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Abstract

A numerical scheme for the Reissner–Mindlin plate model is proposed. The method

is based on a discrete Helmholtz decomposition and can be viewed as a generalization of

the nonconforming finite element scheme of Arnold and Falk [SIAM J. Numer. Anal.,

26(6):1276–1290, 1989]. The two unknowns in the discrete formulation are the in-plane

rotations and the gradient of the vertical displacement. The decomposition of the discrete

shear variable leads to equivalence with the usual Stokes system with penalty term plus

two Poisson equations and the proposed method is equivalent to a stabilized discretization

of the Stokes system that generalizes the Mini element. The method is proved to satisfy a

best-approximation result which is robust with respect to the thickness parameter t.

Mathematics subject classification: 65N10, 65N15, 73K10, 73K25.
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1. Introduction

The transverse displacement w of a thin elastic plate of thickness t > 0 whose mid-surface

is a bounded, open, simply connected, polygonal Lipschitz domain Ω ⊆ R2 and the rotation

φ of the plate’s fibers normal to the mid-surface are described by the Reissner–Mindlin plate

model. Given a (re-scaled) transverse load f ∈ L2(Ω), the Reissner–Mindlin plate problem with

clamped boundary condition seeks w ∈ H1
0 (Ω) and φ ∈ Φ := [H1

0 (Ω)]2 such that

a(φ, ψ) + λt−2(∇w − φ,∇v − ψ)L2(Ω) = (f, v)L2(Ω) for all (v, ψ) ∈ H1
0 (Ω)× Φ. (1.1)

Here, the bilinear form a(·, ·) is defined by a(φ, ψ) := (ε(φ),Cε(ψ))L2(Ω) for the linear green

strain ε(·) = symD(·) and the linear elasticity tensor C that acts on any symmetric matrix

A ∈ R2×2 as follows

CA =
E

12(1− ν2)
((1− ν)A+ ν tr(A)I2×2).

For isotropic materials it is determined by Young’s modulus E > 0 and the Poisson ratio

0 < ν < 1/2. Those also determine the constant λ in (1.1), which reads λ = (1 + ν)−1Eκ/2

with a shear correction factor κ usually chosen as 5/6. More details on the mathematical model

can be found in [5, 6].
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Standard schemes are known to exhibit shear locking and yield poor results for small thick-

ness t� h. The reader is referred to [6,9] and the references therein for an overview of numerical

schemes. It was the observation of Brezzi and Fortin [8] that the Helmholtz decomposition of the

shear variable ζ := t−2(∇w − φ) may serve as the key for the robust numerical approximation

of (1.1). Arnold and Falk [3] discovered a discrete analogue to that decomposition which led to

a robust nonconforming finite element discretisation. Their discrete Helmholtz decomposition

turned out useful for other purposes, too; but in its original form it is restricted to piecewise

affine finite element functions and so to the lowest-order case. In [13] the generalization of the

discrete Helmholtz decomposition to higher polynomial degrees from [14] was combined with

the Taylor–Hood element [5] and optimal-order convergence rates were proved for the rotation

variable through a superconvergence analysis. In this article we present and analyze the gener-

alization of Arnold and Falk’s scheme to higher polynomial degrees. This involves higher-order

analogues of the Mini element. We formulate the new scheme in §2 and give robust a priori error

estimates in §3. The numerical experiments of §4 investigate the performance of the method.

Standard notation on Lebesgue and Sobolev spaces applies throughout this paper. The L2

inner product is denoted by (v, w)L2(Ω). The space of L2(Ω) functions with vanishing global

average reads L2
0(Ω). For a function v and a vector field ψ, the following differential operators

are defined

divψ = ∂1ψ1 + ∂2ψ2, rotψ = ∂1ψ2 − ∂2ψ1, Curl v =

(
−∂2v

∂1v

)
.

The notation A . B abbreviates A ≤ CB for some constant C that is independent of the mesh

size and the plate’s thickness t.

2. The Method

This section is devoted to the precise definition of the novel method in Section 2.1. The

discretization space for φ is stabilized with local bubble functions. Those can be condensated

in the resulting system matrix. This is explained in more detail in Section 2.2.

2.1. Definition of the method

The new numerical scheme for Reissner–Mindlin plates is based on an equivalent reformu-

lation of the original problem (1.1) based on the space of gradients Z := ∇H1
0 (Ω). We assume

that Ω is simply connected. With the spaces X := [L2(Ω)]2 and Q := H1(Ω) ∩ L2
0(Ω), the

Helmholtz decomposition gives the following characterization

Z = {σ ∈ X | (σ,Curl q)L2(Ω) = 0 for all q ∈ Q}.

