2, M_i}$$

Condition 3.1 yields that M_i has enough elements. We note that if $\alpha_1 > \alpha_2$, then $n_i(\alpha_1) > n_i(\alpha_2)$, where $n_i(\alpha_i)$ is the number of element patches in $M_i(\alpha_j)$, j = 1, 2. Thus it is natural to choose the smallest α satisfying Condition 3.1. On the other hand, Condition 3.2 represents the standard approximation property.

Condition 3.1 allows us to equip $\mathcal{P}_{k+1}(M_i)$ with an inner product and a norm.

Lemma 3.1. For any $M_i \in \mathbb{M}_h$, the inner product and the norm on the space $\mathscr{P}_{k+1}(M_i)$ can be, respectively, defined as $(P^j_{M_i}, P^j_{M_i})_{M_i}$ and $\|P^j_{M_i} \cdot \|_{0,M_i}$.

Proof. Let us show that $(P_{M_i}^j, P_{M_i}^j)_{M_i}$ is an inner product on $\mathscr{P}_{k+1}(M_i)$. Recalling the relation (2.1), we only have to show that if $q \in \mathscr{P}_{k+1}(M_i)$ and

$$\left(\mathsf{P}_{M_i}^j q, \mathsf{P}_{M_i}^j q\right)_{M_i} = 0,$$

then q = 0. However, the condition (3.1) yields

$$\|q\|_{0,M_i}^2 \lesssim \|P_{M_i}^j q\|_{0,M_i}^2 = (P_{M_i}^j q, P_{M_i}^j q)_{M_i} = 0,$$

and the proof is completed.

3.1. Recovery operator

Definition 3.1. For any $M_i \in \mathbb{M}_h$, the local recovery operator $R_{M_i} : L^2(M_i) \to \mathscr{P}_{k+1}(M_i)$ is defined by the relations

$$\left(\mathsf{P}_{M_i}^j R_{M_i} \nu, \mathsf{P}_{M_i}^j q\right)_{M_i} = \left(\mathsf{P}_{M_i}^j \nu, \mathsf{P}_{M_i}^j q\right)_{M_i} \quad \text{for all} \quad \nu \in L^2(M_i), \ q \in \mathscr{P}_{k+1}(M_i).$$

According to Lemma 3.1, the operator R_{M_i} is well-defined. Moreover, the following result holds.

Lemma 3.2. For any $M_i \in \mathbb{M}_h$, the recovery operator R_{M_i} is an orthogonal projection onto $\mathscr{P}_{k+1}(M_i)$ with respect to the inner product $(P^j_{M_i}, P^j_{M_i})_{M_i}$ and if $v \in L^2(M_i)$, then

$$R_{M_i}\nu = \arg\min_{q\in\mathscr{P}_{k+1}(M_i)} \left\| P_{M_i}^j(\nu-q) \right\|_{0,M_i}.$$

Other consequences of Conditions 3.1 and the inequality 3.1 are presented in Lemmas 3.2-3.5.

Lemma 3.3. For any $v \in L^2(M_i)$ and $M_i \in \mathbb{M}_h$ the inequalities

$$\left\| R_{M_{i}} v \right\|_{0,M_{i}} \lesssim \left\| P_{M_{i}}^{j} v \right\|_{0,M_{i}} \lesssim \| v \|_{0,M_{i}}$$
(3.2)

hold.

Lemma 3.4. For any $v \in H^{k+2}(M_i)$ and $M_i \in \mathbb{M}_h$, the inequality

$$\|v - R_{M_i}v\|_{0,M_i} \lesssim h^{k+2}|v|_{k+2,M_i}$$

holds.

Proof. Since $w = R_{M_i}w$ for any $w \in \mathcal{P}_{k+1}(M_i)$, Condition 3.2 and the inequality (3.2) lead to the estimate

$$\begin{split} \|v - R_{M_i}v\|_{0,M_i} &= \inf_{w \in \mathscr{P}_{k+1}(M_i)} \|v - w - R_{M_i}(v - w)\|_{0,M_i} \\ &\lesssim \inf_{w \in \mathscr{P}_{k+1}(M_i)} \|v - w\|_{0,M_i} \lesssim h^{k+2} |v|_{k+2,M_i} \end{split}$$

as required.

Let \tilde{P}_h be an operator defined on $L^2(\Omega)$, such that its restriction $\tilde{P}_h|_T : L^2(T) \longrightarrow L^2(T)$, $T \in M_i$ satisfies the conditions

$$(\tilde{P}_h w, v)_T = (w, v)_T$$
 (3.3)

valid for all $w \in L^2(T)$ and all $v \in \mathcal{P}_j(T)$.

Lemma 3.5. If $v \in L^2(M_i)$ and $M_i \in \mathbb{M}_h$, then

$$R_{M_i}\nu = R_{M_i}P_h\nu. \tag{3.4}$$

Proof. It follows from the definitions of R_{M_i} , $P_{M_i}^j$, P_T^j and the Eq. (3.3) that for $v \in L^2(M_i)$ and $q \in \mathcal{P}_{k+1}(M_i)$ one has

$$\begin{split} \left(\mathbf{P}_{M_i}^j R_{M_i} \widetilde{P}_h \boldsymbol{\nu}, \mathbf{P}_{M_i}^j q \right)_{M_i} &= \left(\mathbf{P}_{M_i}^j \widetilde{P}_h \boldsymbol{\nu}, \mathbf{P}_{M_i}^j q \right)_{M_i} = \sum_{T \in M_i} \left(P_T^j \widetilde{P}_h \boldsymbol{\nu}, P_T^j q \right)_{M_i} \\ &= \sum_{T \in M_i} \left(\widetilde{P}_h \boldsymbol{\nu}, P_T^j q \right)_{M_i} = \sum_{T \in M_i} \left(\boldsymbol{\nu}, P_T^j q \right)_{M_i} \\ &= \sum_{T \in M_i} \left(P_T^j \boldsymbol{\nu}, P_T^j q \right)_{M_i} = \left(\mathbf{P}_{M_i}^j \boldsymbol{\nu}, \mathbf{P}_{M_i}^j q \right)_{M_i} = \left(\mathbf{P}_{M_i}^j R_{M_i} \boldsymbol{\nu}, \mathbf{P}_{M_i}^j q \right)_{M_i}, \end{split}$$

which yields the representation (3.4).

