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1. Introduction

Third order tensors play an important role in physics and engineering, including nonlin-

ear optics [10,12], properties of crystals [6,11,19,20,22,26] and liquid crystals [5,9,24]. In

particular, piezoelectric tensors find wide applications in converse piezoelectric and piezo-

electric effects [4]. Chen et al. [4] specify the piezoelectric-type tensors as follows.

Definition 1.1 (cf. Chen et al. [4]). A third order n-dimensional tensorA = (ai jk) ∈ R
n×n×n

is called the piezoelectric-type tensor if the last two indices of A are symmetric — i.e. if

ai jk = aik j for all j, k ∈ [n], where [n] := {1,2, . . . , n}.

Qi [21] and Lim [18] introduced the notion of eigenvalues for higher order tensors.

It is worth noting that the eigenvalues of the third order symmetric traceless-tensors are

widely used in the theory of liquid crystals [5,9,24]. Following these ideas, Chen et al. [4]

defined C-eigenvalues and C-eigenvectors for piezoelectric-type tensors, which turn out to

be useful in the study of piezoelectric and converse piezoelectric effects in solid crystals.

Definition 1.2 (cf. Chen et al. [4]). LetA = (ai jk) ∈ R
n×n×n be a third-order n-dimensional

tensor. A number λ ∈ R is called the C-eigenvalue ofA if there are x , y ∈ Rn such that

A y y = λx , xA y = λy, x⊤x = 1, y⊤ y = 1, (1.1)
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where

(A y y)i =
∑

k, j∈[n]

cik j yk y j , (xA y)i =
∑

k, j∈[n]

ck ji xk y j .

The vectors x and y are referred to as associated left and right C-eigenvectors, respectively.

By σ(A )we denote the C-spectrum of the piezoelectric-type tensorA — i.e. the set of

all C-eigenvalues of the piezoelectric-type tensorA . The C-spectral radius ofA is defined

by

ρ(A ) :=max{|λ| : λ ∈ σ(A )}.

For a piezoelectric tensorA , Chen et al. [4] proved the existence of C-eigenvalues associ-

ated with left and right C-eigenvectors. They also showed that the largest C-eigenvalue of

the piezoelectric tensor represents the highest piezoelectric coupling constant and it can be

determined as

λ∗ =max
�

xA y y : x⊤x = 1, y⊤ y = 1
	

,

where

xA y y :=
∑

i,k, j∈[n]

ci jk x i y j yk.

However, the practical calculation of λ∗ is a challenging problem because of the uncertainty

with the C-eigenvectors x and y in actual operations. On the other hand, we can capture

all eigenvalues of a high order tensor by the eigenvalue localisation. In particular, for real

symmetric tensors, Qi [21] considers an eigenvalue localisation set, which is an extension of

the Geršgorin matrix eigenvalue inclusion theorem for matrices [23]. For general tensors,

Li et al. [16] proposed Brauer-type eigenvalue inclusion sets. Later on, various eigenvalue

localisation sets and their applications have been studied in Refs. [1,2,8,13,14,17,25,27].

Recently, C. Li and Y. Li [15] introduced two intervals to estimate all C-eigenvalues of

a piezoelectric-type tensor.

Theorem 1.1 (cf. C. Li & Y. Li [15]). If λ is a C-eigenvalue of the piezoelectric-type tensor

C = (ci jk) ∈ R
n×n×n, then

λ ∈ [−ρ,ρ],

where

ρ = max
i, j∈[n]

¦

R
(1)

i
(C )R j(C )
©1/2

,

R
(1)

i
(C ) =
∑

l ,k∈[n]

|cilk|,R j(C ) =
∑

l ,k∈[n]

|clk j|, [n] = {1,2, . . . , n}.

Theorem 1.2 (cf. C. Li & Y. Li [15]). If λ is a C-eigenvalue of the piezoelectric-type tensor

C = (ci jk) ∈ R
n×n×n and S is a subset of [n], then

λ ∈
�

−ρ
S
,ρ

S

�

,
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where

ρ
S
= max

i, j∈[n]

1

2

§

R
∆S

j
(C ) +
�

R
∆S

j
(C )
�2
+ 4R

(1)

i
(C )
�

R
∆S

j
(C )
�1/2
ª

,

∆S = {(i, j) : i ∈ S or j ∈ S}, ∆S = {(i, j) : i /∈ S and j /∈ S},

and

R
∆S

j
(C ) =
∑

l ,k∈∆S

|clk j|,R
∆S

j
(C ) =
∑

l ,k∈∆S

|clk j|.

