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Abstract. A construction of multiple knot B-spline wavelets has been given in
[C. K. Chui and E. Quak, Wavelet on a bounded interval, In: D. Braess and
L. L. Schumaker, editors. Numerical methods of approximation theory. Basel:
Birkhauser Verlag; (1992), pp. 57–76]. In this work, we first modify these wavelets
to solve the elliptic (partially) Dirichlet boundary value problems by Galerkin and
Petrov Galerkin methods. We generalize this construction to two dimensional case
by Tensor product space. In addition, the solution of the system discretized by
Galerkin method with modified multiple knot B-spline wavelets is discussed. We
also consider a nonlinear partial differential equation for unsteady flows in an open
channel called Saint-Venant. Since the solving of this problem by some methods
such as finite difference and finite element produce unsuitable approximations spe-
cially in the ends of channel, it is solved by multiple knot B-spline wavelet method
that yields a very well approximation. Finally, some numerical examples are given
to support our theoretical results.

AMS subject classifications: 65T60, 35L60, 35L04

Key words: Galerkin method, semi-orthogonal, B-spline wavelet, multi-resolution analysis,
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1 Introduction

Solving boundary value problems by Galerkin methods leads to very large systems
Ax = b. Then, for numerical implementation, it is necessary to generate a sparse
matrix A. In order to do this, the basis functions with local support are suitable.
In particular, orthonormal basis functions with local support decrease the expenses
of numerical implementation. However, construction of orthonormal basis functions
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with local support is not easy. Although, Daubechies et al. in [12] have given such
basis functions in wavelet space, but there is no still explicit formulas. Then, the sci-
entists have tried to construct semi-orthogonal basis wavelets with local support and
explicit formulas. This can be done by multiple knot B-splines (see [9] and [7]). In this
work, by multiple knot B-spline functions, we construct the wavelets that satisfy in
the (partially) Dirichlet boundary conditions.

Let us first recall the notions of scaling function and multi-resolution analysis as
introduced in [16] and [18]. For a function φ ∈ L2(Ω), let a reference subspace V0 be
generated as the L2-closure of the linear span of the integer translates of φ, namely:

V0 := closL2 〈φ(.− k) : k ∈ I0〉

and consider the other subspaces Vj := closL2〈φj,k : k ∈ Ij〉, j ≥ 0, where φj,k :=

2j/2φ(2j.− k), j ≥ 0, k ∈ Ij, where 〈F〉 and Ij denote the space spanned by F and some
appropriate set of indices, respectively.

Definition 1.1. A function φ ∈ L2(Ω) is said to generate a multi-resolution analysis (MRA)
if it generates a nested sequence of closed subspace Vj that satisfy

(i) V0 ⊂ V1 ⊂ · · · ;

(ii) closL2 (∪j≥0Vj) = L2(Ω);

(iii) ∩j∈ZVj = {0};

(iv) f ∈ Vj ⇐⇒ f (. + 2−j) ∈ Vj ⇐⇒ f (2.) ∈ Vj+1, j ≥ 0;

(v) {φj,k}k∈I j
forms a Riesz basis for Vj, i.e.,

there are constants A and B with 0 < A ≤ B < ∞ such that

A ∑
k∈I j

|ck|
2 ≤‖ ∑

k∈I j

ckφj,k ‖
2
L2(Ω)≤ B ∑

k∈I j

|ck|
2

independent of j.

If φ generates an MRA, then φ is called a scaling function. In case different integer
translates of φ are orthogonal (φ(.− k)⊥φ(. − k̃), for k 6= k̃), the scaling function is
called an orthogonal scaling function.

Since the subspace Vj are nested, there exists a subspace Wj, such that

Vj+1 = Vj ⊕Wj, j ∈ Z,

where Wj is some direct summand, not necessarily the orthogonal one. Then, the
problem of constructing the spaces Wj means to find a stable system of functions Ψj =
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{ψj,k : k ∈ Γj}, such that Wj = closL2〈ψj,k : k ∈ Γj〉, j ≥ 0, where ψj,k := 2j/2ψ(2j.− k),
k ∈ Γj〉, j ≥ 0. For abbreviation, we set W−1 = V0, Γ−1 = I0 and hence this gives rise
to a decomposition of Vj, namely

Vj =
j−1
⊕

k=−1

Wk.

Definition 1.2. The elements of Ψj are called a set of wavelets, if the system Ψ =
⋃∞

j=−1 Ψj

forms a Riesz basis for L2(Ω), i.e.,

∥

∥ ∑
j≥−1

∑
k∈Γj

dj,kΨj,k

∥

∥

2

L2(Ω)
∼ ∑

j≥−1
∑

k∈Γj

|dj,k|
2.

If (ψj,k, ψj,m) = δk,m, k, m ∈ Γj, where ( f , g) =
∫

Ω
f (x)g(x)dx is the standard inner prod-

uct, then ψ is called an orthonormal wavelet. The wavelets ψj,k are called semi-orthogonal, if

(ψj,k, ψj̃,k̃) = 0; j 6= j̃ for all j, j̃ ≥ −1, k ∈ Γj, k̃ ∈ Γ j̃.

We denote the multi-resolution space Vj and the wavelet space Wj on bounded

interval [0, 1] by V
[0,1]
j and W

[0,1]
j for any j ≥ 0, respectively.

2 Multiple knot B-spline wavelets for L2[0, 1]

In this section, we give the semi-orthogonal spline wavelets in L2[0, 1] that has been
constructed by Chui and Quak (see [9]). We have modified some proofs in [9] that
were not clear. Let m ∈ N be fixed throughout this section.