3.2. Post-processed approximation

For any $T \in \mathcal{T}_h$, we set

$$\mathbb{M}_T := \{ M_i \in \mathbb{M}_h : T \in M_i \},\$$

where n_T is the number of element patches in \mathbb{M}_T .

Let $u_h \in L^2(\Omega)$ be a finite element approximation of u, such that

$$\|u - u_h\|_0 \lesssim h^r, \quad r \le k+1.$$

Considering a post-processed approximation u_h^* defined by

$$u_h^*|_T = \sum_{M_i \in \mathbb{M}_T} \frac{1}{n_T} (R_{M_i} u_h)|_T, \quad T \in \mathscr{T}_h,$$
(3.5)

and using Lemmas 3.3, 3.4 and 3.5, we obtain the following results.

Theorem 3.1. If \tilde{P}_h satisfies the projection property (3.3) and $u \in H^{k+2}(\Omega)$, then

$$\|u - u_h^*\|_0 \lesssim \|\widetilde{P}_h u - u_h\|_0 + h^{k+2} |u|_{k+2}.$$
(3.6)

Moreover, if

$$\|\widetilde{P}_{h}u - u_{h}\|_{0} \lesssim h^{k+2}|u|_{k+2}, \tag{3.7}$$

then the superconvergence estimate

$$\|u - u_h^*\|_0 \lesssim h^{k+2} |u|_{k+2} \tag{3.8}$$

holds.

Proof. It follows from (3.5) that

$$\begin{aligned} \left\| u - u_{h}^{*} \right\|_{0}^{2} &= \sum_{T \in \mathcal{T}_{h}} \left\| u - u_{h}^{*} \right\|_{0,T}^{2} \leq \sum_{M_{i} \in \mathbb{M}_{h}} \sum_{T \in M_{i}} \left\| u - \sum_{M_{j} \in \mathbb{M}_{T}} \frac{1}{n_{T}} R_{M_{j}} u_{h} \right\|_{0,T}^{2} \\ &= \sum_{M_{i} \in \mathbb{M}_{h}} \sum_{T \in M_{i}} \left\| \sum_{M_{j} \in \mathbb{M}_{T}} \frac{1}{n_{T}} \left(u - R_{M_{j}} u_{h} \right) \right\|_{0,T}^{2} \lesssim \sum_{M_{i} \in \mathbb{M}_{h}} \left\| u - R_{M_{i}} u_{h} \right\|_{0,M_{i}}^{2}. \end{aligned}$$
(3.9)

Using triangle inequality and Lemmas 3.3, 3.4 and 3.5, we obtain

$$\begin{split} \|u - R_{M_i} u_h\|_{0,M_i} &\lesssim \|u - R_{M_i} u\|_{0,M_i} + \|R_{M_i} u - R_{M_i} u_h\|_{0,M_i} \\ &\lesssim \|u - R_{M_i} u\|_{0,M_i} + \|R_{M_i} (\widetilde{P}_h u - u_h)\|_{0,M_i} \\ &\lesssim h^{k+2} |u|_{k+2,M_i} + \|\widetilde{P}_h u - u_h\|_{0,M_i}. \end{split}$$

This and (3.9) first yield (3.6) and consequently (3.8).

Remark 3.1. Theorem 3.1 can be applied to various finite element methods, including the Raviart-Thomas triangular elements \mathbf{RT}_k and rectangular elements $\mathbf{RT}_{[k]}$ with $k \ge 0$, the Brezzi-Douglas-Marini triangular elements \mathbf{BDM}_k and rectangular elements $\mathbf{BDM}_{[k]}$ with $k \ge 2$, the **PEERS** elements, the mixed elements by Stenberg, the hybridised Discontinuous Galerkin triangular elements \mathbf{HDG}_k and rectangular elements $\mathbf{HDG}_{[k]}$ with $k \ge 1$ — cf. Refs. [1, 2, 8, 9, 12, 17]. Let us note the following properties of the above listed 2*D*-elements:

- (1) **RT**_k elements $(k \ge 0)$: $u_h|_T \in \mathscr{P}_k(T)$ and $\widetilde{P}_h|_T : L^2(T) \longrightarrow \mathscr{P}_k(T)$ is the L^2 -orthogonal projection satisfying the projection property (3.3) for any $j \le k$ and the superconvergence estimate (3.7).
- (2) $\operatorname{RT}_{[k]}$ elements $(k \ge 0)$: $u_h|_T \in \mathcal{Q}_k(T)$ and $\widetilde{P}_h|_T : L^2(T) \longrightarrow Q_k(T)$ is the L^2 -orthogonal projection satisfying (3.3) (with any $j \le k$) and (3.7). Here $Q_k(T)$ denotes the set of all polynomials on T of degree at most k in each variable.
- (3) **BDM**_k and **BDM**_[k] elements $(k \ge 2)$: $u_h|_T \in \mathscr{P}_{k-1}(T)$ and $\widetilde{P}_h|_T : L^2(T) \longrightarrow \mathscr{P}_{k-1}(T)$ is the L^2 -orthogonal projection satisfying (3.3) for any $j \le k-1$ and (3.7).
- (4) **PEERS** elements: $u_h|_T \in \mathscr{P}_0(T)$ and $\widetilde{P}_h|_T : L^2(T) \longrightarrow \mathscr{P}_0(T)$ is the L^2 -orthogonal projection satisfying (3.3) for j = 0 and (3.7) with k = 0.
- (5) The mixed elements by Stenberg $(k \ge 1)$: $u_h|_T \in \mathscr{P}_{k-1}(T)$ and $\widetilde{P}_h|_T : L^2(T) \longrightarrow \mathscr{P}_{k-1}(T)$ is the L^2 -orthogonal projection satisfying (3.3) for any $j \le k-1$ and (3.7).
- (6) HDG_k and $HDG_{[k]}$ elements $(k \ge 1)$: $u_h|_T \in \mathscr{P}_k(T)$ and $\widetilde{P}_h|_T : L^2(T) \longrightarrow \mathscr{P}_k(T)$ is an operator satisfying (3.3) for j = k 1 and (3.7).