Moreover,

λ ∈ [−ρmin,ρmin],

where ρmin = min
S⊆[n]

ρ
S
.

Theorem 1.3 (cf. C. Li & Y. Li [15]). If λ is a C-eigenvalue of the piezoelectric-type tensor

C = (ci jk) ∈ R
n×n×n, then

λ ∈ [−ρmin,ρmin] ⊆ [−ρ,ρ],

where ρ and ρmin are defined in Theorems 1.1 and 1.2, respectively.

On the other hand, Che et al. [3] proposed another localisation set for C-eigenvalues.

Theorem 1.4 (cf. Che et al. [3]). LetC = (ci jk) ∈ R
n×n×n be a piezoelectric-type tensor. Then

σ(C ) ⊆ Γ (C ) =
⋃

j∈[n]

Γ j(C ),

where Γ j(C ) = {z ∈ C; |z| ≤ R j(C )} and R j(C ) =
∑

l ,k∈[n]
|clk j|.

Theorem 1.5 (cf. Che et al. [3]). If C = (ci jk) ∈ R
n×n×n is a piezoelectric-type tensor, then

σ(C ) ⊆L (C ) =
⋃

j∈[n]

�

⋂

k∈[n],k 6= j

L j,k(C )

�

,

where

L j,k(C ) =
¦

z ∈ C :
�

|z| − R j(C ) + Rk
j (C )
�

|z| ≤ Rk
j (C )Rk(C )
©

and Rk
j
(C ) =
∑

l∈[n]
|clk j|.

Theorem 1.6 (cf. Che et al. [3]). LetC = (ci jk) ∈ R
n×n×n be a piezoelectric-type tensor. Then

σ(C ) ⊆M (C ) =
⋃

i,k∈[n],k 6=i

�

Mi,k(C )
⋃

Hi,k(C )
�

,

where

Mi,k(C ) =
�

z ∈ C :
�

|z| −
�

Ri(C )− Rk
i (C )
�� �

|z| − Rk
k
(C )
�

≤ Rk
i (C )
�

Rk(C )− Rk
k
(C )
�	

and

Hi,k(C ) =
�

z ∈ C : |z| −
�

Ri(C )− Rk
i
(C )
�

≤ 0, |z| − Rk
k
(C ) ≤ 0
	

.
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Comparing the sets above, one can show that L (C ) ⊆ Γ (C ) andM (C ) ⊆ Γ (C ), i.e.

the sets L (C ) andM (C ) are more tight than Γ (C ).
In this work, we present a new C-eigenvalue inclusion set, which is more accurate than

the set Γ (C ) in Theorem 1.4. Moreover, numerical examples show that in some cases, it is

superior to all the sets Γ (C ),M (C ) and L (C ).

2. New C-Eigenvalue Localisation Sets

In this section, we propose a new localisation set for C-eigenvalues and establish the

relationship between this set and the set Γ (C ) from Theorem 1.4.

Theorem 2.1. If C = (ci jk) ∈ R
n×n×n is a piezoelectric-type tensor, then

σ(C ) ⊆ Υ (C ) =
⋃

i,k∈[n],k 6=i

�

Υ̂i,k(C )
⋃

Υ̃i,k(C )
�

,

where

Υ̂i,k(C ) =
�

z ∈ R : |z| − Ri(C ) + Rk
i (C )≤ 0, |z| − Rk(C ) + Ri

k
(C )≤ 0
	

,

and

Υ̃i,k(C ) =
�

z ∈ R :
�

|z| − Ri(C ) + Rk
i
(C )
� �

|z| − Rk(C ) + Ri
k
(C )
�

≤ Rk
i
(C )Ri

k
(C )
	

.

Proof. Consider a C-eigenvalue λ of C with corresponding left C-eigenvector x =

(x1, x2, . . . , xn)
⊤ and right C-eigenvector y = (y1, y2, . . . , yn)

⊤, so that

C y y = λx , xC y = λy, x⊤x = 1, y⊤ y = 1. (2.1)

The assumption

|yp| ≥ |yq| ≥ max
i∈N ,i 6=p,q

|yi|

yields 0< |yp| ≤ 1. If follows from (2.1) that

λyp =
∑

l ,k∈[n]

clkp x l yk =
∑

l ,k∈[n],
k 6=q

clkp x l yk +
∑

l∈[n]

clqp x l yq.