Definition 2.1. For j ∈ Z+, let a knot sequence on [0, 1] be given by t(j) := t
(j)
m :=

{t
(j)
k }

2j+m−1
k=−m+1 with

t
(j)
−m+1 = t

(j)
−m+2 = · · · = t

(j)
0 = 0, (2.1a)

t
(j)
k = k2−j, (k = 1, · · · , 2j − 1), (2.1b)

t
(j)

2j = t
(j)

2j+1
= · · · = t

(j)

2j+m−1
= 1. (2.1c)

The (polynomial) spline space of order m for the knot sequence t
(j)
m is defined as

Sm,j := S
m,t

(j)
m

:=
{

s ∈ Cm−2[0, 1] : s|(t
(j)
k , t

(j)
k+1) ∈ Πm−1, k = 0, · · · , 2j − 1

}

.

The sequence of subspaces V
[0,1]
j is given by

V
[0,1]
j := Sm,j, V

[0,1]
0 := Πm−1. (2.2)

By standard spline theory one can establish the following:
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Theorem 2.1. A basis for V
[0,1]
j is given by the B-spline Bi,m,j, i = −m + 1, · · · , 2j − 1 and

thus

dimV
[0,1]
j = 2j + m− 1.

Here,

Bi,m,j(x) := (t
j
i+m − t

j
i)[t

j
i , t

j
i+1, · · · , t

j
i+m]t(t− x)m−1

+ ,

where [·, · · · , ·]t is the mth divided difference of (t− x)m−1
+ with respect to the variable

t. The support of Bi,m,j is [t
(j)
i , t

(j)
i+m]. For i = −m + 1, · · · ,−1, the knot sequence defin-

ing Bi,m,j contains a multiple knot at 0, and for i = 2j − m + 1, · · · , 2j − 1, a multiple

knot at 1. The inner ones (i = 0, · · · , 2j − m for 2j ≥ m) are just dilation and trans-
lation of the cardinal B-spline Nm(x) = m[0, 1, · · · , m]t(t− x)m−1

+ used as the scaling
function for L2(R), namely:

Bi,m,j = Nm(2
j.− i), i = 0, · · · , 2j −m.

To find suitable wavelet function spanning W
[0,1]
j in the orthogonal decomposition

V
[0,1]
j+1 = V

[0,1]
j ⊕W

[0,1]
j , we use an argument that identifies the wavelet space W

[0,1]
j with

a subspace of a spline of order 2m. For each m ∈ N, define the spline space

S̃
2m,t

(j+1)
2m

:= 〈B
i,2m,t

(j+1)
2m

: i = −m + 1, · · · , 2j+1 −m− 1〉

and its subspace

S̃0

2m,t
(j+1)
2m

:=
{

s ∈ S̃
2m,t

(j+1)
2m

: s(t
(j)
k ) = 0, k = 0, · · · , 2j

}

of all splines in S̃
2m,t

(j+1)
2m

that vanish on the coarse knot sequence t
(j)
2m. The following

theorem states that for constructing a wavelet basis in W
[0,1]
j , we only need to form a

basis in S̃0

2m,t
(j+1)
2m

:

Theorem 2.2. For each m ∈ N, the m-th order differential operator Dm maps the space

S̃0

2m,t
(j+1)
2m

one-to-one onto the wavelet space W
[0,1]
j .

Proof. See [9]. �

In chui-Wang [10], an interpolatory wavelet on R is defined as the m-th deriva-

tive of the fundamental cardinal spline L2m(k) = δ0,k, k ∈ Z. Analogously, W
[0,1]
j is

spanned by the m-th derivatives of the fundamental splines Li,2m in S̃0

2m,t
(j+1)
2m

, for which

Li,2m((2k− 1)2−j−1) = δi,k, i, k = 1, · · · , 2j.
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Theorem 2.3. The wavelet space W
[0,1]
j is spanned by function ψI

i,m = L
(m)
i,2m, i = 1, · · · , 2j,

where for k = 1, · · · , 2j+1 − 1, Li,2m ∈ S̃0

2m,t
(j+1)
2m

satisfy

Li,2m(t
(j+1)
k ) =

{

1, for k = 2i− 1,
0, otherwise.

(2.3)

Let B be the (2j+1 − 1) × (2j+1 − 1) so-called collocation matrix with entries bk,ĩ =

B
ĩ−m,2m,t

(j+1)
2m

(t
(j+1)
k ), for ĩ, k = 1, · · · , 2j+1 − 1, and let Bk,ℓ be its minor that are obtained

by deleting the k-th row and ℓ-th column. Then, the Li,2ms, can be compute

Li,2m(x) =
2j+1−1

∑
ℓ=1

(−1)2i−1+ℓB2i−1,ℓB
ℓ−m,2m,t

(j+1)
2m

(x)
/

detB. (2.4)

Proof. Since the splines B
ĩ−m,2m,t

(j+1)
2m

for ĩ = 1, · · · , 2j+1− 1, are linearly independent

and entries on diagonal of B are nonzero, then detB is nonzero. As a function of x,
suppressing the second and third indices of the B-spline, we see that the expression

det



















B−m+1(t
(j+1)
1 ) · · · B2j+1−1−m(t

(j+1)
1 )

...
...

...
B−m+1(x) · · · B2j+1−1−m(x)

...
...

...