3.3. Discussion on Condition 3.1

As shown in Subsection 3.2, Condition 3.1 is crucial for the construction and evaluation of the post-processed approximation u_h^* . However, for a given *j*, Condition 3.1 requires the availability of sufficiently large number of elements n_i in M_i .

Theorem 3.2. If the inequality (3.1) holds for any $q \in \mathscr{P}_{k+1}(M_i)$, $M_i \in \mathbb{M}_h$, then

$$n_i \ge \frac{C_{k+1+n}^n}{C_{j+n}^n},$$

where n = 2 or n = 3 is the space dimension and $C_{l+n}^n = (l+n)!/(l!n!)$.

Proof. Since

 $\mathscr{P}_{l}(M_{i}) = \operatorname{span}\left\{1, x_{1}, x_{2}, \dots, x_{n}, x_{1}^{2}, x_{1}x_{2}, \dots, x_{n}^{2}, x_{1}^{l}, x_{1}^{l-1}x_{2}, \dots, x_{n}^{l}\right\},\$

we can represent any $q \in \mathscr{P}_{k+1}(M_i)$ in the form

 $q = \mathbf{Pa},$

where

$$\mathbf{P} := (1, x_1, x_2, \dots, x_n, x_1^2, x_1 x_2, \dots, x_n^2, x_1^{k+1}, x_1^k x_2, \dots, x_n^{k+1}),$$

$$\mathbf{a} = (a_1, a_2, \dots, a_{\gamma})^T, \quad \gamma = \dim(P_{k+1}) = C_{k+1+n}^n.$$

It follows from (3.1) that if $P_T^j q = 0$ for all $T \in M_i$, then q = 0. Along with the definition of the projection P_T^j , this means that if the relation

$$(q,\nu)_T = \left(P_T^j q, \nu\right)_T = 0 \tag{3.10}$$

holds for any $v \in P_j(T)$, $T \in M_i$, then q = 0. Setting $M_i = \{T_l : l = 1, 2, ..., n_i\}$, we obtain that if (3.10) holds, then the condition

$$A\mathbf{a}=0,$$

where $A = (A_1, A_2, ..., A_{n_i})^T$ and

$$A_{l} = \begin{pmatrix} (1,1)_{T_{l}} & (1,x_{1})_{T_{l}} & \dots & (1,x_{n})_{T_{l}} & (1,x_{1}^{2})_{T_{l}} & \dots & (1,x_{n}^{k+1})_{T_{l}} \\ (x_{1},1)_{T_{l}} & (x_{1},x_{1})_{T_{l}} & \dots & (x_{1},x_{n})_{T_{l}} & (x_{1},x_{1}^{2})_{T_{l}} & \dots & (x_{1},x_{n}^{k+1})_{T_{l}} \\ \vdots & \vdots \\ (x_{n},1)_{T_{l}} & (x_{n},x_{1})_{T_{l}} & \dots & (x_{n},x_{n})_{T_{l}} & (x_{n},x_{1}^{2})_{T_{l}} & \dots & (x_{n},x_{n}^{k+1})_{T_{l}} \\ (x_{1}^{2},1)_{T_{l}} & (x_{1}^{2},x_{1})_{T_{l}} & \dots & (x_{1}^{2},x_{n})_{T_{l}} & (x_{1}^{2},x_{1}^{2})_{T_{l}} & \dots & (x_{1}^{2},x_{n}^{k+1})_{T_{l}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ (x_{n}^{j},1)_{T_{l}} & (x_{n}^{j},x_{1})_{T_{l}} & \dots & (x_{n}^{j},x_{n})_{T_{l}} & (x_{n}^{j},x_{1}^{2})_{T_{l}} & \dots & (x_{n}^{j},x_{n}^{k+1})_{T_{l}} \end{pmatrix}_{C_{j+n}^{j} \times C_{k+1+n}^{n}}$$

yields $\mathbf{a} = 0$.

It is easily seen that a necessary condition for this claim is

$$n_i \times C_{j+n}^n \ge C_{k+1+n}^n.$$

In other words, the number of equations in the system $A\mathbf{a} = 0$ is greater than or equal to the number of variables.

Remark 3.2. This theorem states that for a given j, each patch M_i has to contain at least C_{k+1+n}^n/C_{j+n}^n elements. On the other hand, for larger j, the number C_{k+1+n}^n/C_{j+n}^n becomes smaller. Therefore, it would be natural to choose the largest j such that Condition 3.1 and the projection property (3.3) hold. We refer the reader to Remark 3.1 for the range of j in the case of specific elements.

Since Condition 3.1 depends on the choice of $M_i \in \mathbb{M}_h$, it is not easy to provide general recommendations for its verification. However, for certain structured meshes with all patches $M_1, M_2, \ldots, M_{n_h}$ having the same number of elements, the verification of this condition on each M_i can be done on a reference patch \hat{M} . To this end, we assume that

$$M_{i} = \bigcup_{l=1}^{n_{i}} T_{l}, \quad \hat{M} = \bigcup_{l=1}^{n_{i}} \hat{T}_{l}, \quad (3.11)$$

where $T_l = \Psi_l(\hat{T}_l)$, the function $\Psi_l : \mathbf{R}^n \to \mathbf{R}^n$ is defined by

$$\Psi(\hat{\mathbf{x}}) := \mathbf{B}_l \hat{\mathbf{x}} + \mathbf{b}_l,$$

the matrix $\mathbf{B}_l \in \mathbf{R}^{n \times n}$ is invertible and $\mathbf{b} \in \mathbf{R}^n$. For any $\nu \in L^2(M_i)$, we define $\hat{\nu}(\hat{\mathbf{x}}) := \nu(\Psi(\hat{\mathbf{x}}))$.