Note that, in two dimensions, the Curl operator is only the rotated gradient and therefore

H1(Ω) equals the space of all L2(Ω) functions whose Curl is in L2(Ω). Let η ∈ H(div,Ω) be

given with −div η = f . The integration by parts and the substitutions σ := ∇w and τ := ∇v
show that (1.1) is equivalent to finding σ ∈ Z and φ ∈ Φ such that

a(φ, ψ) + λt−2(φ− σ, ψ − τ)L2(Ω) = (η, τ)L2(Ω) for all (τ, ψ) ∈ Z × Φ. (2.1)

While on the continuous level this is merely a reformulation of (1.1), discretizations based on

(2.1) turn out to benefit from an intrinsic discrete Helmholtz decomposition.
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Let T denote a regular triangulation of Ω. For any T ∈ T let hT denote its diameter and let

Pk(T ) denote the polynomial functions over T of degree not larger than k ≥ 0. The piecewise

polynomial functions with respect to T are denoted by Pk(T) and the space of vector fields whose

components belong to Pk(T) reads Pk(T;R2). The L2 projection onto (any power of) Pk(T) is

denoted by Πk. The following notation is employed for subspaces of continuous functions

Sk(T) := Pk(T) ∩H1(Ω) and Sk0 (T) := Pk(T) ∩H1
0 (Ω)

with the vector-valued versions Sk(T;R2) and Sk0 (T;R2).

Let k ≥ 0 be a nonnegative integer and ` ∈ N and define the space of bubble functions

related to k as

B(T; k) :=

{
bh ∈ L2(Ω)

∣∣∣∣∣ ∀T ∈ T ∃vT,k ∈ Pk(T ) with

bh|T = (λ1λ2λ3)` vT,k

}
with λ1, λ2, λ3 the barycentric coordinates on T . The functions from B(T; k) serve as (purely

local) stabilization of the numerical scheme to guarantee a discrete inf-sup condition, see §3.

There are two relevant choices for the parameter `, namely

` = 1 or ` = d(k + 2)/3e (2.2)

with dse the smallest integer not smaller than s. This will be commented on in §2.2.1 and in

Remark 3.2. Define the spaces

Φh := [Sk+1
0 (T) + B(T; k)]2, Xh := Pk(T;R2), Qh := Sk+1(T) ∩ L2

0(Ω).

The space of discrete gradients reads

Zh := {σh ∈ Xh | (σh,Curl qh)L2(Ω) = 0 for all qh ∈ Qh}. (2.3)

Note that Zh 6⊆ Z in general. The discretization of (2.1) seeks (σh, φh) ∈ Zh × Φh such that

for all (τh, ψh) ∈ Zh × Φh there holds

a(φh, ψh) + λt−2(Πkφh − σh,Πkψh − τh)L2(Ω) = (η, τh)L2(Ω). (2.4)

Here, the L2 projection Πk plays the role of a reduction or reduced integration operator. Such

operators are commonly met in the discretization of Reissner–Mindlin plates [6].

Remark 2.1. In the lowest-order case, k = 0, the method (2.4) coincides with the scheme

proposed by [3] (possibly up to the right-hand side). The discrete Helmholtz decomposition

by [3] shows that in this case the space Zh equals the space of piecewise gradients of the

nonconforming P1 finite element functions [12].

2.2. Computational aspects

This subsection describes how to practically implement the discrete scheme (2.4). In par-

ticular, it is shown that after static condensation the resulting system is of moderate size.

2.2.1. Choice of the stabilization

For ` < d(k+2)/3e, the spaces Sk+1
0 (T) and B(T; k) have a nontrivial intersection and therefore

do not form a direct sum in the definition of Φh. This may cause difficulties in the design of
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local shape functions of Φh. For ` = 1, all basis functions corresponding to interior degrees of

freedom are already contained in B(T; k) and, hence, a basis can be defined by simply dropping

those basis functions from Sk+1
0 (T). The choice ` ≥ d(k + 2)/3e circumvents this technicality

by allowing a direct sum of the Lagrange finite element space and the stabilization.