B−m+1(t
(j+1)

2j+1−1
) · · · B2j+1−1−m(t

(j+1)

2j+1−1
)



















, (2i− 1)− th row (2.5)

vanishes at all knots except t
(j+1)
2i−1 . For construction of Li,2m, one can expand the de-

terminant (2.5) with respect to the (2i − 1)-th row and then normalizing appropri-

ately gives (2.4). Now, let ∑
2j

i=1 ciLi,2m(x) = 0 for some ci, i = 1, · · · , 2j. Then letting

x = t
(j+1)
2i−1 and considering the relation (2.3), the coefficients ci are zero that yield Li,2m,

for i = 1, · · · , 2j are independent. Also, Li,2m(t
j
k) = 0 for k = 0, · · · , 2j and so are ele-

ments of S̃0

2m,t
(j+1)
2m

that consist a basis of this space. Hence, by Theorem (2.2), the m-th

derivatives form a basis of W
[0,1]
j . �

Now, the following lemma ensures us that the interpolatory wavelets (2.4) are
semi-orthogonal.

Lemma 2.1. Let L
(m)
i,2m, i = 1, · · · , 2j, be the same interpolatory wavelets that given before.

Then these wavelets are semi-orthogonal.

Proof. It is suffices to show that W
[0,1]
j ⊥V

[0,1]
j . By considering L

(ℓ)
i,2m(0) = L

(ℓ)
i,2m(1) =
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0, for ℓ = 0, · · · , m− 1 and integrating by parts m− 1 times, we have:

∫ 1

0
L
(m)
i,2m(x)Bi,m,j(x)dx =

∫ 1

0
(−1)m−1L

′

i,2m(x)B
(m−1)
i,m,j (x)dx

=
2j−1

∑
k=0

∫ t
(j)
k+1

t
(j)
k

(−1)m−1L
′

i,2m(x)B
(m−1)
i,m,j (x)dx

=(−1)m−1
2j−1

∑
k=1

∫ t
(j)
k+1

t
(j)
k

L
′

i,2m(x)ckdx

=(−1)m−1
2j−1

∑
k=1

ck[Li,2m(t
(j)
k+1)− Li,2m(t

j
k)]

=0.

In the above equalities, we have used this fact that B
(m−1)
i,m,j ≡ ck on (t

(j)
k , t

(j)
k+1) with ck

as a constant value and Li,2m vanishes at the original knots t
(j)
k for k = 0, · · · , 2j. �

Unfortunately, the basis functions for W
[0,1]
j in Theorem (2.3) have support on all of

the interval [0, 1] and depend on all the functions B
i,2m,t

(j+1)
2m

that numerically produce

a long CPU time and fairly large errors. Chui and Wang in [9] have presented a basis

of W
[0,1]
j with localize supports and a clear distinction between boundary and inner

wavelets. The following lemma describes the inner wavelets in W
[0,1]
j with compact

supports.

Lemma 2.2. For all j ∈N such that 2j ≥ 2m− 1, there exists 2j − 2m + 2 linearly indepen-

dent inner wavelet ψj,i, i = 0, · · · , 2j − 2m + 1, in W
[0,1]
j which are given by

ψj,i(x) =
1

22m−1

2m−2

∑
k=0

(−1)kN2m(k + 1)B
(m)

2i+k,2m,t
(j+1)
2m

(x).

Proof. See [9]. �

By Lemma 2.2 there exist 2j − 2m + 2 inner wavelets and consequently 2m − 2
boundary wavelets need to be constructed. This task can be split into the construction
of m− 1 so-called 0-boundary wavelets, i.e., wavelets whose support contains the left
endpoint of the interval [0, 1]. By symmetry, the so-called 1-boundary wavelets are
obtained from the 0-boundary wavelets by an index transformation i ←→ 2j − 2m +
1− i and x ←→ 1− x. We have the following lemma for 0-boundary wavelets:

Lemma 2.3. For j ∈ Z+, if 2j ≥ 2m− 1, there exist m− 1 wavelets on the 0-boundary which
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can write as

ψj,i(x) =
1

22m−1

−1

∑
k=−m+1

αi,−kB
(m)

k,2m,t
(j+1)
2m

(x)

+
1

22m−1

2m−2+2i

∑
k=0

(−1)kN2m(k + 1− 2i)B
(m)

k,2m,t
(j+1)
2m

(x) (2.6)

with supports [0, (2m− 1+ i)2−j] for i = −m+ 1, · · · ,−1. The coefficients αi := (αi,k)
⊤
1≤k≤m−1

are derived by solving the linear system

Bαi = r
⊤
i , (i = −m + 1, · · · ,−1)

with

B := (B
−k,2m,t

(j+1)
2m

(t
(j)
ℓ
))1≤ℓ,k≤m−1 and ri := (ri,ℓ)1≤ℓ≤m−1,

where

ri,ℓ = −
2m−2+2i

∑
k=0

(−1)kN2m(k + 1− 2i)N2m(2ℓ− k), ℓ = 1, · · · , m− 1.

Proof. See [9]. �

Remark 2.1. We note that the B-spline wavelets are semi-orthogonal because W
[0,1]
j =

〈L
(m)
i,2m, i = 1, · · · , 2j〉 = 〈ψj,i, i = −m + 1, · · · , 2j −m〉.

3 Homogenous multiple knot B-spline wavelets

In this section, we construct the homogenous basis functions for Dirichlet elliptic
boundary value problem in one and two dimensional case. We first explain that some
of the B-spline and wavelet basis functions given in the Section 2 are not homogenous

that should be modified. For convenience, we use Vj and Wj stead V
[0,1]
j and W

[0,1]
j ,

respectively.

