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Abstract. The article is devoted to a review of the following new elements of the mod-
ern theory of solving inverse problems: (a) general theory of Tikhonov’s regularization
with practical examples is considered; (b) an overview of a-priori and a-posteriori error
estimates for solutions of ill-posed problems is presented as well as a general scheme
of a-posteriori error estimation; (c) a-posteriori error estimates for linear inverse prob-
lems and its finite-dimensional approximation are considered in detail together with
practical a-posteriori error estimate algorithms; (d) optimality in order for the error
estimator and extra-optimal regularizing algorithms are also discussed. In addition,
the article contains applications of these theoretical results to solving two practical
geophysical problems. First, for inverse problems of computer microtomography in
microstructure analysis of shales, numerical experiments demonstrate that the use of
functions with bounded VH-variation for a piecewise uniform regularization has a
theoretical and practical advantage over methods using BV-variation. For these prob-
lems, a new algorithm of a-posteriori error estimation makes it possible to calculate
the error of the solution in the form of a number. Second, in geophysical prospecting,
Tikhonov’s regularization is very effective in magnetic parameters inversion method
with full tensor gradient data. In particular, the regularization algorithms allow to
compare different models in this method and choose the best one, MGT-model.
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1 Introduction: Inverse problems in geoscience

Geophysics is one of the sciences in which mathematical methods have been used for
more than 100 years. It was in the study of geophysical problems that many mathemati-
cal models were developed, which were successfully applied not only in Earth sciences,
but also in other applications [48, 56, 79, 82, 83, 87]. The development of many geophys-
ical research methods led to the creation of the theory of inverse problems and then to
the methods and algorithms for solving these problems, which are mostly ill-posed. It is
for solving inverse problems in Earth sciences that the method of regularization of A. N.
Tikhonov was created in the 60s of the XX century [67, 68]. The theory of Tikhonov reg-
ularization marked the beginning of the fruitful development of stable methods for solv-
ing inverse ill-posed problems. These methods are successfully developed and adapted
to the solution of inverse problems in geophysics and other branches of science to the
present. In order to understand this, it is enough to indicate that about 100 monographs
on this subject have already been published. Among them, for example, are the follow-
ing [4, 6, 9, 13, 14, 17, 20, 22, 30, 44, 60, 62, 69–72, 79, 89] and many others.

Hundreds of new geophysical models have been established during past decades to
be applied for solving inverse problems. The model-based inversion in solid geophysics
and atmospheric science has been well understood, as well as the model-based inverse
problems for land surface and data-based inverse problems that received much attention
from scientists only in recent years (see, e.g. [38,51,58,59,85–87]). The solution of inverse
ill-posed problems is impossible without taking into account a-priori information about
the desired solution. For example, in solid geophysics, using gravimetric, magnetic, elec-
tromagnetic and seismic data to dig out anomalies underground is always severely ill-
posed due to very limited data acquisition during scanning the deep earth [81, 87, 90].
Therefore, integrating different geophysical exploration methods is a tendency. At the
same time, the appearance of hyperspectral and multiangular remote sensor enhanced
the exploration means, and provided us more spectral and spatial dimension informa-
tion than before [80, 81]. For this reason, the development and improvement of existing
methods for solving ill-posed inverse problems is required, so as to take into account
more and more detailed a-priori information about solutions. However, stable solving
inverse problems is only part of the processing of geophysical information. As a rule,
it is also required to estimate the error of solutions obtained. It is desirable to have this
estimate as a number, rather than an asymptotic formula. This requires solving rather
complicated math questions for ill-posed problems.

In this article we try to give an overview of two directions in the study of methods for
solving ill-posed problems (Section 2). First, we describe modern regularization meth-
ods, and in a fairly general form, suitable for solving complex inverse problems (Section
2.1). Secondly, in consideration of error estimation for solutions (Section 2.2), we want to
point out the complexity of such a task and show constructive ways to solve it (Sections
2.3, 2.4). We will also present a new error estimation algorithm that allows us to obtain
practical estimates (Section 2.5). The important notion of an extra-optimal regularizing
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algorithm, that is a method for solving ill-posed problems having an optimal a-posteriori
error estimate, is also considered (Sections 2.6). The effectiveness of the methods used
for regularization and error estimation is demonstrated by examples of solving practical
inverse problems of geoscience (Sections 3, 4).