Theorem 3.3. Assume that the conditions (3.11) hold and

$$\|\hat{q}\|_{0,\hat{M}}^{2} \lesssim \|P_{\hat{M}}^{j}\hat{q}\|_{0,\hat{M}}^{2} \quad \text{for any} \quad \hat{q} \in \mathscr{P}_{k+1}(\hat{M}).$$
(3.12)

Then

$$\|q\|_{0,M_i}^2 \lesssim \|P_{M_i}^j q\|_{0,M_i}^2 \quad \text{for any} \quad q \in \mathcal{P}_{k+1}(M_i).$$
(3.13)

Proof. It follows from the definitions of the projections $P_{\hat{T}}^{j}$ and $\widehat{P_{T}}^{j}$ that for any $T = T_{l}, \hat{T} = \hat{T}_{l}, v \in L^{2}(T)$ we have

$$\left(P_{\hat{T}}^{j}\hat{v},\hat{w}\right)_{\hat{T}} = (\hat{v},\hat{w})_{\hat{T}} = (v,w)_{T} = \left(P_{T}^{j}v,w\right)_{T} = \left(\widehat{P_{T}^{j}v},\hat{w}\right)_{\hat{T}} \text{ for all } w \in \mathscr{P}_{j}(T).$$

Therefore,

$$P_{\hat{T}}^{j}\hat{v}=\widehat{P_{T}^{j}v}.$$

This and the condition (3.12) yield that for any $q \in \mathcal{P}_{k+1}(M_i)$, we have

$$\begin{split} \|q\|_{0,M_{i}}^{2} &= \sum_{l=1}^{n_{i}} \|q\|_{0,T_{l}}^{2} = \sum_{l=1}^{n_{i}} \|\hat{q}\|_{0,\hat{T}_{l}}^{2} = \|\hat{q}\|_{0,\hat{M}}^{2} \\ &\lesssim \left\|P_{\hat{M}}^{j}\hat{q}\right\|_{0,\hat{M}}^{2} = \sum_{l=1}^{n_{i}} \left\|P_{\hat{T}_{l}}^{j}\hat{q}\right\|_{0,\hat{T}_{l}}^{2} = \sum_{l=1}^{n_{i}} \left\|\widehat{P_{T_{l}}^{j}q}\right\|_{0,\hat{T}_{l}}^{2} \\ &= \sum_{l=1}^{n_{i}} \left\|P_{T_{l}}^{j}q\right\|_{0,T_{l}}^{2} = \left\|P_{M_{i}}^{j}q\right\|_{0,M_{i}}^{2}, \end{split}$$

and (3.13) is proved.

Remark 3.3. Since $T_l = \Psi_l(\hat{T}_l)$, $l = 1, 2, ..., n_i$, this theorem can be used in the case of structured simplicial meshes or parallelogram/parallelepiped meshes.

As an example, we verify the condition (3.12) with k = 1 and j = 1 for rectangular meshes — i.e.

$$\|\hat{q}\|_{0,\hat{M}}^2 \lesssim \left\|P_{\hat{M}}^1 \hat{q}\right\|_{0,\hat{M}}^2 \quad \text{for all} \quad \hat{q} \in \mathscr{P}_2(\hat{M}),$$

where the reference patch \hat{M} is the square $[-1,1] \times [-1,1]$ — cf. Fig. 1, which consists of four reference rectangles \hat{T}_i , i = 1, 2, 3, 4 — cf. Fig. 2. For $\hat{q} \in \mathscr{P}_2(\hat{M})$, we assume that

$$\hat{q} = a_1 \hat{x}^2 + a_2 \hat{y}^2 + a_3 \hat{x} + a_4 \hat{y} + a_5 \hat{x} \hat{y} + a_6 \hat{y} \\ P_{\hat{T}_i}^1 \hat{q} = \mathscr{A}_i \hat{x} + \mathscr{B}_i \hat{y} + \mathscr{C}_i,$$

Figure 1: Rectangular mesh, k = 1, j = 1. Left: patch M with respect to node z. Right: reference patch \hat{M} .

Figure 2: Subelements \hat{T}_i , i = 1, 2, 3, 4 in reference patch \hat{M} .

where a_l , \mathscr{A}_i , \mathscr{B}_i , \mathscr{C}_i , l = 1, 2, ..., 6 and i = 1, 2, ..., 4 are constants. According to the definition of the projection $P_{\hat{M}}^1$, we have

$$(\hat{q}, \hat{x})_{\hat{T}_i} = \left(P_{\hat{T}_i}^1 \hat{q}, \hat{x}\right)_{\hat{T}_i}, \quad (\hat{q}, \hat{y})_{\hat{T}_i} = \left(P_{\hat{T}_i}^1 \hat{q}, \hat{y}\right)_{\hat{T}_i}, \quad (\hat{q}, 1)_{\hat{T}_i} = \left(P_{\hat{T}_i}^1 \hat{q}, 1\right)_{\hat{T}_i}, \quad i = 1, 2, \dots, 4,$$

and simple calculations show that

$$\begin{split} \mathcal{A}_1 = a_1 + a_3 + \frac{1}{2}a_5, & \mathcal{B}_1 = a_2 + a_4 + \frac{1}{2}a_5, & \mathcal{C}_1 = -\frac{1}{6}a_1 - \frac{1}{6}a_2 - \frac{1}{4}a_5 + a_6, \\ \mathcal{A}_2 = a_1 + a_3 - \frac{1}{2}a_5, & \mathcal{B}_2 = -a_2 + a_4 + \frac{1}{2}a_5, & \mathcal{C}_2 = -\frac{1}{6}a_1 - \frac{1}{6}a_2 - \frac{1}{4}a_5 + a_6, \\ \mathcal{A}_3 = -a_1 + a_3 + \frac{1}{2}a_5, & \mathcal{B}_3 = a_2 + a_4 - \frac{1}{2}a_5, & \mathcal{C}_3 = -\frac{1}{6}a_1 - \frac{1}{6}a_2 - \frac{1}{4}a_5 + a_6, \\ \mathcal{A}_4 = -a_1 + a_3 - \frac{1}{2}a_5, & \mathcal{B}_4 = -a_2 + a_4 - \frac{1}{2}a_5, & \mathcal{C}_4 = -\frac{1}{6}a_1 - \frac{1}{6}a_2 - \frac{1}{4}a_5 + a_6. \end{split}$$