3.1 One dimensional B-spline wavelets

We know the smoothness decreases by r − 1 at the point with r-tuple knot. By (2.2),
the basis functions of Vj belong to Cm−2[0, 1]. On the other hand, by considering the
structure of B-spline functions, it is seen that only the basis B−m+1,m,j and B2j−1,m,j have
m-tuple knot in x = 0, 1, respectively. This implies that B−m+1,m,j and B2j−1,m,j belong

to Cm−2−(m−1)(R), i.e.,

B−m+1,m,j(0) 6= 0, B2j−1,m,j(1) 6= 0.
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Hence, theses two functions do not satisfy in Dirichlet boundary conditions. More-
over, by (2.6) in the formula of wavelet functions on the zero, there exists the function

B
(m)

−m+1,2m,t
(j+1)
2m

∈ Cm−2[0, 1] with m-tuple knot in zero boundary that implies

B
(m)

−m+1,2m,t
(j+1)
2m

(0) 6= 0.

Hence, the wavelet functions on the zero boundary do not satisfy in Dirichlet bound-
ary conditions. By the reflective property of wavelet basis, this is true for the wavelets
on the boundary of x = 1. If we need to use the basis functions of Vj+1, i.e.,

{Bi,m,j}−m+1≤i≤2j−1 ∪ {ψj,i}−m+1≤i≤2j−m (3.1)

satisfying homogenous Dirichlet boundary conditions, we omit the multiple knot B-
splines that are not zero on the boundaries. We note that as opposed to the scaling
functions, we can not omit the wavelets that does not vanish on the boundaries. This
can be seen by

|Vj+1| = |Vj|+ |Wj| ⇒ 2j+1 + m− 1 = (2j + m− 1) + |Wj|,

that yields the dimension of the space Wj must be 2j. The notation | · | denotes the
cardinal of the corresponding space. We modify the boundary wavelet bases. To this
end, we state the following theorem.

Theorem 3.1. For 2j ≥ 2m− 1, the wavelet basis ψN
j,i at level j by

ψN
j,i :=







ψj,i − αj,iB−m+1,m,j, i = −m + 1, · · · ,−1,

ψj,i, i = 0, · · · , 2j − 2m + 1,

ψj,i − β j,iB2j−1,m,j, i = 2j − 2m + 2, · · · , 2j −m,

satisfies in the homogenous Dirichlet boundary conditions where

αj,i :=
ψj,i(0)

B−m+1,m,j(0)
, β j,i :=

ψj,i(1)

B2j−1,m,j(1)
.

Proof. We define the space WN
j on the interval [0, 1] by

WN
j = 〈ψN

j,i, i = −m + 1, · · · , 2j −m〉.

Let Ij := {−m + 1, · · · , 2j − 1} and Jj := {−m + 1, · · · , 2j − m}. Since the bases

{Bi,m,j}i∈Ij
∪ {ψj,i}i∈Jj

are linear independent, then {Bi,m,j}i∈Ij
∪ {ψN

j,i}i∈Jj
consist a lin-

ear independent set. On the other hand, if f ∈ Vj+1, then by Vj+1 = Vj⊕Wj there exist
the constants cj,i and dj,i that f can be uniquely stated by

f (x) = ∑
i∈Ij

cj,iBi,m,j(x) + ∑
i∈Jj

dj,iψj,i(x). (3.2)
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Now, by (3.2) we have

f (x) = ∑
i∈Ij\{−m+1,2j−1}

cj,iBi,m,j(x) + cj,−m+1B−m+1,m,j(x) + cj,2j−1B2j−1,m,j(x)

+
−1

∑
i=−m+1

dj,i(ψj,i(x)− αj,iB−m+1,m,j(x)) +
2j−2m+1

∑
i=0

dj,iψj,i(x)

+
2j−m

∑
i=2j−2m+2

dj,i(ψj,i(x)− β j,iB2j−1,m,j(x)) +
−1

∑
i=−m+1

dj,iαj,iB−m+1,m,j(x)

+
2j−m

∑
i=2j−2m+2

dj,iβ j,iB2j−1,m,j(x)

= ∑
i∈Ij\{−m+1,2j−1}

cj,iBi,m,j(x) + (cj,−m+1 +
−1

∑
i=−m+1

dj,iαj,i)B−m+1,m,j(x)

+ (cj,2j−1 +
2j−m

∑
i=2j−2m+2

dj,iβ j,i)B2j−1,m,j(x) + ∑
i∈Jj

dj,iψ
N
j,i(x).

Then, f can be written as an unique combination of the basis functions in Vj and WN
j ,

i.e.,

Vj+1 = Vj ⊕WN
j ,

where ⊕ denotes a direct sum but not an orthogonal direct sum. �

Fig. 1 shows some of these modified wavelet bases for m = 2 at the scale j = 2. By
Lemmas 2.2 and 2.3, we have 2j − 2m + 2 and 2(m− 1) inner wavelets and boundary
wavelets respectively. Then, as the level j increases, the number of inner wavelets
would be many more than the boundary wavelets. Moreover, for j 6= j̃

〈ψI
j,i, ψI

j̃,ĩ
〉 = 0, i = 0, · · · , 2j − 2m + 1, ĩ = 0, · · · , 2j̃ − 2m + 1,

where ψI
j,i and ψI

j̃,ĩ
are inner wavelets. On the other hand, for j < j̃ we have

〈ψL
j,i, ψI

j̃,ĩ
〉 = 0, i = −m + 1, · · · ,−1, ĩ = 0, · · · , 2j̃ − 2m + 1

and

〈ψR
j,i, ψI

j̃,ĩ
〉 = 0, i = 2j − 2m + 2, · · · , 2j −m, ĩ = 0, · · · , 2j̃ − 2m + 1,

where ψL
j,i and ψR

j,i are the left and right boundary wavelets, respectively. Then, the

coefficient matrix A = (〈ψj,i, ψj̃,ĩ〉) in both cases of MKBSW and modified MKBSW
would be sparse.
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Figure 1: The wavelets ψN
2,i, i = −1, 0, 1, 2.