Since 0≤ |x i| ≤ 1 for any i ∈ [n], we obtain

|λ| ≤
∑

l ,k∈[n],
k 6=q

|clkp|
|yk|
|yp|

+
∑

l∈[n]

|clqp|
|yq|

|yp|
≤
∑

l ,k∈[n],
k 6=q

|clkp|+
∑

l∈[n]

|clqp|
|yq|

|yp|
.

Writing the last inequality as

|λ| −
∑

l ,k∈[n],
k 6=q

|clkp| ≤
∑

l∈[n]

|clqp|
|yq|

|yp|
, (2.2)

we obtain the following estimates:
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1. If |yq| = 0, then |λ| −
∑

l ,k∈[n],
k 6=q

|clkp| ≤ 0.

2. If |λ| − Rq(C ) + R
p
q(C ) ≥ 0, then λ ∈ Υ̃p,q(C ).

3. If |λ| − Rq(C ) + R
p
q(C ) ≤ 0, then λ ∈ Υ̂p,q(C ).

On the other hand, if |yq| > 0, then

λyq =
∑

l ,k∈[n]

clkqx l yk =
∑

l ,k∈[n],
k 6=p

clkq x l yk +
∑

l∈[n]

cl pq x l yp,

and

|λ| ≤
∑

l ,k∈[n],
k 6=p

|clkq|
|yk|

|yq|
+
∑

l∈[n]

|cl pq|
|yp|

|yq|
≤
∑

l ,k∈[n],
k 6=p

|clkq|+
∑

l∈[n]

|cl pq|
|yp|

|yq|
.

Writing it in the form

|λ| −
∑

l ,k∈[n],
k 6=p

|clkq| ≤
∑

l∈[n]

|cl pq|
|yp|

|yq|
, (2.3)

we note that if |λ| −
∑

l ,k∈[n],
k 6=q

|clkp| ≤ 0 or |λ| − Rq(C ) + R
p
q(C ) ≤ 0, then multiplying (2.2)

and (2.3), we arrive at the inequality

�

|λ| −
∑

l ,k∈[n],
k 6=q

|clkp|

��

|λ| −
∑

l ,k∈[n],
k 6=p

|clkq|

�

≤
∑

l∈[n]

|clqp|
∑

l∈[n]

|cl pq|.

It can be written as
�

|λ| − Rp(C ) + Rq
p(C )
� �

|λ| − Rq(C ) + Rp
q(C )
�

≤ Rq
p(C )R

p
q(C ),

so that λ ∈ Υ̃p,q(C ) ⊆ Υ (C ). If

|λ| −
∑

l ,k∈[n],
k 6=q

|clkp| ≤ 0 and |λ| − Rq(C ) + Rp
q(C )≤ 0,

then λ ∈ Υ̂p,q(C ) ⊆ Υ (C ), as required.

Remark 2.1. For a real tensor C = (ci jk) ∈ R
n×n×n, n ≥ 2, the set Γ (C ) consists of n sets

Γ j(C ), the set L (C ) of n(n−1) sets L j,k(C ), the setM (C ) of n(n−1) setsMi,k(C ) and

n(n−1) setsHi,k(C ), and the set Υ (C ) of n(n−1) sets Υ̂i,k(C ) and n(n−1) sets Υ̃i,k(C ). It

is worth noting that for large n, the set Υ (C ) locates all eigenvalues of C more accurately

than Γ (C ), but Γ (C ) can be determined with less computational effort.
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Comparing the sets Γ (C ) and Υ (C ), we obtain the following result.

Theorem 2.2. If C = (ci jk) ∈ R
n×n×n is a piezoelectric-type tensor, then

σ(C ) ⊆ Υ (C ) ⊆ Γ (C ).

Proof. For any z ∈ Υ (C ), there exist i, k ∈ [n], i 6= k such that z ∈ Υ̂i,k(C ) or z ∈ Υ̃i,k(C ).
Next, we consider two cases.