2 General theory of Tikhonov’s regularization

2.1 Statement of the problem

In this paper, we study ill-posed problems and their applications in general statement,
i.e. as extremal (optimization) problems. The general theory for the solution of such
problems in topological spaces is presented, e.g., in [60,71]. Here we restrict ourselves to
a special statement of optimization problems (see [34]). Suppose that Z is Banach space
and D 6=∅ is a given set in Z. Let a functional J0[z] be defined for all z∈D and bounded
from below on D. We formulate the following extremal problem: it is required to obtain
elements z∗∈D for which

J0[z
∗] = inf{J0[z] : z∈D} de f

= J∗. (2.1)

The set D can be considered as restrictions on solutions to be found. We assume that
the problem (2.1) has a nonempty set of solutions, Z∗. This set can contain more than
one element. In order to select admissible solutions, we introduce an auxiliary functional
Ω[z], which is defined and bounded from below on the set D. The properties of the
functional Ω[z] are listed below. The selection of a solution z̄∈Z∗ to the problem (2.1) is
performed so that the equality

Ω[z̄]= inf{Ω[z∗] : z∗∈Z∗}= inf{Ω[z∗] : J0(z
∗)= J∗} (2.2)

is satisfied. Such solutions are called Ω-optimal. Denote the set of Ω-optimal solutions as
Z̄. We are interested in any Ω-optimal solution as well as in the value J∗. In practice, the
functional J0[z] can be specified with an error. Assume that instead of J0[z], we have at our
disposal a functional Jη [z], which is defined on D and meets the following approximation
condition

|J0[z]− Jη [z]|≤Ψ(η,Ω[z]), ∀z∈D, (2.3)

where the vector (or the number) η indicates the proximity of Jη [z] to J0[z] on the set D.
The given function Ψ(η,Ω) is called an approximation measure.

The central problem of the theory of ill-posed extremal problems is to determine
from the data (Jη [z],η,Ψ) a stable estimate J∗η of the number J∗: J∗η → J∗ as η →0, as well

as a stable approximation to the set Z̄, i.e. an element zη ∈D for which the convergence
zη → Z̄ holds, that is

lim
η→0

inf{
∥

∥zη− z̄
∥

∥ : z̄∈ Z̄}=0. (2.4)

Below we give typical examples that illustrate the problems (2.1), (2.2). One can find
more information about them, e.g., in [9, 14, 69–71] and other publications.
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Example 2.1. Solving linear operator equations in Hilbert spaces via variational method.

Let Z,U be Hilbert spaces, A : Z→U be linear bounded operators and Ω[z]= ‖Lz‖Z.
Here L : Z→Z is a linear closed operator with a domain D(L), which is dense in Z. In
addition, suppose that ‖Lz‖Z≥k‖z‖Z for all z∈D(L) (k=const>0). We are interesting in
solving on the set D=D(L) the operator equation

Az=u (2.5)

with a right-hand side u ∈ U. To do this, we apply the variational approach, i.e. the
solution of the problem (2.1) with J0[z] = ‖Az−u‖U. Assume that solutions z∗ ∈ D of
such extremal problem exist and form the set Z∗. Then the value J∗ = inf{‖Az−u‖U :
z ∈D} is the measure of incompatibility for Eq. (2.1) on the set D. Let us select from
the set Z∗ so called L-pseudosolution, i.e. the unique element z̄ ∈ Z∗ which solves the
problem (2.2) with Ω[z]=‖Lz‖Z (see [44]). When Eq. (2.5) is uniquely solvable, its solution
coincides with L-pseudosolution and J∗=0. Suppose that the data (A,u) of the problem
(2.5) are known approximately. We are given a linear bounded operator Ah : Z→U and
an element uδ instead of A and u such that ‖Ah−A‖≤h and ‖uδ−u‖U ≤δ. The numbers
η=(h,δ) are known. Therefore, an approximate functional Jη [z]=‖Ahz−uδ‖U is defined

and the condition (2.3) is fulfilled with Ψ(η,Ω[z])=δ+HΩ[z], H= h
k . Solving the problem

(2.5), we would like to obtain stable estimates for the incompatibility measure J∗ and
L-pseudosolution z̄. Note that in the simplest case, we can assume that L= I.

Example 2.2. Solving non-linear operator equations in Banach spaces via variational
method.