Therefore,

$$\begin{split} \left\|P_{\hat{M}}^{1}\hat{q}\right\|_{0,\hat{M}}^{2} &= \sum_{i=1}^{4} \left\|P_{\hat{T}_{i}}^{1}\hat{q}\right\|_{0,\hat{T}_{i}}^{2} = \frac{1}{3}\mathscr{A}_{1}^{2} + \frac{1}{3}\mathscr{B}_{1}^{2} + \mathscr{C}_{1}^{2} + \frac{1}{2}\mathscr{A}_{1}\mathscr{B}_{1} + \mathscr{B}_{1}\mathscr{C}_{1} + \mathscr{A}_{1}\mathscr{C}_{1} \\ &\quad + \frac{1}{3}\mathscr{A}_{2}^{2} + \frac{1}{3}\mathscr{B}_{2}^{2} + \mathscr{C}_{2}^{2} - \frac{1}{2}\mathscr{A}_{2}\mathscr{B}_{2} - \mathscr{B}_{2}\mathscr{C}_{2} + \mathscr{A}_{2}\mathscr{C}_{2} \\ &\quad + \frac{1}{3}\mathscr{A}_{3}^{2} + \frac{1}{3}\mathscr{B}_{3}^{2} + \mathscr{C}_{3}^{2} - \frac{1}{2}\mathscr{A}_{3}\mathscr{B}_{3} + \mathscr{B}_{3}\mathscr{C}_{3} - \mathscr{A}_{3}\mathscr{C}_{3} \\ &\quad + \frac{1}{3}\mathscr{A}_{4}^{2} + \frac{1}{3}\mathscr{B}_{4}^{2} + \mathscr{C}_{4}^{2} + \frac{1}{2}\mathscr{A}_{4}\mathscr{B}_{4} - \mathscr{B}_{4}\mathscr{C}_{4} - \mathscr{A}_{4}\mathscr{C}_{4} \\ &\quad = \frac{1}{3}a_{1}^{2} + \frac{1}{3}a_{2}^{2} + \frac{4}{3}a_{3}^{2} + \frac{4}{3}a_{4}^{2} + \frac{5}{12}a_{5}^{2} + \left(\frac{1}{3}a_{1} + \frac{1}{3}a_{2} - a_{5} + a_{6}\right)^{2} \\ &\quad + \frac{1}{3}(a_{1} + a_{2} + 3a_{6})^{2}. \end{split}$$

On the other hand,

$$\|\hat{w}\|_{0,\hat{M}}^2 = \frac{16}{45}a_1^2 + \frac{16}{45}a_2^2 + \frac{4}{3}a_3^2 + \frac{4}{3}a_4^2 + \frac{4}{9}a_5^2 + \frac{4}{9}(a_1 + a_2 + 3a_6)^2,$$

so that

$$\|\hat{q}\|_{\hat{M}}^2 \le 2 \|P_T^j \hat{q}\|_{\hat{M}}^2.$$

4. Numerical Results

In this section, we apply the proposed post-processing method to the triangular elements \mathbf{RT}_k , \mathbf{BDM}_k , \mathbf{HDG}_k and to the rectangular elements $\mathbf{RT}_{[k]}$, $\mathbf{BDM}_{[k]}$, $\mathbf{HDG}_{[k]}$. To this end, we consider the following second order elliptic equations:

$$\mathbf{q} + \nabla u = 0 \quad \text{in} \quad \Omega,$$

$$\nabla \cdot \mathbf{q} = f \qquad \text{in} \quad \Omega,$$

$$u = g \qquad \text{on} \quad \partial \Omega,$$
(4.1)

where $\Omega \subset \mathbb{R}^2$ is a bounded polyhedral domain, $f \in L^2(\Omega)$ and $g \in H^{1/2}(\partial \Omega)$.

For simplicity, we follow the HDG framework of [12] to describe the finite element schemes considered. Let $\mathscr{T}_h := \bigcup \{T\}$ be a conforming and shape regular partition of Ω , where each T is a polyhedral element. Denote by $\mathcal{F}_h := \bigcup \{F\}$ the set of all edges/faces of all $T \in \mathscr{T}_h$, and let $\partial \mathscr{T}_h := \{\partial T : T \in \mathscr{T}_h\}$. We consider the local finite dimensional spaces $\mathbf{V}(T)$, W(T) and $\widetilde{W}(F)$ and set

$$\begin{aligned} \mathbf{V}_h &:= \left\{ \mathbf{v} \in \mathbf{L}^2(\mathscr{T}_h) : \mathbf{v}|_T \in \mathbf{V}(T) \quad \text{for any} \quad T \in \mathscr{T}_h \right\}, \\ W_h &:= \left\{ w \in L^2(\mathscr{T}_h) : w|_T \in W(T) \quad \text{for any} \quad T \in \mathscr{T}_h \right\}, \\ \widetilde{W}_h(g) &:= \left\{ \mu \in L^2(\mathscr{T}_h) : \mu|_F \in \widetilde{W}(F), (\mu, \widetilde{\mu})_{F \cap \partial \Omega} = (g, \widetilde{\mu})_{F \cap \partial \Omega} \right. \\ & \text{for any} \quad F \in F_h, \forall \widetilde{\mu} \in \widetilde{W}(F) \right\}. \end{aligned}$$

Notice that

$$\widetilde{W}_h(0) = \left\{ \mu \in L^2(\mathscr{T}_h) : \mu|_F \in \widetilde{W}(F) \text{ for all } F \in \mathcal{F}_h \text{ and } \mu|_{\partial\Omega} = 0 \right\}.$$

The HDG method for the problem (4.1) consists in finding $(u_h, \mathbf{q}_h, \hat{u}_h) \in W_h \times \mathbf{V}_h \times \widetilde{W}_h(g)$ such that

$$(\mathbf{q}_h, \mathbf{v})_{\mathcal{T}_h} - (u_h, \nabla \cdot \mathbf{v})_{\mathcal{T}_h} + \langle \hat{u}_h, \mathbf{v} \cdot \mathbf{n} \rangle_{\partial \mathcal{T}_h} = 0 \qquad \text{for any} \quad \mathbf{v} \in \mathbf{V}_h, \tag{4.2a}$$

$$(w, \nabla \cdot \mathbf{q}_h)_{\mathscr{T}_h} + \langle \alpha(u_h - \hat{u}_h), w \rangle_{\mathscr{T}_h} = (f, w)_{\mathscr{T}_h} \qquad \text{for any} \quad w \in W_h, \tag{4.2b}$$

$$\langle \mathbf{q}_h \cdot \mathbf{n} + \alpha (u_h - \hat{u}_h), \mu \rangle_{\partial \mathcal{F}_h} = 0$$
 for any $\mu \in \widetilde{W}_h(0)$, (4.2c)

where

$$(\cdot,\cdot)_{\mathscr{T}_h} := \sum_{T \in \mathscr{T}_h} (\cdot,\cdot)_T, \quad \langle \cdot, \cdot \rangle_{\partial \mathscr{T}_h} := \sum_{T \in \mathscr{T}_h} (\cdot,\cdot)_{\partial T}$$

and α is a nonnegative penalty function defined on $\partial \mathcal{T}_h$.