2.2.2. Static condensation

The constraint for the space Zh ⊆ Xh is incorporated via a Lagrange multiplier αh ∈ Qh. Then,

system (2.4) may be reformulated as seeking (σh, φh, αh) ∈ Xh × Φh × Qh such that, for all

(τh, ψh, βh) ∈ Xh × Φh ×Qh

a(φh, ψh) + λt−2(Πkφh − σh,Πkψh − τh)L2(Ω) + (τh,Curlαh)L2(Ω) = (η, τh)L2(Ω)

(σh,Curlβh)L2(Ω) = 0.

The condition that the average of α over Ω vanishes can be included in the system by another

(one-dimensional) Lagrange multiplier. However, as this does not affect the condensation de-

scribed below, we will neglect this in the following for the ease of presentation. If one identifies

φh, σh, αh with their coefficient vectors with respect to a basis of Φh, Xh, Qh, the above system

reads A + λt−2M −λt−2B 0

−λt−2B∗ λt−2D C

0 C∗ 0

φhσh
αh

 =

0

g

0


for the stiffness matrix A and the reduced mass matrix M with respect to Φh, the matrix B

representing the bilinear form (Πkψh, τh)L2(Ω), the matrix C representing (τh,Curlβh)L2(Ω),

the mass matrix D with respect to Xh, and the load vector g. In a first step, the variable

σh is eliminated from the system. The matrix D is block diagonal and can thus be inverted

explicitly. The equations of the Schur complement read

[
A BD−1C

C∗D−1B∗ −λ−1t2C∗D−1C

] [
φh
αh

]
=

[
BD−1g

−λ−1t2C∗D−1g

]
.

In a second step, the component of φh that belongs to the space B(T; k) is eliminated. As

it merely represents a local stabilization, this component is of marginal interest for the ap-

proximation of φ, but it may be required for reconstructing σh in a post-processing step. The

components of φh are separated so that we write φh = (φkh;φbh) for φkh the coefficients of the Pk
interpolation of φkh and φbh the coefficients describing the bubble part. It should be noted that

for practical reasons the bubble functions may be modified such that they are consistent with

the interior degrees of freedom of the standard Lagrange elements. This does not change the

space Φh but is nevertheless useful if one wants to enforce that φkh equals the Pk finite element

interpolation of φh. The stiffness matrix A and the matrix B are then organized blockwise as

follows

A =

[
Akk Akb

A∗kb Abb

]
and B =

[
Bk

Bb

]
.
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The bubble part Abb is block-diagonal and can be inverted explicitly. The resulting condensed

system reads[
Akk −AkbA

−1
bb A∗kb (Bk −AkbA

−1
bb Bb)D

−1C

C∗D−1(B∗k −B∗bA
−1
bb A∗kb) −C∗D−1(λ−1t2I + B∗bA

−1
bb BbD

−1)C

] [
φkh
αh

]
=

[
(Bk −AkbA

−1
bb Bb)D

−1g

−C∗D−1(λ−1t2I + B∗bA
−1
bb BbD

−1)g

]
.

This is the system that needs to be solved. The remaining components φbh and σh are then

reconstructed from the foregoing relations (if required).

The number of unknowns in this system, hence, is dim(Sk+1
0 (Ω;R2)) + dim(Qh). Up to

degrees of freedom on the boundary, this is the dimension of a standard scheme for approxi-

mating (1.1).

3. Numerical Analysis of the Scheme

This section proves in a first step a discrete inf-sup condition for the pairing (Φh, Qh). This

pair generalizes the Mini finite element [2] to higher polynomial degrees. Based on this result

and the equivalence of (2.4) to the mixed system from Lemma 3.2 below, the error estimate is

proved in Theorem 3.1.

Lemma 3.1 (discrete inf-sup condition). There exists a constant C < ∞ such that any

qh ∈ Qh satisfies

‖qh‖L2(Ω) ≤ C sup
ψh∈Φh\{0}

(ψh,Curl qh)L2(Ω)

‖∇ψh‖L2(Ω)
.

Proof. The proof follows in three steps.

Step 1. Let T ∈ T be fixed. Let N ∈ N denote the dimension of Pk(T ) and let

(ψT,j)j∈{1,...,N} denote a basis of Pk(T ). In a preliminary step, we construct a basis ϕT,j
of the bubble space B({T}, k) such that (ϕT,j , ψT,m)L2(T ) = δjm for all j,m ∈ {1, . . . , N}. Here

and in the following, δjm denotes the Kronecker symbol.