In this example, Z and U are Banach spaces; F(z) is an operator (generally, non-
linear), which is defined on a given set D,D⊂Z, and continuous from D to U. We shall
solve on the set D the operator equation

F(z)=u, u∈U, (2.6)

by minimizing on D the functional J0[z]= ‖F(z)−u‖U . This means solving the problem
(2.1). If the set of solutions Z∗ to Eq. (2.6) is nonempty, we can find Ω-optimal solu-
tions of the equation from the problem (2.2). To this end, the approximate data {Fh,uδ}
of the problem (2.6) are used. Here the operator Fh :D→U is supposed to be continu-
ous and uδ∈U. Moreover, the approximation conditions ‖Fh(z)−F(z)‖U≤ψ(h,Ω[z]),∀z∈
D,‖uδ−u‖U≤δ are fulfilled, where the function ψ(h,Ω) and the value η=(h,δ) are known.
So, the approximate functional for J0[z] can be defined in the form Jη [z] = ‖Fh(z)−uδ‖U

with the function Ψ(η,Ω[z])=δ+ψ(h,Ω[z]) in approximation condition (2.3). As a result
of solving our inverse problem, we want to obtain a stable evaluations for the incompat-
ibility measure J∗= inf{‖F(z)−u‖U : z∈D} in (2.6) and for the set of Ω-optimal solutions
Z̄. If Eq. (2.6) has a unique solution z̄, then Z̄={z̄} and J∗=0.

In the sequel, we assume the following assumptions to be satisfied (see [30, 71]).
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Assumptions

(A) The functionals J0[z], Jη [z] and Ω[z] are bounded from below and lower semicontinu-
ous on the set D. Without loss of generality, we assume that J0[z]≥0, Jη [z]≥0 and Ω[z]≥0
∀z∈D.

(B) Any nonempty set ΩC={z∈D : Ω[z]≤C}, C=const, is compact in Z.

(C) The function Ψ(η,t)=Ψ(η1 ,··· ,ηm,t) is continuous in the domain {η∈R
m
+}×{t≥0},

i.e. for all η1,··· ,ηm, t≥ 0. In addition, the function Ψ(η,t) is increasing with respect to t
for every fixed η∈R

m
+, ‖η‖>0, and Ψ(0,t)=0,∀t≥0. Moreover, Ψ(η,t)>0 for all (η,t), if

‖η‖>0 and t>0. One can find examples of such functions Ψ(η,t) for non-linear inverse
problems in [71].

(D) The problem (2.1) has a unique solution, that is z̄= z∗.

The central problem can be solved by application of regularizing algorithms (RAs)
[69,71]. In this case, the approximate solution is specified in the form zη=Pη(Jη ,η,Ψ)∈D,
where {Pη} is a certain parametric family of operators that act on the approximate data
and explicitly depend on the estimate η of the data errors. If the RA Pη ensures the
validity of so-called regularity conditions

lim
η→0

Ω[zη ]≤const, lim
η→0

Jη [zη ]≤ J∗ (2.7)

for the approximate solution zη , then under Assumptions (A)–(D), together with the con-
dition (2.3), the convergences zη → z̄, Jη [zη ]→ J∗ take place as η→0 [71, Sec. 2.5].

The operators Pη can be introduced in different ways (see, e.g. [6, 9, 71, 72]). Often,
variational RAs are preferable. The most popular RAs for ill-posed extremal problems
are described in the following examples.

Example 2.3. Tikhonov regularization with the choice of the regularization parameter
according to Generalized Discrepancy Principle (GDP) in application to the convex op-
timization. In this example, we introduce instead of the assumption (D) an additional
assumption.

(E) The functionals J0[z], Jη [z] are convex on the convex set D, while the functional Ω[z]
is strictly convex on D.