Within the framework (4.2), there are elements of six types — viz. the hybridised versions of \mathbf{RT}_k , $\mathbf{RT}_{[k]}$, \mathbf{BDM}_k , $\mathbf{BDM}_{[k]}$ and the hybridised discontinuous Galerkin elements \mathbf{HDG}_k , $\mathbf{HDG}_{[k]}$, which respectively correspond to the following choices of local spaces $\mathbf{V}(T)$, W(T) and $\widetilde{W}(F)$ and penalty functions α :

- Hybridised \mathbf{RT}_k triangular elements: $k \ge 0$, $\mathbf{V}(T) = \mathscr{P}_k(T)^2 + \mathscr{P}_k(T)\mathbf{x}$, $W(T) = \mathscr{P}_k(T)$, $\widetilde{W}(F) = \mathscr{P}_k(F)$ and $\alpha = 0$. Here and in the following $\mathbf{x} = (x, y)^t$.
- Hybridised $\mathbf{RT}_{[k]}$ rectangular elements: $k \ge 0$, $\mathbf{V}(T) = \mathscr{P}_k(T)^2 + \mathscr{P}_k(T)\mathbf{x}$, $W(T) = \mathscr{Q}_k(T)$, $\widetilde{W}(F) = \mathscr{P}_k(F)$ and $\alpha = 0$.
- Hybridised **BDM**_k triangular elements: $k \ge 2$, $\mathbf{V}(T) = \mathscr{P}_k(T)^2$, $W(T) = \mathscr{P}_{k-1}(T)$, $\widetilde{W}(F) = \mathscr{P}_k(F)$ and $\alpha = 0$.
- Hybridised $BDM_{[k]}$ rectangular elements: $k \ge 2$, $V(T) = \mathscr{P}_k(T)^2 + \nabla \times (xyx^k) + \nabla \times (xyy^k)$, $W(T) = \mathscr{P}_{k-1}(T)$, $\widetilde{W}(F) = \mathscr{P}_k(F)$ and $\alpha = 0$.
- HDG_k triangular elements: $k \ge 1$, $\mathbf{V}(T) = \mathscr{P}_k(T)^2$, $W(T) = \mathscr{P}_k(T)$, $\widetilde{W}(F) = \mathscr{P}_k(F)$ and $\alpha = 1/h_T$.
- HDG_[k] rectangular elements: $k \ge 1$, $\mathbf{V}(T) = \mathscr{P}_k(T)^2 + \nabla \times (xy\bar{\mathscr{P}}_k(T))$, $W(T) = \mathscr{P}_k(T)$, $\widetilde{W}(F) = \mathscr{P}_k(F)$, and $\alpha = 1/h_T$. Here $\bar{\mathscr{P}}_k(T)$ is the set of all homogeneous polynomials on *T* of the degree at most *k*.

We recall that the hybridised **RT** elements and hybridised **BDM** elements are equivalent to the corresponding **RT** and **BDM** mixed elements, respectively [1,8].

Let $\Omega = (0, 1) \times (0, 1)$ and *f* and *g* be functions such that the function

$$u = \sin(\pi x) \cdot \sin(\pi y)$$

is the solution of the model problem (4.1).

We compute the hybridised \mathbf{RT}_k and $\mathbf{RT}_{[k]}$ elements for k = 0, 1, 2, the hybridised \mathbf{BDM}_k and $\mathbf{BDM}_{[k]}$ elements for k = 2, 3, and the \mathbf{HDG}_k and $\mathbf{HDG}_{[k]}$ elements for k = 1, 2 on the $N \times N$ uniform meshes with N = 4, 8, 16, 32 — cf. Fig. 3.

Figure 3: 8×8 uniform triangular and rectangular meshes.

Fig. 4 demonstrates the patch choice for an interior or a boundary node $z = x_i$ with the corresponding M_i consisting of shadow elements. If j = k and j = k - 1, we choose M_i as in Figs. 4(a)-4(c) for triangular meshes and as in Figs. 4(g)-4(h) for rectangular meshes. Although it was recommended in Theorem 3.2 and Remark 3.2 to choose the largest j such that for a given k Condition 3.1 and the projection property (3.3) hold, a smaller j also works well in the post-processing method proposed. To show this, we also consider \mathbf{RT}_k for k = 2, j = 0. Figs. 4(d)-4(e) show possible choices of M_i in this situation.

Figure 4: Element selection for M_i .

Tables 1-7 provide numerical relative errors $||u-u_h||_0$, $||\tilde{P}_hu-u_h||_0$, and $||u-u_h^*||_0$ for the elements **RT**_k, **RT**_[k], **BDM**_k, **BDM**_[k], **HDG**_k, and **HDG**_[k]. In particular, we want to point out the following features:

- $\|\tilde{P}_h u u_h\|_0$ has the convergence order k + 2 for all elements, which satisfy the superconvergence estimate (3.7).
- The corresponding post-processing solution u_h^* is of higher accuracy than the finite element solution u_h . More precisely, $||u-u_h^*||_0$ has the same convergence order k + 2 as $||\tilde{P}_h u u_h||_0$, consistent with Theorem 3.1.