Define the matrix M ∈ RN×N by

Mmn :=
(
ψT,m, (λ1λ2λ3)`ψT,n

)
L2(T )

for all m,n ∈ {1, . . . , N}

with ` from the definition of B(T; k) and the barycentric coordinates λ1, λ2, λ3 of T . Note that

the matrix M is positive definite and thus regular. Let βj := M−1ej ∈ RN with the unit

vector ej , i.e., ej,m = δjm. Note that βj only depends on the area of T , and its Euclidean norm

satisfies the scaling |βj | . h−2
T . Define

ϕT,j :=

N∑
n=1

βj,n(λ1λ2λ3)`ψT,n.

Then, the definition of ϕT,j and the scaling of βj and the basis functions imply

(ϕT,j , ψT,m)L2(T ) = em · (Mβj) = δjm, (3.1a)

‖∇ϕT,j‖L2(T ) . h
−2
T . (3.1b)
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Step 2. Let I : Φ → S1
0(T;R2) be a quasi-interpolation operator with (local) approximation

and stability properties [6, 11]

‖h−1
T (v − Iv)‖L2(T ) + ‖∇Iv‖L2(T ) . ‖∇v‖L2(ωT ) for any T ∈ T

where ωT := ∪{K ∈ T | K ∩ T 6= ∅}. Given qh ∈ Qh, the continuous inf-sup condition of the

divergence operator [1, 6, 7] and the change of coordinates (x1, x2) 7→ (−x2, x1) guarantees the

existence of v ∈ H1
0 (Ω;R2) with ‖∇v‖L2(Ω) = 1 and

‖qh‖L2(Ω) . −(qh, rot v)L2(Ω) = (Curl qh, v)L2(Ω).

In what follows, the superscript (ν) for ν ∈ {1, 2} refers to the component of a vector field.

The vector-valued version of the scalar-valued basis (ψT,j)
N
j=1 then reads (ψ

(ν)
T,j)

ν=1,2
j=1,...,N with

ψ
(ν)
T,j = ψT,jeν and analogous notation for ϕ

(ν)
T,j . Define coefficients α

(ν)
T,j ∈ R for j = 1, . . . , N

and ν = 1, 2 by

α
(ν)
T,j := (v − Iv, ψ(ν)

T,j)L2(T )

and set

vh := Iv +
∑
T∈T

N∑
j=1

2∑
ν=1

α
(ν)
T,jϕ

(ν)
T,j ∈ Φh.

Since Curl qh ∈ Pk(T;R2) is a polynomial of degree ≤ k, there exist coefficients a
(ν)
T,j with

Curl qh =
∑
T∈T

N∑
j=1

2∑
ν=1

a
(ν)
T,jψ

(ν)
T,j .

The definitions of the basis functions ϕ
(ν)
T,j and of α

(ν)
T,j imply for all T ∈ T

N∑
j=1

2∑
ν=1

α
(ν)
T,j(ϕ

(ν)
T,j ,Curl qh)L2(Ω) =

N∑
j=1

2∑
ν=1

α
(ν)
T,ja

(ν)
T,j

=

N∑
j=1

2∑
ν=1

a
(ν)
T,j(v − Iv, ψ

(ν)
T,j)L2(Ω) = (v − Iv,Curl qh)L2(T ).

The definition of vh therefore implies

(vh,Curl qh)L2(Ω)

=(Iv,Curl qh)L2(Ω) +
∑
T∈T

N∑
j=1

2∑
ν=1

α
(ν)
T,j(ϕ

(ν)
T,j ,Curl qh)L2(Ω)

=(v,Curl qh)L2(Ω). (3.2)

Step 3. This step bounds ‖∇vh‖L2(Ω). The triangle inequality and the stability of the quasi-

interpolation I prove

‖∇vh‖L2(Ω) . ‖∇v‖L2(Ω) +

∑
T∈T

N∑
j=1

2∑
ν=1

|α(ν)
T,j |

2 ‖∇ϕT,j‖2L2(T )

1/2

.
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The definition of α
(ν)
T,j , the Cauchy inequality, the scaling properties of the basis functions ψT,j

and the approximation properties of I show

|α(ν)
T,j | ≤ ‖h

−1
T (v − Iv)‖L2(T )‖hTψT,j‖L2(T ) ≤ ‖∇v‖L2(ωT )h

2
T .

On the other hand, (3.1) proves ‖∇ϕT,j‖L2(Ω) . h
−2
T . Note that the support of ϕT,j is T . The

finite overlap of the patches ωT and the combination of the above inequalities leads to

‖∇vh‖L2(Ω) . ‖∇v‖L2(Ω).