Case I. If z ∈ Υ̂i,k(C ), i.e. if

|z| − Ri(C ) + Rk
i (C ) ≤ 0 and |z| − Rk(C ) + Ri

k
(C ) ≤ 0,

then

|z| ≤ Ri(C ) and |z| ≤ Rk(C ),

so that z ∈ Γ (C ).
Case II. If z ∈ Υ̃i,k(C ), then

�

|z| − Ri(C ) + Rk
i (C )
� �

|z| − Rk(C ) + Ri
k
(C )
�

≤ Rk
i (C )R

i
k
(C ). (2.4)

Assuming first that Rk
i
(C )Ri

k
(C ) = 0, we obtain

|z| − Ri(C ) + Rk
i (C ) ≤ 0 or |z| − Rk(C ) + Ri

k
(C ) ≤ 0.

It follows that

|z| ≤ Ri(C ) or |z| ≤ Rk(C ).

Hence, z ∈ Γ (C ).
If we now assume that Rk

i
(C )Ri

k
(C ) > 0, then (2.4) yields

|z| − Ri(C ) + Rk
i
(C )

Rk
i
(C )

·
|z| − Rk(C ) + Ri

k
(C )

Ri
k
(C )

≤ 1,

and at least one of the inequalities

|z| − Ri(C ) + Rk
i
(C )

Rk
i
(C )

≤ 1,
|z| − Rk(C ) + Ri

k
(C )

Ri
k
(C )

≤ 1

holds. It follows that z ∈ Γi(C )
⋃

Γk(C ) and combining both cases, we finish the proof.

3. Numerical Examples

In this section, we provide the results of numerical experiments to show that our ap-

proach locates C-eigenvalues much better than other methods. The piezoelectric tensors

used in the examples, arise in piezoelectric materials with symmetries and have been pre-

viously studied in Refs. [3,4,7,22].
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Example 3.1. Consider the piezoelectric tensorAV FeSb [7] with the entries

ai jk =

¨

a123 = a213 = a312 = −3.68180667,

ai jk, otherwise.

According to [4], the largest C-eigenvalue of AV FeSb is about 4.25138 and Theo-

rems 1.4-1.6 show that

Γ (C ) =
⋃

j∈[n]

Γ j(C ) = {z ∈ C : |z| ≤ 7.3636},

L (C ) =
⋃

j∈[n]

�
⋂

k∈[n],k 6= j

L j,k(C )
�

= {z ∈ C : |z| ≤ 7.3636},

M (C ) =
⋃

i,k∈[n],k 6=i

�

Mi,k(C )
⋃

Hi,k(C )
�

= {z ∈ C : |z| ≤ 7.3636}.

From Theorem 2.1, we get

Υ (C ) =
⋃

i,k∈[n],k 6=i

�

Υ̂i,k(C )
⋃

Υ̃i,k(C )
�

= {z ∈ C : |z| ≤ 7.3636}.

Example 3.2. Consider the piezoelectric tensorASiO2 [6,22] with the entries

ai jk =









a111 = −a122 = a212 = −0.13685,

a123 = −a213 = −0.009715,

ai jk, otherwise.

According to [4], the largest C-eigenvalue ofASiO2 is about 0.1375 and Theorems 1.4-

1.6 show that

Γ (C ) =
⋃

j∈[n]

Γ j(C ) = {z ∈ C : |z| ≤ 0.2834},

L (C ) =
⋃

j∈[n]

�
⋂

k∈[n],k 6= j

L j,k(C )
�

= {z ∈ C : |z| ≤ 0.2744},

M (C ) =
⋃

i,k∈[n],k 6=i

�

Mi,k(C )
⋃

Hi,k(C )
�

= {z ∈ C : |z| ≤ 0.2834}.

From Theorem 2.1, we have

Υ (C ) =
⋃

i,k∈[n],k 6=i

�

Υ̂i,k(C )
⋃

Υ̃i,k(C )
�

= {z ∈ C : |z| ≤ 0.2834}.

Example 3.3. Consider the piezoelectric tensorAC r2AgBiO8 [7] with the entries

ai jk =

















a123 = a213 = −0.22163,

a113 = −a223 = 2.608665,

a311 = −a322 = 0.152485,

a312 = −0.37153,

ai jk, otherwise.
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According to [4], the largest C-eigenvalue of AC r2AgBiO8 is about 2.6258 and Theo-

rems 1.4-1.6 show that

Γ (C ) =
⋃

j∈[n]

Γ j(C ) = {z ∈ C : |z| ≤ 5.6606},

L (C ) =
⋃

j∈[n]

�
⋂

k∈[n],k 6= j

L j,k(C )
�

= {z ∈ C : |z| ≤ 4.8058},

M (C ) =
⋃

i,k∈[n],k 6=i

�

Mi,k(C )
⋃

Hi,k(C )
�

= {z ∈ C : |z| ≤ 4.7861}.