Degree k	Mesh	$\frac{\ u-u_h\ _0}{\ u\ _0}$		$\frac{\ \widetilde{P}_h u - u_h\ _0}{\ u\ _0}$		$\frac{\ u - u_h^*\ _0}{\ u\ _0}$	
		Error	Order	Error	Order	Error	Order
0	4 × 4	2.57E-01	-	1.66E-02	-	8.24E-02	-
	8 × 8	1.30E-01	0.98	4.50E-03	1.88	1.92E-02	2.10
	16×16	6.54E-02	0.99	1.18E-03	1.93	4.00E-03	2.26
	32×32	3.27E-02	1.00	2.85E-04	2.04	8.75E-04	2.19
1	4 × 4	3.91E-02	-	1.80E-03	-	2.08E-02	-
	8 × 8	9.90E-03	1.98	2.12E-04	3.08	2.40E-03	3.11
	16×16	2.50E-03	1.99	2.61E-05	3.02	3.19E-04	2.90
	32×32	6.21E-04	2.00	3.26E-06	3.00	3.77E-05	2.94
2	4 × 4	4.30E-03	-	7.01E-04	-	3.50E-03	-
	8 × 8	5.49E-04	2.97	4.53E-05	3.94	2.56E-04	3.77
	16×16	6.89E-05	2.99	2.87E-06	3.98	1.72E-05	3.90
	32×32	8.63E-06	3.00	1.85E-07	3.96	1.01E-06	3.95

Table 1: Convergence history for \mathbf{RT}_k triangular elements, j = k.

Table 2: Convergence history for \mathbf{RT}_k triangular elements, $j \leq k-1$.

Degree k	Mesh	$\frac{\ u-u_h\ _0}{\ u\ _0}$		$\frac{\ u - u_h^*\ _0}{\ u\ _0} (j = 0)$		$\frac{\ u - u_h^*\ _0}{\ u\ _0} (j = 1)$	
		Error	Order	Error	Order	Error	Order
1	4 × 4	3.91E-02	-	4.27E-02	-	-	
	8 × 8	9.90E-03	1.98	5.81E-03	2.91	-	
	16×16	2.50E-03	1.99	7.48E-04	2.96	-	
	32×32	6.21E-04	2.00	9.56E-05	2.97	-	
2	4 × 4	4.30E-03	-	4.48E-03	-	3.80E-03	-
	8 × 8	5.49E-04	2.97	3.25E-04	3.78	2.70E-04	3.81
	16×16	6.89E-05	2.99	2.27E-05	3.84	1.83E-05	3.89
	32×32	8.63E-06	3.00	1.54E-06	3.88	1.18E-06	3.95

Degree k	Mesh	$\ u-u_h\ _0$		$\ \widetilde{P}_h u - u_h\ _0$		$ u - u_h^* _0$	
Degree K	IVIC511	$\ u\ _0$		$\ u\ _0$		$\ u\ _0$	
		Error	Order	Error	Order	Error	Order
2	4 × 4	3.91E-02	-	1.70E-03	-	1.44E-02	-
	8×8	9.90E-03	1.98	1.10E-04	3.95	8.52E-04	4.07
	16×16	2.50E-03	1.99	6.94E-06	3.98	4.00E-05	4.41
	32×32	6.21E-04	2.00	4.13E-07	4.07	1.92E-06	4.38
3	4 × 4	4.30E-03	-	4.68E-05	-	7.70E-03	-
	8×8	5.49E-04	2.97	1.67E-06	4.80	3.21E-04	4.58
	16×16	6.89E-05	2.99	5.57E-08	4.91	1.15E-05	4.81
	32×32	8.63E-06	3.00	1.79E-09	4.96	3.70E-07	4.95

Table 3: Convergence history for BDM_k triangular elements, j = k - 1.

Table 4: Convergence history for HDG_k triangular elements, j = k - 1.

Degree k	Mesh	$\frac{\ u-u_h\ _0}{\ u\ _0}$		$\frac{\ \widetilde{P}_h u - u_h\ _0}{\ u\ _0}$		$\frac{\ u - u_h^*\ _0}{\ u\ _0}$	
		Error	Order	Error	Order	Error	Order
1	4 × 4	4.55E-02	-	2.30E-03	-	3.84E-02	-
	8 × 8	1.09E-02	2.06	3.10E-04	2.89	4.93E-03	2.96
	16×16	2.70E-03	2.01	3.86E-05	3.00	6.18E-04	2.99
	32×32	6.70E-04	2.01	4.83E-06	3.00	7.76E-05	3.00
2	4 × 4	5.39E-03	-	8.36E-04	-	4.76E-03	-
	8 × 8	6.81E-04	2.98	5.37E-05	3.96	3.12E-04	3.93
	16×16	8.60E-05	2.98	3.42E-06	3.97	2.02E-05	3.94
	32×32	1.08E-06	2.99	2.13E-07	4.00	1.24E-06	4.02

Table 5: Convergence history for $\mathbf{RT}_{[k]}$ rectangular elements, j = k.

Degree k	Mesh	$\frac{\ u-u_h\ _0}{\ u\ _0}$		$\frac{\ \widetilde{P}_h u - u_h\ _0}{\ u\ _0}$		$\frac{\ u - u_h^*\ _0}{\ u\ _0}$	
		Error	Order	Error	Order	Error	Order
0	4 × 4	3.17E-01	-	4.73E-02	-	1.06E-01	-
	8 × 8	1.59E-01	0.99	1.26E-02	1.90	1.79E-02	2.57
	16×16	8.01E-02	0.99	3.20E-03	1.97	3.90E-03	2.19
	32×32	4.01E-02	1.00	8.02E-04	1.99	9.57E-04	2.02
1	4 × 4	3.22E-02	-	5.33E-04	-	1.49E-02	-
	8 × 8	8.10E-03	1.99	5.61E-05	3.25	1.9E-03	2.97
	16×16	2.00E-03	2.02	6.30E-06	3.15	2.30E-04	3.05
	32×32	5.08E-04	1.98	7.60E-07	3.06	2.75E-05	3.06
2	4 × 4	2.10E-03	-	1.41E-05	-	1.70E-03	-
	8 × 8	2.69E-04	2.96	7.42E-07	4.24	9.68E-05	4.13
	16×16	3.41E-05	2.98	4.12E-08	4.17	5.98E-06	4.02
	32×32	4.20E-06	3.02	2.50E-9	4.04	3.74E-07	4.00