This concludes the proof. �

Remark 3.1. For k ≥ 3, the basis functions of Sk(T ) have interior degrees of freedom. There-

fore they can compensate some moments of Curl qh in (3.2) and the choice ` = d(k + 2)/3e
may bear some redundancies in that it would be possible to remove some of the functions in

B(T; k). However, §2.2.2 shows that those bubble functions can be eliminated by building the

Schur complement. Therefore, the number of bubble functions does not influence the size of

the system that has to be solved and, thus, the additional number of bubble functions in the

method can be accepted.

Remark 3.2. Note that for the discrete inf-sup condition, it suffices to consider the smaller

space [S1
0(T) +B(T; k)]2 instead of Φh and even the choice of any ` ≥ 1 would be possible. The

spaces Φh and Qh chosen here are balanced with respect to their approximation properties.

The numerical analysis of the discretization (2.4) relies on the equivalence with a mixed

system. This equivalence is based on a discrete Helmholtz decomposition and is proved in

Lemma 3.2 below. The continuous analogue was proved in [8]. The equivalent mixed system

seeks (%, φ, p, σ) ∈ Z × Φ×Q× Z such that, for all (ξ, ψ, q, τ) ∈ Z × Φ×Q× Z,

(%, ξ)L2(Ω) = (η, ξ)L2(Ω), (3.3a)

a(φ, ψ)− (ψ,Curl p)L2(Ω) − (%, ψ)L2(Ω) = 0, (3.3b)

− (φ,Curl q)L2(Ω) − λ−1t2(Curl p,Curl q)L2(Ω) = 0, (3.3c)

(σ, τ)L2(Ω) − (φ, τ)L2(Ω) = λ−1t2(η, τ)L2(Ω). (3.3d)

The discrete mixed system seeks (%h, φh, ph, σh) ∈ Zh × Φh × Qh × Zh such that, for all

(ξh, ψh, qh, τh) ∈ Zh × Φh ×Qh × Zh,

(%h, ξh)L2(Ω) = (η, ξh)L2(Ω), (3.4a)

a(φh, ψh)− (ψh,Curl ph)L2(Ω) − (%h, ψh)L2(Ω) = 0, (3.4b)

− (φh,Curl qh)L2(Ω) − λ−1t2(Curl ph,Curl qh)L2(Ω) = 0, (3.4c)

(σh, τh)L2(Ω) − (φh, τh)L2(Ω) = λ−1t2(η, τh)L2(Ω). (3.4d)

For k = 0, the equivalence with (2.4) was observed by [3], see also Remark 2.1. The following

result holds for any k ≥ 0.

Lemma 3.2 (equivalent system). If (σh, φh) ∈ Zh×Φh is a solution of (2.4), then there ex-

ists (%h, ph) ∈ Zh×Qh such that (%h, φh, ph, σh) solves (3.4). On the other hand, if (%h, φh, ph, σh)

∈ Zh × Φh ×Qh × Zh is a solution of (3.4), then (σh, φh) solves (2.4).
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Proof. Let (σh, φh) ∈ Zh × Φh be a solution of (2.4). The definition of Zh implies the

discrete Helmholtz decomposition

Pk(T;R2) = Zh ⊕ CurlQh

and the sum is orthogonal in L2(Ω). Therefore, and because Πk(φh − σh) ∈ Pk(T;R2), there

exist %h ∈ Zh and ph ∈ Qh such that

−λt−2Πk(φh − σh) = %h + Curl ph. (3.5)

The L2 orthogonality of %h and Curl ph by construction leads to

(%h, ξh)L2(Ω) = −λt−2(Πk(φh − σh), ξh)L2(Ω) for all ξh ∈ Zh.

Testing (2.4) with ψh = 0 and τh = ξh thus proves (3.4a). Let now ψh ∈ Φh. The definition of

ph from (3.5) shows

(ψh,Curl ph)L2(Ω) = −(ψh, λt
−2Πk(φh − σh))L2(Ω) − (ψh, %h)L2(Ω)

= −(Πkψh, λt
−2(Πkφh − σh))L2(Ω) − (ψh, %h)L2(Ω).