From Theorem 2.1, we have

Υ (C ) =
⋃

i,k∈[n],k 6=i

�

Υ̂i,k(C )
⋃

Υ̃i,k(C )
�

= {z ∈ C : |z| ≤ 4.7335}.

Example 3.4. Consider the piezoelectric tensorARbTaO3 [7] with the entries

ai jk =

















a113 = a223 = −8.40955,

a222 = −a212 = −a211 = −5.412525,

a311 = −a322 = −4.3031,

a333 = −5.14766,

ai jk, otherwise.

According to [4], the largest C-eigenvalue of ARbTaO3 is about 12.4234 and Theo-

rems 1.4-1.6 show that

Γ (C ) =
⋃

j∈[n]

Γ j(C ) = {z ∈ C : |z| ≤ 23.5377},

L (C ) =
⋃

j∈[n]

�
⋂

k∈[n],k 6= j

L j,k(C )
�

= {z ∈ C : |z| ≤ 23.5377},

M (C ) =
⋃

i,k∈[n],k 6=i

�

Mi,k(C )
⋃

Hi,k(C )
�

= {z ∈ C : |z| ≤ 23.5377}.

From Theorem 2.1, we have

Υ (C ) =
⋃

i,k∈[n],k 6=i

�

Υ̂i,k(C )
⋃

Υ̃i,k(C )
�

= {z ∈ C : |z| ≤ 23.5377}.

Example 3.5. Consider the piezoelectric tensorAN aBiS2 [7] with the entries

ai jk =









a113 = −8.90808, a223 = −0.00842, a311 = −7.11526,

a322 = −0.6222, a333 = −7.93831,

ai jk, otherwise.
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According to [4], the largest C-eigenvalue of AN aBiS2 is about 11.6674 and Theo-

rems 1.4-1.6 show that

Γ (C ) =
⋃

j∈[n]

Γ j(C ) = {z ∈ C : |z| ≤ 16.8548},

L (C ) =
⋃

j∈[n]

�
⋂

k∈[n],k 6= j

L j,k(C )
�

= {z ∈ C : |z| ≤ 16.5640},

M (C ) =
⋃

i,k∈[n],k 6=i

�

Mi,k(C )
⋃

Hi,k(C )
�

= {z ∈ C : |z| ≤ 16.8464}.

From Theorem 2.1, we have

Υ (C ) =
⋃

i,k∈[n],k 6=i

�

Υ̂i,k(C )
⋃

Υ̃i,k(C )
�

= {z ∈ C : |z| ≤ 16.8464}.

Example 3.6. Consider the piezoelectric tensorALiBiB2O5 [7] with the entries

ai jk =









a123 = 2.35682, a112 = 0.34929, a211 = 0.16101, a222 = 0.12562,

a233 = 0.1361, a213 = −0.05587, a323 = 6.91074, a312 = 2.57812,

ai jk, otherwise.

According to [4], the largest C-eigenvalue of ALiBiB2O5 is about 7.7376 and Theo-

rems 1.4-1.6 show that

Γ (C ) =
⋃

j∈[n]

Γ j(C ) = {z ∈ C : |z| ≤ 12.3206},

L (C ) =
⋃

j∈[n]

�
⋂

k∈[n],k 6= j

L j,k(C )
�

= {z ∈ C : |z| ≤ 11.0127},

M (C ) =
⋃

i,k∈[n],k 6=i

�

Mi,k(C )
⋃

Hi,k(C )
�

= {z ∈ C : |z| ≤ 11.0038}.

From Theorem 2.1, we have

Υ (C ) =
⋃

i,k∈[n],k 6=i

�

Υ̂i,k(C )
⋃

Υ̃i,k(C )
�

= {z ∈ C : |z| ≤ 10.9998}.