Below, we follow the theory worked out in [71]. Let us introduce an auxiliary convex
function f (x)≥0 assuming that f (x)∈Cl [0,∞) (l≥1), and moreover f (n)(x)≥0 for n=
1,··· ,l−1 and f (l)(x)≥ κ0 = const> 0. In practice, the most useful example is f (x)= xl .
Furthermore, we introduce the convex functional Iη[z]= f (Jη [z]) and determine for any
α>0 Tikhonov’s functional

Mα[z]=αΩ[z]+ Iη [z], z∈D. (2.8)

It follows from the assumptions (A) and (E) that the constrained optimization problem

Mα[zα
η ]= inf{Mα[z] : z∈D}, (2.9)
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has a unique solution zα
η∈D for any α>0. Hence, we can determine the auxiliary functions

β(α)= Jη [z
α
η ], π(α)=CΨ(η,Ω[zα

η ])+λη , ρ(α)=β(α)−π(α). (2.10)

Here C≥1 is a fixed constant and the value λη is a stable upper estimate for J∗, i.e. λη ≥
J∗,λη → J∗ as η→0. For instance, if the assumptions (A)–(C) are fulfilled, one can accept
λη = inf{Jη [z]+Ψ(η,Ω[z]) : z∈D}. The functions (2.10) are continuous for α>0 and also
β(α),ρ(α) are non-decreasing, while π(α) is non-increasing. The generalize discrepancy
principle consist in a choice of the regularization parameter αη as a root of the equation
ρ(α) = 0. If Ω[z̄]> inf{Ω[z] : z ∈D}, then under conditions (A)–(C) the equation has a
solution αη > 0 at least for sufficiently small η (see [71, p. 77]). In this case, the element

zη = z
αη
η can be taken as an approximate solution to the problem (2.1). One can obtain

from the equality ρ(αη)=0 that

Jη [zη ]=λη+CΨ(η,Ω[zη ]). (2.11)

It was shown in [71] that, if the functionals J0[z], Jη [z], Ω[z] and the functions f (x), Ψ(η,t)
fulfill the above assumptions, then the convergences zη → z̄,Ω[zη ]→Ω[z̄], Jη [zη ]→ J∗ take
place as η→0.

The GDP algorithm can be simplified essentially for solving linear operator equations
in Hilbert spaces (see Example 2.1). In this case, we can accept Ω[z]= ||Lz||2Z and Iη[z]=
||Ahz−uδ||2U . It is well known (see, e.g. [16, 44]), that

zα
η =(αL∗L+A∗

h Ah)
−1A∗

huδ (2.12)

and the root α(η) of the equation ρ(α) = 0, i.e.
∥

∥Ahzα
η−uδ

∥

∥−C(δ+H
∥

∥Lzα
η

∥

∥)−λη = 0,

unique. Calculating it, we can find unique approximate solution z
α(η)
η to Eq. (2.5), for

which the convergences z
α(η)
η → z̄,Ω[z

α(η)
η ]→Ω[z̄], f

(

Jη [z
α(η)
η ]

)

→ f (J∗) are fulfilled. Note
that the number λη can be omitted in (2.10), (2.11) when Eq. (2.5) is solvable.

Remark 2.1. The GDP algorithm can be also applied to the solution of non-linear operator
equations from Example 2.2, if the problem (2.9) possesses a unique solution for every
α>0. When the elements zα

η are not defined uniquely, one should apply special variants
of the GDP (see for instance [54, 71] and etc.).

Example 2.4. Generalized method of discrepancy (GDM) for solving ill-posed optimiza-
tion problems in Banach spaces.

This approach to approximate solution of the problem (2.1) consist in obtaining ele-
ments zη = zη(Jη ,Ψ,η) for which the relation holds:

Ω[zη ]= inf{Ω[z] : z∈D, Jη [z]≤ CΨ(η,Ω[z])+λη}. (2.13)

It was established in [71] that under assumptions (A)–(C) the optimization problem (2.13)
has solutions zη with the convergence properties zη→ z̄,Ω[zη ]→Ω[z̄], Jη [zη ]→ J∗ as η→0.
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2.2 A-priori and a-posteriori error estimates for solutions of ill-posed
problems

The theory of a-priori error estimates for methods of solving ill-posed problems has been
developed in many works. Here we note only a part of them, namely [7–9, 14, 41, 47, 62,
64, 71, 72], with comprehensive bibliography therein.

We now describe briefly major difficulties in this area considering the simplest case
of error estimating for solutions of a linear operator equation Az=u with exact operator
A and approximate right-hand side uδ, ||u−uδ|| ≤ δ (see [37]). We want to analyse the
accuracy of the approximate solution zδ = Pδ(uδ) found by a method Pδ as a function of
the error level δ>0 of the data uδ. Usually the accuracy could be estimated as ||zδ− z̄||≤
Kϕ(δ). Here K does not depend on δ> 0 and the function ϕ(δ) defines the convergence
rate of the approximation zδ to the exact solution z̄. We distinguish pointwise and uniform
estimates. In pointwise estimates z̄ is fixed; K and ϕ(δ) are dependent on z̄. Uniform
estimates are valid for a set M of solutions z̄ with K dependent on characteristics of the
set. Pointwise estimates have no significant sense because corresponding values ϕ(δ) are
connected with the unknown z̄. The same accuracy rate does not exist for approximate
solutions of the problem with different data uδ. More precisely, this result from [74] can
be formulated as follows.