3.2 Two dimensional B-spline wavelets

One can construct the two dimensional wavelet basis functions by tensor product of
one dimensional wavelet bases. For this purposes, let Bj and Ψj are the set of scaling
functions and wavelet bases, respectively so that

Bj := {Bi,m,j : i = −m + 1, · · · , 2j − 1}, (3.3a)

ΨN
j := {ψN

j,i : i = −m + 1, · · · , 2j −m}. (3.3b)

Also, we assume that {V1
j , B1

j } and {V2
j , B2

j } are two multi-resolution analysis (MRA)

on the coordinates x and y with corresponding wavelets ΨN1
j and ΨN2

j , respectively,
i.e.,

B1
j = {B−m+1,m,j(x), · · · , B2j−1,m,j(x)}, B2

j = {B−m+1,m,j(y), · · · , B2j−1,m,j(y)},

ΨN1
j = {ψN

j,−m+1(x), · · · , ψN
j,2j−m

(x)}, ΨN2
j = {ψN

j,−m+1(y), · · · , ψN
j,2j−m

(y)}.

Let us to define the space V2D
j as

V2D
j := V1

j ⊗V2
j . (3.4)
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Now, by (3.4) and distribution of tensor product over addition, we have

V2D
j+1 =V1

j+1⊗V2
j+1 = (V1

j ⊕WN1
j )⊗ (V2

j ⊕WN2
j )

=(V1
j ⊗V2

j )⊕ (V1
j ⊗WN2

j )⊕ (WN1
j ⊗V2

j )⊕ (WN1
j ⊗WN2

j ).

Therefore, four families of functions are generated in L2([0, 1] × [0, 1]) that contain a
family of scaling functions and three families of wavelet functions Ψ

N1
j , Ψ

N2
j and Ψ

N3
j .

The wavelet families are defined as follows:

Bj := B1
j ⊗ B2

j = {B−m+1,m,j(x), · · · , B2j−1,m,j(x)} ⊗ {B−m+1,m,j(y), · · · , B2j−1,m,j(y)},

Ψ
N1
j := B1

j ⊗ΨN2
j = {B−m+1,m,j(x), · · · , B2j−1,m,j(x)} ⊗ {ψN

j,−m+1(y), · · · , ψN
j,2j−m

(y)},

Ψ
N2
j := ΨN1

j ⊗ B2
j = {ψj,−m+1(x), · · · , ψj,2j−m(x)} ⊗ {B−m+1,m,j(y), · · · , B2j−1,m,j(y)},

Ψ
N3
j := ΨN1

j ⊗ΨN2
j = {ψN

j,−m+1(x), · · · , ψN
j,2j−m

(x)} ⊗ {ψN
j,−m+1(y), · · · , ψN

j,2j−m
(y)}.

It is readily seen that

V2D
j+1 = V2D

j ⊕WN2D
j ,

where the wavelet space WN2D
j is defined as

WN2D
j := 〈ΨN1

j , Ψ
N2
j , Ψ

N3
j 〉

and ⊕ denotes a direct sum but not an orthogonal direct sum.

Remark 3.1. We note that for solving a Dirichlet boundary value problem, the follow-
ing basis functions are removed in V2D

j+1:

B−m+1,m,j(x)⊗ B2
j , B2j−1,m,j(x)⊗ B2

j , (3.5a)

B1
j ⊗ B−m+1,m,j(y), B1

j ⊗ B2j−1,m,j(y), (3.5b)

B−m+1,m,j(x)⊗ΨN2
j , B2j−1,m,j(x)⊗ΨN2

j , (3.5c)

ΨN1
j ⊗ B−m+1,m,j(y), ΨN1

j ⊗ B2j−1,m,j(y). (3.5d)

Fig. 2 shows a family of scaling functions and three families of the modified wavelet
functions.

4 A method for solution of the system

Let Ω be unit square and consider the problem:

Lu = f , in Ω, (4.1a)

u = 0, on ∂Ω, (4.1b)
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Figure 2: Scaling functions and three families of modified wavelet functions.

where

Lu = −∑
i,j

∂

∂xi
ai,j

∂u

∂xj
+ au,

such that ai,j(x) is symmetric uniformly positive definite and a(x) ≥ 0 in Ω. By the
previous section, there is a sequence of nested finite-dimensional inner product spaces

V2D
j0
⊂ V2D

j0+1 ⊂ · · · ⊂ V2D
J ,

where j0 ≥ ⌈log2(2m − 1)⌉. In addition, let a(·, ·) and (·, ·)j be symmetric positive

definite bilinear forms on V2D
j for j = j0, · · · , J. The variational form of (4.1) in the

finest level J is finding the solution of the following problem: Given f ∈ V2D
J , find

u ∈ V2D
J such that

a(u, v) = f (v), ∀v ∈ V2D
J . (4.2)

By Lax-Milgram Theorem, the system

AU = F (4.3)
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produced by (4.2) has a unique solution (see [11]). By considering the Remark (3.1), it
is readily seen that at level j, the dimension of matrix A is given by

dim(A) = (2j + m− 3)× (2j + m− 3). (4.4)

Hence, when the level j, increases, the dimension of A increases by multiplication of
22j. Then we should find a suitable method to solve the system (4.3). To this end, we
need the following definition:

Definition 4.1. Let F = { f1, f2, · · · , fm} and G = {g1, g2, · · · , gn}, for m, n ∈ N. Then
we define a(F, G) as

a(F, G) = (a( fi, gj))i,j

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

The general form of the matrix A in the space

V2D
J+1 = V2D

j0
⊕

J
⊕

j=j0

WN2D
j

is as follows:

A =













BBj0 BΨj0 · · · BΨJ

(BΨj0)
T

ΨΨj0 ,j0 · · · ΨΨj0 ,J

...
... · · ·

...