Example 3.7. Consider the piezoelectric tensorAKBi2F7 [7] with the entries

ai jk =

















a111 = 12.64393, a122 = 1.08802, a133 = 4.14350, a123 = 1.59052,

a113 = 1.96801, a112 = 0.22465, a211 = 2.59187, a222 = 0.08263,

a233 = 0.81041, a223 = 0.51165, a213 = 0.71432, a212 = 0.10570,

a311 = 1.51254, a322 = 0.68235, a333 = −0.23019, a323 = 0.19013,

a313 = 0.39030, a312 = 0.08381.
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According to [4], the largest C-eigenvalue of AKBi2F7 is about 20.2351 and Theo-

rems 1.4-1.6 show that

Γ (C ) =
⋃

j∈[n]

Γ j(C ) = {z ∈ C : |z| ≤ 20.2351},

L (C ) =
⋃

j∈[n]

�
⋂

k∈[n],k 6= j

L j,k(C )
�

= {z ∈ C : |z| ≤ 18.8793},

M (C ) =
⋃

i,k∈[n],k 6=i

�

Mi,k(C )
⋃

Hi,k(C )
�

= {z ∈ C : |z| ≤ 19.8830}.

From Theorem 2.1, we have

Υ (C ) =
⋃

i,k∈[n],k 6=i

�

Υ̂i,k(C )
⋃

Υ̃i,k(C )
�

= {z ∈ C : |z| ≤ 19.8319}.

Example 3.8. Consider the piezoelectric tensorABaN iO3 [7] with the entries

ai jk =

¨

a113 = a223 = 0.038385, a311 = a322 = 6.89822, a333 = 27.4628,

ai jk, otherwise.

According to [4], the largest C-eigenvalue of ABaN iO3 is about 27.4628 and Theo-

rems 1.4-1.6 show that

Γ (C ) =
⋃

j∈[n]

Γ j(C ) = {z ∈ C : |z| ≤ 27.5396},

L (C ) =
⋃

j∈[n]

�
⋂

k∈[n],k 6= j

L j,k(C )
�

= {z ∈ C : |z| ≤ 27.5109},

M (C ) =
⋃

i,k∈[n],k 6=i

�

Mi,k(C )
⋃

Hi,k(C )
�

= {z ∈ C : |z| ≤ 27.5013}.

From Theorem 2.1, we have

Υ (C ) =
⋃

i,k∈[n],k 6=i

�

Υ̂i,k(C )
⋃

Υ̃i,k(C )
�

= {z ∈ C : |z| ≤ 27.5013}.

Let λ∗ be the largest C-eigenvalue of the piezoelectric tensor and [−ρ
Γ
,ρ

Γ
], [−ρ

L
,ρ
L
],

[−ρ
M

,ρ
M
] and [−ρ

Υ
,ρ

Υ
] are the intervals generated by Theorems 1.4, 1.5, 1.6 and 2.1,

respectively. We note that in all examples, Theorem 2.2 always provides the best result

among the methods tested. Table 1 lists the results obtained by methods [3,4,15] and by

Theorem 2.1. It indicates that ρ
Υ

is more precise than ρ, ρmin, ρ
Γ

and ρ
M

. Moreover, in

some cases ρ
Υ

is tighter than ρ
L

. Thus, the C-eigenvalue localisation theorem obtained in

this work improves the known results in [3,4,15].

4. Conclusion

We derived a new inclusion set for localisation of the C-eigenvalues of piezoelectric

tensors. Numerical experiments show that it is better than the known set Γ (C ) and is

comparable or better than the setsM (C ) and L (C ).
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Table 1: Numerial omparison of Theorem 2.1 and the related results [3,4,15℄.

AV FeSb ASiO2 AC r2AgBiO8 ARbTaO3 AN aBiS2 ALiBiB2O5 AKBi2F7 ABaN iO3

λ∗ 4.2514 0.1375 2.6258 12.4234 11.6674 7.7376 13.5021 27.4628

ρ 7.3636 0.2882 5.6606 30.0911 17.3288 15.2911 22.6896 38.8162

ρmin 7.3636 0.2834 5.6606 23.5377 16.8548 12.3206 20.2351 35.3787

ρ
Γ

7.3636 0.2834 5.6606 23.5377 16.8548 12.3206 20.2351 27.5396

ρ
L

7.3636 0.2744 4.8058 23.5377 16.5460 11.0127 18.8973 27.5109

ρ
M

7.3636 0.2834 4.7861 23.5377 16.8464 11.0038 19.8830 27.5013

ρ
Υ

7.3636 0.2834 4.7335 23.5377 16.8464 10.9998 19.8319 27.5013
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