Proposition 2.1. Let the operator A :Z→U have an unbounded inverse. Suppose that ϕ(δ) is an
arbitrary positive function such that ϕ(δ)→0 as δ→0, and Pδ is an arbitrary method of solution.
Then the following equality holds for elements z̄ except maybe for their set of Baire first category
in Z:

limδ→0

{

∆(Pδ,δ, z̄)

ϕ(δ)

}

=∞.

Here ∆(Pδ,δ, z̄)= sup{‖Pδ(uδ)− z̄‖ : ∀uδ∈U, ‖Az̄−uδ‖≤δ} is a characterization of a
pointwise accuracy for the method Pδ. The value ∆(Pδ,δ, z̄) is generally accepted in the
theory of error estimates (see, e.g. [6, 9, 14, 30, 44, 62, 64, 71, 72]). In uniform estimates the
rate of accuracy of an approximate solution ϕ(δ) does not depend on an exact solution.
That is why uniform accuracy estimates are widely spread in the theory of ill-posed prob-
lems. However, uniform accuracy estimates do not exist on any set M. This was shown
in [75] and can be expressed as:

Proposition 2.2. Let A be a linear continuous injective operator acting in Banach space Z and
the inverse operator A−1 is unbounded on its domain. Then a uniform error estimate can only
exist on a first category subset in Z.

A compact set is a typical example of the first category set in a normed space Z.
Proposition 2.2 can be supplemented as follows (see [14]).

Proposition 2.3. Let a bounded set M be such that there exists a uniform error estimate for the
solution of Eq. (1.1) with a compact linear operator A. Then M is a compact set in Z.
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Thus, to construct uniform accuracy estimates for approximate solutions of ill-posed
problems we must consider admissible sets of solutions with special properties as defined
in Propositions 2.2 and 2.3. So, a-priori error estimates can be obtained with very strict
additional constraints on the desired solution. Moreover, these estimates often contain
constants, the practical calculation of which is difficult. Therefore, it is impossible to
obtain an a-priori error estimate in the form of a number in most cases.

The same difficulties arise in general case of ill-posed extremal problems. In this case,
an appropriate scheme for a-priori error estimation is presented in [71]. We describe it
shortly. Let M, M⊂D, be a certain set of elements such that sup{Ω[z] : z∈M}≤b=const.
Introduce a class of problems of the type (2.1). Namely, for any functional J[z] with the
property (A) it is necessary to obtain an element z̄∈D for which the relation holds

J[z̄] = inf{J[z] : z∈D} . (2.14)

It is supposed here that the solution z̄= z̄(J) of the problem (2.14) is unique. Denote by
{J}M the set of all functionals J from the problems like (2.14) with the property z̄(J)∈M.
If J∈{J}M then the problem (2.14) is equivalent to the problem

J[z̄] = inf{J[z] : z∈M} .

Let us fix approximate data of the problem (2.1), i.e. the values (Jη [z],η,Ψ), and find a
stable valuation J∗η for J∗: J∗η → J∗ as η→0, using these data. The condition (2.3) leads on
the set M to the inequality

|J0[z]− Jη [z]|≤H, ∀z∈M; H
de f
= Ψ(η,b).

Here we can regard the number H as an accuracy measure for the approximation of the
functional J0[z] by the functional Jη [z] on M.

Now we define the set of functionals

FM(Jη ,η)=
{

J : J∈{J}M , |J[z̄(J)]− J∗η |≤H, |J[z]− Jη [z]|≤ C̄H, ∀z∈M
}

with a fixed constant C̄>1. The set FM(Jη ,η) represents a certain class of exact problems
(2.14) with functionals J[z], for which the functional Jη [z] can serve as an approximate
functional in the sense of the condition of the uniform approximation:

|J[z]− Jη [z]|≤ C̄H, ∀z∈M.