Testing (2.4) with this ψh and τh = 0 shows (3.4b). The L2 orthogonality of σh and %h to

CurlQh, the definition of ph, and CurlQh ⊆ Pk(T;R2) prove

λ−1t2(Curl ph,Curl qh)L2(Ω)

=(−Πk(φh − σh)− λ−1t2%h,Curl qh)L2(Ω) = −(φh,Curl qh)L2(Ω),

which is (3.4c). Finally, Zh ⊆ Pk(T;R2) and (2.4) with ψh = 0 and τh arbitrary proves (3.4d).

Let now (%h, φh, ph, σh) ∈ Zh × Φh × Qh × Zh be a solution to (3.4). The last equation

in (3.4) and Zh ⊆ Pk(T;R2) show

−λt−2(Πkφh − σh, τh)L2(Ω) = (η, τh)L2(Ω) for all τh ∈ Zh,

which is equation (2.4) tested with ψh = 0. The third equation of (3.4) proves that Πkφh +

λ−1t2 Curl ph ∈ Zh. On the other hand, the definition of Zh and the last and the first equation

in (3.4) show for any τh ∈ Zh

(Πkφh + λ−1t2 Curl ph, τh)L2(Ω) = (φh, τh)L2(Ω)

=(σh, τh)L2(Ω) − λ−1t2(η, τh)L2(Ω) = (σh − λ−1t2%h, τh)L2(Ω).

Therefore,

Πkφh + λ−1t2 Curl ph = σh − λ−1t2%h,

which implies the discrete Helmholtz decomposition

−λt−2Πk(φh − σh) = %h + Curl ph.

Due to (3.4b), we thus conclude

a(φh, ψh) + λt−2(Πk(φh − σh),Πkψh)L2(Ω)

=a(φh, ψh)− (ψh,Curl ph)L2(Ω) − (%h, ψh)L2(Ω) = 0,

which is (2.4) tested with τh = 0. This concludes the proof. �
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We are now in the position to prove an error estimate for the discretisation (2.4) that is

robust with respect to the limit t → 0. The error estimate involves the Curl part of the data

η, i.e., α1 ∈ H1(Ω) ∩ L2
0(Ω) with η = % + Curlα1, which exists because η − % is divergence-

free. This additional term in the error estimate is due to the non-conformity Zh 6⊆ Z, see

also [14]. Furthermore, the estimate involves the Curl part of the shear force, more precisely

α2 ∈ H1(Ω)∩L2
0(Ω) with λ−1t2η− (σ− φ) = Curlα2. This again exists, because the left-hand

side is divergence-free.

Theorem 3.1 (stability and a priori error estimate). There exists a unique discrete so-

lution (φh, σh) ∈ Φh×Zh to (2.4). Let (φ, σ) ∈ Φ×Z be the solution to (2.1) and let ρ, p, ρh, ph
be as in Lemma 3.2. Let furthermore α1,h, α2,h ∈ Qh be defined through the discrete Helmholtz

decompositions of Πkη and λ−1t2Πkη + Πkφh, respectively, namely

Curlα1,h = Πkη − ρh,
Curlα2,h = λ−1t2Πkη + Πkφh − σh

(these functions exists by (2.3) and (3.4)). Then the following error estimate holds

‖D(φ− φh)‖L2(Ω) + ‖σ − σh‖L2(Ω) + ‖p− ph‖L2(Ω) + t‖Curl(p− ph)‖L2(Ω)

+ ‖%− %h‖L2(Ω) + ‖Curl(α1 − α1,h)‖L2(Ω) + ‖Curl(α2 − α2,h)‖L2(Ω)

. inf
(ψh,τh,qh,ξh,β1,h,β2,h)

∈Φh×Xh×Qh×Xh×Qh×Qh

(
‖D(φ− ψh)‖L2(Ω) + ‖σ − τh‖L2(Ω)

+ ‖p− qh‖L2(Ω) + t‖Curl(p− qh)‖L2(Ω) + ‖%− ξh‖L2(Ω)

+ ‖Curl(α1 − β1,h)‖L2(Ω) + ‖Curl(α2 − β2,h)‖L2(Ω)

)
.