(BΨJ)
T

ΨΨJ,j0 · · · ΨΨJ,J













, (4.5)

where

BBj0 := a(Bj0 , Bj0),

BΨk := [a(Bj0 , Ψ
N1
k ) a(Bj0 , Ψ

N2
k ) a(Bj0 , Ψ

N3
k )],

ΨΨk,h :=







a(ΨN1
k , Ψ

N1
h ) a(ΨN1

k , Ψ
N2
h ) a(ΨN1

k , Ψ
N3
h )

a(ΨN2
k , Ψ

N1
h ) a(ΨN2

k , Ψ
N2
h ) a(ΨN2

k , Ψ
N3
h )

a(ΨN3
k , Ψ

N1
h ) a(ΨN3

k , Ψ
N2
h ) a(ΨN3

k , Ψ
N3
h )







for k, h ∈ {j0, j0 + 1, · · · , J}.
A schematic representation of the matrix A for m = 2, j0 = 2 and J = 3 is seen in

Fig. 3 and the block matrix A can be considered as

A =

[

A1 A2

AT
2 A3

]

,

where

A1 =

[

BB2 BΨ2

(BΨ2)T
ΨΨ2,2

]

, A2 =

[

BΨ3

ΨΨ2,3

]

, A3 =
[

ΨΨ3,3

]

.
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Figure 3: A schematic representation of the matrix A.

Since the matrix A is symmetric positive definite, it can be factorized by A = LDLT

where

L =

[

I 0

AT
2 A−1

1 I

]

, D =

[

A1 0

0 A3 − AT
2 A−1

1 A2

]

.

Hence, the system (4.3) can be replaced by

LDLTU = F,

that is solved as

U = (LT)−1D−1L−1F =

[

I −A−1
1 A2

0 I

] [

A−1 0

0 H

] [

I 0

−AT
2 A−1

1 I

]

F,

where H = (A3 − AT
2 A−1

1 A2)−1. This factorization is also generalizable for higher
dimensional case. For

A =







A1 A2 A3

AT
2 A4 A5

AT
3 1AT

5 A6






,

the factorization LDLT is defined by

L =







I 0 0

AT
2 A−1

1 I 0

AT
3 A−1

1 (AT
5 − AT

3 A−1
1 A2)(A4 − AT

2 A−1
1 A2)−1 I






,
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D =







A1 0 0

0 A4− AT
2 A−1

1 A2 0

0 0 K






,

where A1 is a square matrix and

K = A6− AT
3 A−1

1 A3− (AT
5 − AT

3 A−1
1 A2)(A4− AT

2 A−1
1 A2)

−1(A5− AT
2 A−1

1 A3).

5 Saint-Venant equation

Unsteady flow is of great interest to hydraulic engineers. Such flows can be described
by the Saint-Venant equations which consist of the conservation of mass and momen-
tum equations. The Saint-Venant equations also are nonlinear hyperbolic partial dif-
ferential equations. However, a general closed-form solution of these equations is
not available, except for certain special simplified conditions and they must be solved
using an appropriate numerical technique [6]. In typical hydraulic textbooks (e.g.,
see [2] and [8]) these equations are derived from the incompressible Navier-Stokes
equations. Over the past few years, a wide range of numerical schemes from the fi-
nite difference [3], finite element (see [13] and [15]) and finite volume [4] methods that
have been applied to the open channel flow equations.

In this section, we present a solution to solve the Saint-Venant equations by the
modified multiple knot B-spline wavelets that given in Section 3. To do this, we con-
sider the initial-boundary value Saint-Venant problem for unsteady flow in an open
channel having no lateral inflow or outflow for one dimensional as:



















































∂Q

∂t
+

∂

∂x

(Q2

A

)

+ gA
∂h

∂x
+

gn2|Q|Q

R4/3A
= 0, momentum equation,

∂h

∂t
+

1

B

∂Q

∂x
= 0, continuity equation,

Q(x, 0) = Q0, 0 ≤ x < L,

h(x, 0) = h0, 0 ≤ x ≤ L,

Q(L, t) = 0, t ≥ 0,

h(0, t) = h0, t > 0,

(5.1)

in which x = distance along the channel length, t = time, A = flow area, B = top
water surface width, g = acceleration due to gravity, Q = discharge, h = water surface
elevation, R = hydraulic radius, n = Manning coefficient, and L = length of channel,
also h0, h0 and Q0 are positive constant scalers. In general A and R are the functions
of h (i.e., A = A(h), R = R(h)).

Now, we are ready to explain the discretization process for the Saint-Venant equa-
tion 5.1.
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5.1 Discretization of Saint-Venant equations

In order to present the variational form of Saint-Venant equations, we focus our atten-
tion on the discretization with respect to the time variable. Thus, we choose a positive
integer N, let ∆t denote the corresponding time-step: ∆t = T/N and tn the subdivi-
sions of [0, T]:

tn = n∆t, 0 ≤ n ≤ N.