Degree k	Mesh	$\frac{\ u-u_h\ _0}{\ u\ _0}$		$\frac{\ \widetilde{P}_h u - u_h\ _0}{\ u\ _0}$		$\frac{\ u - u_h^*\ _0}{\ u\ _0}$	
		Error	Order	Error	Order	Error	Order
2	4 × 4	5.94E-02	-	1.70E-03	-	6.30E-03	-
	8×8	1.51E-02	1.97	1.10E-04	3.95	4.32E-04	3.86
	16×16	3.80E-03	1.99	6.94E-06	3.98	2.57E-05	4.07
	32×32	9.50E-04	2.00	4.13E-07	4.07	1.53E-06	4.07
3	4 × 4	7.50E-03	-	6.68E-05	-	1.30E-03	-
	8×8	9.55E-04	2.97	1.85E-06	5.16	2.88E-05	5.49
	16×16	1.20E-04	2.99	5.14E-08	5.17	7.45E-07	5.27
	32×32	1.50E-05	3.00	1.56E-09	5.04	2.33E-08	5.00

Table 6: Convergence history for $BDM_{[k]}$ rectangular elements, j = k - 1.

Table 7: Convergence history for $HDG_{[k]}$ rectangular elements, j = k - 1.

Degree k	Mesh	$\frac{\ u-u_h\ _0}{\ u\ _0}$		$\frac{\ \widetilde{P}_h u - u_h\ _0}{\ u\ _0}$		$\frac{\ u - u_h^*\ _0}{\ u\ _0}$	
		Error	Order	Error	Order	Error	Order
1	4 × 4	6.29E-02	-	2.52E-03	-	3.94E-02	-
	8 × 8	1.59E-02	1.98	3.23E-04	2.96	5.03E-03	2.97
	16×16	4.01E-03	1.99	4.08E-05	2.98	6.31E-04	2.99
	32×32	1.01E-04	1.99	5.13E-06	2.99	7.89E-05	3.00
2	4 × 4	8.67E-03	-	9.53E-04	-	6.76E-03	-
	8 × 8	1.10E-03	2.97	6.25E-05	3.93	4.43E-04	3.93
	16×16	1.39E-04	2.99	3.92E-06	3.99	2.83E-05	3.97
	32×32	1.74E-05	2.99	2.45E-07	4.00	1.78E-06	3.99

References

- [1] D.N. Arnold, F. Brezzi., *Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates,* ESAIM Math. Model. Numer. Anal. **19(1)**, 7-32 (1985).
- [2] D.N. Arnold, F. Brezzi and J. Douglas, PEERS: A new mixed finite element for plane elasticity, Japan J. Appl.Math. 1, 347-367 (1984).
- [3] D.N. Arnold and R.S. Falk, A new mixed formulation for elasticity, Numer. Math. 53, 13-30 (1988).
- [4] I. Babuska and A. Miller, The post-processing approach in the finite element method. Part 1. Calculation of displacements, stresses, and other higher derivatives of the displacements, Internat. J. Numer. Methods Engrg. 20, 1085-1109 (2010).
- [5] I. Babuska and A. Miller, *The post-processing approach in the finite element method. Part 2: The calculation of stress intensity factors*, Internat. J. Numer. Methods Engrg. 20, 1111-1129 (2010).
- [6] I. Babuska and A. Miller, *The post-processing approach in the finite element method. Part 3:* A posteriori error estimates and adaptive mesh selection, Internat. J. Numer. Methods Engrg. 20, 2311-2324 (2010).

- [7] J. H. Bramble and J. Xu, A local post-processing technique for improving the accuracy in mixed finite-element approximations, SIAM J. Numer. Anal. **26**, 1267-1275 (1989).
- [8] F. Brezzi, J. Douglas and L.D. Marini, *Two families of mixed finite elements for second order elliptic problems*, Numer. Math. 47, 19-34 (1985).
- [9] F. Brezzi and M. Fortin, *Mixed and hybrid finite element methods*, Springer Series in Computational Mathematics **15**, Springer-Verlag (1991).
- [10] C. Chen and Y. Huang, *High accuracy theory of finite element methods (in Chinese)*, Hunan Science Press (1995).
- [11] G. Chen and X. Xie., A robust Weak Galerkin finite element method for linear elasticity with strong symmetric stresses, Comput. Methods Appl. Math 16, 389-408 (2016).
- [12] B. Cockburn, W. Qiu and K. Shi, Conditions for superconvergence of HDG methods for secondorder elliptic problems, Math. Comp. **81**, 1327-1353 (2012).
- [13] B. Cockburn and K. Shi, Conditions for superconvergence of HDG methods for Stokes flow, Math. Comp. 82(282), 651-671 (2012).
- [14] B. Li and Z. Zhang, Analysis of a class of superconvergence patch recovery techniques for linear and bilinear finite elements, Numer. Methods Partial Differential Equations 15, 151-167 (1999).
- [15] Q. Lin and N. Yan, Construction and analysis of hign efficient finite elements (in Chinese), Hebei University Press (1996).
- [16] Z.C. Shi and M. Wang, Finite element methods, Science Press (2013).
- [17] R. Stenberg, A family of mixed finite elements for the elasticity problem, Numer. Math. 53, 513-538 (1988).
- [18] R. Stenberg, Postprocessing schemes for some mixed finite elements, ESAIM Math. Model. Numer. Anal. 25, 151-167 (1991).
- [19] J. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids, Math. Comp. **73**, 1139-1152 (2003).
- [20] Z. Zhang and A. Naga, *A new finite element gradient recovery method: superconvergence property*, SIAM J. Sci. Comput. **26**, 1192-1213 (2005).
- [21] Z. Zhang, Ultraconvergence of the patch recovery technique II, Math. Comp. 69, 141-158 (2000).
- [22] O.C. Zienkiewicz and J. Zhu, The superconvergence patch recovery and a posteriori error estimates. Part 1: The recovery technique, Internat. J. Numer. Methods Engrg. 33, 1331-1364 (1992).
- [23] O.C. Zienkiewicz and J. Zhu, The superconvergence patch recovery and a posteriori error estmates. Part 2: Error estmates and adaptivity, Internat. J. Numer. Methods Engrg. 33, 1365-1382 (1992).