Proof. The proof employs the equivalence to the mixed system from Lemma 3.2. The

definition of Zh implies that (3.4) is in turn equivalent to the system

−divCε −Curl −ΠΦh
0 0 0

rot λ−1t2∆ 0 0 0 0

−Πk 0 0 Curl id 0

0 0 − rot 0 0 0

0 0 id 0 0 Curl

0 0 0 0 − rot 0





φh
ph
%h
α2,h

σh
α1,h


=



0

0

λ−1t2Πkη

0

Πkη

0


,

where ΠΦh
denotes the L2 projection onto Φh. The operator ∆ is understood as ∆ : Qh → Q∗h

and analogously −divCε : Φh → Φ∗h. Note that ΠΦh
: Xh → Φh and Πk : Φh → Xh

are adjoint operators, and therefore, this defines a symmetric system. Note furthermore that

(φ, p, %, α2, σ, α1) with α1, α2 defined as above is a solution to the corresponding continuous

problem.

The spaces Φh and Xh are equipped with the norms ‖D•‖L2(Ω) and ‖•‖L2(Ω). The variable

ph ∈ Qh is measured in the norm ‖•‖L2(Ω) + t‖Curl •‖L2(Ω) while α1,h, α2,h ∈ Qh are measured

in ‖Curl •‖L2(Ω). The above system satisfies a (continuous and) discrete inf-sup condition with

respect to these norms as can be seen recursively: Since CurlQh ⊆ Xh, the bilinear form defined

by the last line satisfies an inf-sup condition on (Φh×Qh×Xh×Qh×Xh)×Qh. Furthermore,

the kernel is exactly Φh×Qh×Xh×Qh×Zh. Brezzi’s splitting lemma [5] implies that it remains

to show the inf-sup condition of the remaining saddle-point system on Φh×Qh×Xh×Qh×Zh.
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Consider the bilinear form b : (Φh ×Qh ×Xh)× (Qh × Zh) defined by

b((ψh, qh, ξh), (β2,h, τh)) := (ξh,Curlβ2,h)L2(Ω) + (ξh, τh)L2(Ω)

for all ((ψh, qh, ξh), (β2,h, τh)) ∈ (Φh ×Qh ×Xh)× (Qh × Zh). The choice ξh = Curlβ2,h + τh
shows for τh ∈ Zh that

b((0, 0, ξh), (β2,h, τh)) = ‖Curlβ2,h‖2L2(Ω) + ‖τh‖2L2(Ω).

Hence, b satisfies an inf-sup condition. The kernel of b is Φh × Qh × {0}. Employing again

Brezzi’s splitting theorem, we conclude that it remains to show the inf-sup condition for the

3× 3 upper left matrix on Φh×Qh×{0}, which defines a saddle-point system. The projection

operator in the third line is now applied to 0 only, and therefore, the corresponding bilinear

form trivially satisfies an inf-sup condition with kernel Φh ×Qh. The inf-sup condition of the

upper left 2 × 2 matrix — a perturbed Stokes system — finally follows from the theory of

saddle-point systems with penalty term (see, e.g., [6, Section III.4]).

In summary, the complete system satisfies an inf-sup condition. A priori error estimates for

the standard theory of saddle point problems (see, e.g., [5]) imply the assertion. �

Remark 3.3. If all of the solution variables are smooth enough, Theorem 3.1 implies the

convergence rate

‖D(φ− φh)‖L2(Ω) + ‖σ − σh‖L2(Ω) ≤ C(t)hk+1

with h := maxT∈T hT . The constant C(t) is discussed in Remark 3.4.

Remark 3.4. Consider the data η to be chosen in Hk(Ω) and the exact solution w ∈ Hk+1(Ω)

and φ ∈ Hk+1(Ω;R2). Then the shear force ζ := λt−2(∇w − φ) belongs to Hk(Ω,R2) and

according to the proof of Lemma 3.2, ζ = %+ Curl p. The field % is the gradient of the solution

to the Poisson equation with right-hand side −div ζ and p solves the Laplacian with right-

hand side rot ζ and homogeneous Neumann boundary conditions. The regularity of those two

variables therefore also depend on the geometry of Ω. The regularity of α1 is given by the

regularity of η and % by Curlα1 = η − %. Note that, in two dimensions, the operator Curl

is equivalent to the gradient. The regularity of α2 is given by Curlα2 = λ−1t2η − (σ − φ).

Higher-order Sobolev norms of φ and ζ can, however, in general not be estimated uniformly in

t [4] so that robust discretizations may require locally refined meshes.