Obviously, J0[z]∈FM(Jη ,η).
Obtaining a-priori estimates is based on the use of the following characteristic of the

accuracy of the method (i.e., the regularizing algorithm) Pη:

∆(Pη; Jη ,η;M)=sup
J

{
∥

∥Pη(Jη ,η,Ψ)− z̄(J)
∥

∥ : J∈FM(Jη ,η)}.
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In general, the a-priori estimates on the set M have the form ∆(Pη ; Jη,η;M)≤K1ξ(η). Here,
K1 does not depend on η and the function ξ(η) is determined by the chosen method of
solution and the set M. Finding this function is often difficult. However, there is a way
to estimate the error without the function ξ(η).

A-priori error estimates are usually applied to prove some optimal properties of the
accuracy of the considered method, or to compare different methods in terms of their
order of accuracy. Correspondingly, the key points of the theory are the determination of
the optimal accuracy and the optimal method of solution for the problem as well as the
notion of the optimal in order method.

The quantity ∆(Pη ; Jη ,η;M) is said to be the accuracy of the method Pη on a set M, and
the quantity

∆opt=∆opt(η, Jη ;M)= inf{∆(P; Jη ,η;M) : P∈P}

is said to be the optimal accuracy on the class P of various methods P. The method
Pη is said to be of optimal order on the set M if its accuracy satisfies the condition
∆(Pη ; Jη ,η;M)/∆opt(η, Jη ;M)≤ k=const as η→0, where k does not depend on η and M.

So, if it is possible to find the constant k for the method Pη, then the a-priori error
estimate ∆(Pη; Jη ,η;M)≤ k∆opt(η, Jη ;M) is valid. This estimate shows how close is the
method Pη to the optimal one.

Such a-priori estimates can be obtained in the case when Z is a reflexive Banach space,
and the set M has the form M=Mr ={z :z=Bv,v∈V,‖v‖≤r}. Here, V is some auxiliary
reflexive Banach space, B : V→Z is the given linear continuous operator, and r is a fixed
number. Thus, it is assumed a-priori that the exact solution can be represented as z̄ =
Bv̄, where ‖v̄‖ ≤ r. It has been shown in [30, 34, 71] that many of known regularizing
algorithms for extremal problems are optimal in order on classes Mr that are defined by
the operator B of the compact embedding of the space V in the space Z.

The well-known examples of optimal in order RAs are the generalized discrepancy
principle (GDP) and the generalized method of discrepancy (GDM) as well as a number
of other methods [71]. For these RAs, it is established that ∆(Pη ; Jη ,η;Mr)≤2∆opt(η, Jη ;Mr)
(see [71, Sec. 2.13]). Therefore, the application of these methods on its own ensures the
optimal order of accuracy of the obtained approximate solutions and the a-priori error
estimate

∥

∥zη− z̄
∥

∥=
∥

∥Pη(Jη ,η,Ψ)− z̄(J0)
∥

∥≤2∆opt.

Note once more that the order of accuracy rendered by the function ξ(η)=∆opt(η, Jη ;Mr)
can be found in an explicit form (analytically) only for a relatively narrow range of ill-
posed extremal problems and the sets Mr. The most success is reached here for the solu-
tion of operator equations from Examples 2.1 and 2.2 (see [6, 9, 14, 72] and so on).

The difficulty of a-priori error estimation for the practical accuracy evaluation of cal-
culated approximate solutions led to the development of the theory of a-posteriori error
estimates. The theory has been based in [10] and improved in [65, 66, 88] for solving op-
erator equations with monotone, convex and other solutions with analogous descriptive
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properties. Many other works about solution, convergence and error estimation for lin-
ear and nonlinear ill-posed problems are also developed, e.g., [1,2,12,42,45,49,50,78] and
references therein. In [31–35], a new scheme of a-posteriori estimates has been proposed
for more general sets of solutions. In this paper, we consider the scheme for the case of
ill-posed extremal problems (2.1) [36]. An alternative approach is presented in [5].

2.3 The scheme of a-posteriori error estimation used in the work

Suppose that the optimization problem (2.2) is solved by a regularizing algorithm, which
generates a family of approximate solutions {zη}⊂D such that zη → z̄ in Z, and Ω[zη ]→
Ω[z̄], Jη [zη ]→ J∗ as η→0 (see, e.g. Examples 2.3, 2.4).