For linearity, we consider the terms of Saint-Venant equations as follows:















∂Q(x, tn)

∂t
+

∂

∂x

(Q2(x, tn+1)

A(x, tn)

)

+ gA(x, tn)
∂h(x, tn+1)

∂x
+

gn2|Q(x, tn)|Q(x, tn+1)

R4/3(x, tn)A(x, tn)
= 0,

∂h(x, tn)

∂t
+

1

B

∂Q(x, tn+1)

∂x
= 0.

(5.2)

Now, by Taylor expansion we get











(a)
∂Q(x, tn)

∂t
∼=

Q(x, tn+1)−Q(x, tn)

∆t
,

(b)
∂h(x, tn)

∂t
∼=

h(x, tn+1)− h(x, tn)

∆t
.

(5.3)

Moreover

Q2(x, tn+1) ∼=Q2(x, tn) + ∆t
∂Q2(x, tn)

∂t

∼=Q2(x, tn) + 2∆tQ(x, tn)
∂Q(x, tn)

∂t
. (5.4)

Then, by substituting Eq. (5.3a) in Eq. (5.4) we have

Q2(x, tn+1) ∼= −Q2(x, tn) + 2Q(x, tn)Q(x, tn+1). (5.5)

Substituting Eqs. (5.3) and (5.5) into Eq. (5.2) and simplifying, we can write the discrete
form of (5.1) as follows:











































































1

∆t
Q(x, tn+1) +

∂

∂x

(2Q(x, tn)Q(x, tn+1)

A(x, tn)

)

+ gA(x, tn)
∂h(x, tn+1)

∂x

+
gn2|Q(x, tn)|Q(x, tn+1)

R4/3(x, tn)A(x, tn)
=

1

∆t
Q(x, tn) +

∂

∂x

(Q2(x, tn)

A(x, tn)

)

,

1

∆t
h(x, tn+1) +

1

B

∂Q(x, tn+1)

∂x
=

1

∆t
h(x, tn),

Q(x, 0) = Q0, 0 ≤ x < L,

h(x, 0) = h0, 0 ≤ x ≤ L,

Q(L, tn) = 0, n = 0, · · · , N,

h(0, tn) = h0, n = 1, · · · , N.

(5.6)
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5.2 Variational weak form

In order to consist the variational form of problem (5.6), we first note that the value of
h is nonzero in the first of channel (i.e., the constant h0), then we can consider

H(x, tn+1) := h(x, tn+1)− h0.

Now, the variational form of problem (5.6) is that find Q(x, tn+1) ∈ V = {Q(x, tk) ∈
H1(Ω) : Q(L, tk) = 0, k = 0, · · · , N}, and H(x, tn+1) ∈ S = {H(x, tk) ∈ H1(Ω) :
H(0, tk) = 0, k = 1, · · · , N} such that

d(H, v) + m(Q, v) + b(Q, v) = (α, v)0, ∀v ∈ S, (5.7a)

s(H, e) + w(Q, e) = (β, e)0, ∀e ∈ V, (5.7b)

which Ω = [0, L], (·, ·)0 is an inner product in the L2(Ω) space, and the bilinear forms
on V × S are given respectively by

m(Q, v) =
∫

Ω

( 1

∆t
+

gn2|Q(x, tn)|

R4/3(x, tn)A(x, tn)

)

Q(x, tn+1)vdx, (5.8a)

b(Q, v) = −2
∫

Ω

Q(x, tn)

A(x, tn)
Q(x, tn+1)v

′dx +
2Q(x, tn)Q(x, tn+1)

A(x, tn)
v|∂Ω, (5.8b)

d(H, v) = −g
∫

Ω
H(x, tn+1)(A(x, tn)v)

′dx + gA(x, tn)H(x, tn+1)v|∂Ω, (5.8c)

s(H, e) =
1

∆t

∫

Ω
H(x, tn+1)edx, (5.8d)

w(Q, e) =
−1

B

∫

Ω
Q(x, tn+1)e

′dx +
1

B
Q(x, tn+1)e|∂Ω, (5.8e)

(α, v) =
∫

Ω
αvdx, (5.8f)

where ∂Ω is the boundary of Ω and v|∂Ω the restriction of v on ∂Ω.

Remark 5.1. Solving the Saint-Venant equations by numerical schemes like finite dif-
ference and finite element methods lead to some non-favorite oscillations for water
surface elevation. The reason for these oscillations lies in the method of approxima-
tion for the non-linear terms. One of the ways to smooth these oscillations is adding
artificial viscosity to the scheme [6]. Also, Average Rule is another method to elimi-
nate oscillations. One can apply the average of nonlinear terms in space to eliminate
oscillations [14] or the average of H(x, tn) and Q(x, tn) in space for time t = tn+1 for
finite element method [17, 19]. Since using the above heuristic techniques may ruin
the stability, we did not use them and apply multiple knot B-spline wavelet directly.
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6 Numerical results

In this section, we give some examples. All examples are coded by MATLAB software.
The first two examples are considered for Poisson’s problem

{

−∆u = f , in Ω = [0, 1]× [0, 1],
u = 0, on ∂Ω,

(6.1)

which f is defined such that the exact solution is

u = x(1− x)y(1− y).

We solve Problem (6.1) by Galerkin and Petrov-Galerkin’s methods.