4. Numerical Results

This section provides numerical experiments for the new method with the parameter `

chosen as ` = d(k + 2)/3e. The convergence history plots display the relative errors

e(φ) :=
‖D(φ− φh)‖L2(Ω)

‖Dφ‖L2(Ω)
and e(w) :=

‖∇w − σh‖L2(Ω)

‖∇w‖L2(Ω)

in dependence of the mesh size h on uniformly refined meshes for various polynomial degrees k.

In all numerical experiments, the material parameters read ν = 0.3, E = 106, and κ = 5/6 while

various values of t are considered. The test examples are purely artificial smooth functions on

square-shaped domains. In this work, we disregard the possibility of local mesh-adaptation due

to boundary layers or corner singularities and rather focus on the illustration of convergence
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rates and the robustness in the parameter t. The high-order approximation on uniform meshes

observed in the numerical tests can, however, not be expected in general due to boundary

layers [4].

4.1. Exact smooth solution

In the first numerical example, the domain Ω is the unit square Ω = (0, 1)2 and the exact

solution from [10] is given by

φ(x, y) =

[
y3(y − 1)3x2(x− 1)2(2x− 1)

x3(x− 1)3y2(y − 1)2(2y − 1)

]
and

w(x, y) =
1

3
x3(x− 1)3y3(y − 1)3 − 2t2

5(1− ν)

[
y3(y − 1)3x(x− 1)(5x2 − 5x+ 1)

+ x3(x− 1)3y(y − 1)(5y2 − 5y + 1)
]
.

The right-hand side f(x, y) of (1.1) is given by E/(12(1− ν2)) times[
12y(y − 1)(5x2 − 5x+ 1)

(
2y2(y − 1)2 + x(x− 1)(5y2 − 5y + 1)

)
+ 12x(x− 1)(5y2 − 5y + 1)

(
2x2(x− 1)2 + y(y − 1)(5x2 − 5x+ 1)

)]
.

In this case, the field η with −div η = f is obtained by explicit integration of the polynomial

f . Fig. 4.1 displays the convergence history of the relative errors for polynomial degrees k =

0, 1, 2, 3 and thickness parameters t = 1/10 and t = 1/100. As predicted, in this smooth

example the convergence rates are optimal in h and the method is robust in t.

100 101 102
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

1/h

e(φ), k = 0

e(φ), k = 1

e(φ), k = 2

e(φ), k = 3

e(w), k = 0

e(w), k = 1

e(w), k = 2

e(w), k = 3

e(φ), k = 0

e(φ), k = 1

e(φ), k = 2

e(φ), k = 3

e(w), k = 0

e(w), k = 1

e(w), k = 2

e(w), k = 3

Fig. 4.1. Convergence history for the first numerical experiment for t = 1/10 (solid lines) and t = 1/100

(dashed lines). The dotted lines without markers indicate the rates O(h) and O(h4).
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4.2. Biharmonic equation

The second numerical example is concerned with the solution to the biharmonic equation

(Kirchhoff–Love plate). The domain Ω is the square Ω = (0, π)2. The exact solution of the

biharmonic equation is given by w(x, y) = sin2(x) sin2(y), φ = ∇w, and f = E
12(1−ν2)∆2w.

The right-hand side η is chosen as η = (−F, 0) with the antiderivative F of f with respect to

x. While the numerical scheme for the Reissner–Mindlin model will not converge towards this

solution, it may be a reasonable approximation as long as t is small compared to h. Fig. 4.2

displays the convergence history for t = 1/10, t = 1/100, t = 1/1000. Pre-asymptotically,

optimal-in-h convergence and the robustness with respect to t are observable. The errors are

bounded from below by the model error between the two plate models.

100 101
10−6

10−5

10−4

10−3

10−2

10−1

100

101

1/h

e(φ), k = 0

e(φ), k = 1

e(φ), k = 2

e(φ), k = 3

e(w), k = 0

e(w), k = 1

e(w), k = 2

e(w), k = 3

e(φ), k = 0

e(φ), k = 1

e(φ), k = 2

e(φ), k = 3

e(w), k = 0

e(w), k = 1

e(w), k = 2

e(w), k = 3

e(φ), k = 0

e(φ), k = 1

e(φ), k = 2

e(φ), k = 3

e(w), k = 0

e(w), k = 1

e(w), k = 2

e(w), k = 3

Fig. 4.2. Convergence history for the second numerical experiment for t = 1/10 (solid lines), t = 1/100

(dashed lines), t = 1/1000 (dotted lines). The dotted lines without markers indicate the rates O(h)

and O(h4).
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