Example 6.1. In the first example, we show the solution (6.1) by Galerkin’s method at
level J = 3 with m = 2 and j0 = 2. The variational form of (6.1) is that: find

uh ∈ V2D
j0
⊕

J
⊕

j=j0

WN2D
j

such that

a(uh, vh) = f (vh), ∀vh ∈ V2D
j0
⊕

J
⊕

j=j0

WN2D
j . (6.2)

Figs. 4 and 5 show the exact and approximated solutions at level 3, respectively. As
is seen, the approximated solution is in good agreement with the exact solution. We
define the relative error by

δ(uh) =
‖u− uh‖ℓ2

‖u‖ℓ2

,

where u = (u(xp, yq))p,q and uh = (uh(xp, yq))p,q for xp = p∆x, p = 0, 1, · · · , 100 and
xq = q∆y, q = 0, 1, · · · , 100 with ∆x = ∆y = 1/100. We show the relative error in
Fig. 6. As we observe, the error decreases when the level increases. In addition, we
present a comparison between the relative error of MKBSW and that of finite element
method. To solve the Poisson’s problem 6.1 by finite element method, we develop the
sequence grid in a standard way. To define the coarse grid, we start by breaking the
unit square into four smaller squares of side length 1/2 and then dividing each smaller
square into two triangles by connecting the lower left hand corner. Subsequently, finer
grids are developed as in the introduction, i.e., by dividing each triangle into the four
triangles formed by the edges of the original triangle and the lines connecting the
centers of theses edges. The space Vj for finite element method is defined to be the set

of continuous functions on Ω which are piecewise linear on the 2jth triangulation and
vanish on ∂Ω.

The relative error of both MKBSW and FEM is given in Table 1. As we expect, when
the level increases, the relative error of MKBSW decreases significantly and moreover,
the relative error of MKBSW is less than that of the finite element method (FEM).
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Figure 4: The exact solution.
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Figure 5: The approximated solution at J = 3.
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Figure 6: The relative error in J = 2, 3, 4, 5.

Table 1: The relative error of MKBSW and FEM for Poisson’s problem.

Method j := 2 j := 3 j := 4 j := 5
MKBSW 0.0158 0.0041 0.0010 0.0006

FEM 0.0892 0.0488 0.0127 0.0073

Example 6.2. In the second example, we show the solution (6.1) by Petrov-Galerkin’s
method at level J = 3 with m = 2 and j0 = 2. The variational form of (6.1) is that: find

uh ∈ V2D
j0
⊕

J
⊕

j=j0

WN2D
j

such that

a(uh, vh) = f (vh), ∀vh ∈ V2D
j0
⊕

J
⊕

j=j0

W2D
j . (6.3)

Fig. 7 show the approximated solution at level 3. We observe that like Example 6.1,
this approximated solution is in a good agreement with exact solution, however the
Galerkin’s method approximates better than the Petrov-Galerkin’s method for Prob-
lem 6.1.
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Figure 7: The approximated solution at J = 3.

Now, we solve the Saint-Venant equations for a rectangular channel.

Example 6.3. The task of estimating the movement of a surge (or shock) or a dam-
break wave, resulting from the sudden up-stream opening (or the sudden downstream
closure) of a sluice gate for emergencies or dam failures, has occupied the attention of
researchers as well as practicing engineers for several decades. The determination
of the surge height at different locations along the channel provides important infor-
mation for the design of the bank height. The dreadful disaster due to the dam-break
flood wave reminds the decision-makers to pay more attention to the dam-safety prob-
lem. We consider an open channel with rectangular cross section that its bottom width
is 6.1m. The bottom slope is 0.00008, Manning coefficient n = 0.013 and the length of
channel is 20m. The initial conditions in the channel are 5.79m-depth and a steady dis-
charge of 126m3/s. The water surface level in reservoir is constant at the up-stream
end and also the sluice gate at the downstream end of the channel is suddenly closed
at time t = 0. We also solved this problem by finite difference and finite element meth-
ods. Fig. 8 shows the flow depth in the channel at time t = 0.5s by finite element, finite
difference and multiple knot B-spline wavelet methods. As we see, theses methods are

0 5 10 15 20
5.5

6

6.5

7

7.5

8

8.5

9

x(m)

H
(m

)

 

 

Finite Difference
Finite Element
Multiple Knot B−spline Wavelet

Figure 8: Flow depth in the rectangular channel at time t = 0.5s obtained by finite element, finite difference
and multiple knot B-spline wavelet methods.
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Figure 9: Flow depth at several ∆t values for m = 3, j0 = 2 and J = 3 at time t = 0.5s.

in good agreements.
Fig. 9 also shows the flow depth in several ∆t for m = 3, j0 = 2 and J = 3 at time

t = 0.5s.

Example 6.4. We consider an open rectangular channel having a bottom width of
6.1m is carrying a flow of 126m3/s. The bottom slope is 0.04, Manning coefficient
n = 0.00008 and the channel length is 20m. We consider flow depth h0 = 6.5949m.
Suppose that a sluice gate at the downstream end is suddenly closed at time t = 0. We
solved this problem by multiple knot B-spline wavelet and finite element methods.
Fig. 10 shows the flow depth in the channel at time t = 0.3s.
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Figure 10: Flow depth in the rectangular channel at time t = 0.3s by multiple knot B-spline wavelet method
with m = 3, J = 3 and finite element method (without the averaging rule).

7 Conclusions

We have studied the construction of semi-orthogonal multiple knot B-spline wavelets.Then,
we have modified these wavelets for solving the elliptic partial differential equations
with (partially) Dirichlet boundary conditions. Moreover, a discussion on the solution
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of discretized system by Galerkin and Petrov-Galerkin methods has been presented.
Also, the hyperbolic equation of Saint-Venant has been solved by multiple knot B-
spline wavelets and the efficiency of this method has been compared with finite ele-
ment and finite difference methods.
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