After application of an RA, the quantities Jη [zη ],Ω[zη ] are known. We fix the estima-
tion constant C > 1 and calculate the values ∆η = CJη[zη ], Rη = CΩ[zη ]. After that, we
introduce the set Zη = {z ∈D : Ω[z]≤ Rη, Jη [z]≤∆η}, which includes automatically the
element zη . Then the following a-posteriori error estimate for the approximate solution
zη ∈D holds true:

∥

∥zη− z̄
∥

∥≤sup{
∥

∥zη−z
∥

∥ : z∈Zη}
de f
= ε(η), (2.15)

if the exact solution z̄ meets the constrains of the extremal problem (2.15). One can find
the numerical error estimate for the approximate solution by computing the function
ε(η)=sup{

∥

∥zη−z
∥

∥ : z∈D, Ω[z]≤Rη , Jη [z]≤∆η}.

Now we clarify when the inclusion z̄∈Zη is satisfied.

Lemma 2.1. Suppose that inequalities Ω[z̄]>0 and J∗+Ψ(η,Ω[z̄])<∆η holds at least for suffi-
ciently small η, ||η||>0. Then z̄∈Zη.

Sometimes in the sequel, we will replace the words ”at least for sufficiently small η”
by the inequality 0< ||η||≤η0 =const.

The condition of Lemma 2.1 is fulfilled for many regularizing algorithms. Hence, as
follows from Lemma 2.1, the a posteriori error estimate (2.15) holds for these RAs when
||η||≤η0 =const. In particular, the following theorem is true.

Theorem 2.1. The a-posteriori error estimate (2.15) is valid for approximate solutions obtained
by the generalized discrepancy principle when 0< ||η||≤η0 .

Now we study the estimator ε(η) and the extremal problem (2.15).

Theorem 2.2. Under the assumptions (A)–(D), the least upper bound

ε(η)=sup{
∥

∥zη−z
∥

∥ : z∈D, Ω[z]≤Rη , Jη [z]≤∆η} (2.16)

is attained on an element z̃η ∈ D for every fixed η,‖η‖ > 0. Moreover, the limit relation
limη→0ε(η)= limη→0

∥

∥z̃η−zη

∥

∥=0 holds.
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Theorem 2.2 demonstrates that the function ε(η) can be calculated for every fixed
η=(h,δ) by solving extremal problem (2.16), i.e. by finding an approximate global max-
imizer z̃η of the functional E[z]=

∥

∥z−zη

∥

∥ on the set Zη . There is no difficulty to under-
stand that this problem can have many local and global maximizers. Thus, a possible
approach to the solution consists in finding elements, that realize all local maxima, and
after that calculating the functional E[z] for these maximizers with subsequent selection
from thereby calculated values the maximal one.

2.4 A-posteriori error estimate for linear inverse problems and its
finite-dimensional approximation

In this section, we consider Eq. (2.5) with D = Z. Specify what was said in Section
2.3. After finding an approximate solution, zη , we fix a constant C > 1 and calcu-
late the values ∆η = C

∥

∥Ahzη−uδ

∥

∥, Rη = CΩ[zη ]. Further, we introduce the set Zη =
{

z∈Z : ‖Ahz−uδ‖≤C∆η , Ω[z]≤CRη

}

. Suppose that z̄∈Zη (see Lemma 2.1). Then the
inequality similar to (2.15) holds:

∥

∥zη−z
∥

∥≤sup
{
∥

∥zη−z
∥

∥ : z∈Z, ‖Ahz−uδ‖≤C∆η , Ω[z]≤CRη

}

=ε(η). (2.17)

Here the function ε(η) is a so called global a-posteriori error estimate for the approximate
solution zη of the operator equation (2.5). A finite dimensional approximation of this
estimate can be found as follows [33].

Let a sequence of finite-dimensional spaces Zn, Un of dimensions N(n) and M(n) be
defined and N(n),M(n)→∞ as n→∞. Suppose that Z1⊂Z2⊂···⊂Zn⊂···⊂Z,

⋃∞
n=1Zn=Z,

U1 ⊂ U2 ⊂ ··· ⊂ Un ⊂ ··· ⊂ U,
⋃∞

n=1Un = U. For each n, we assume that a contin-
uous operator An : Zn → Un and element un ∈ Un are given, which approximate the
fixed data (Ah,uδ) of the problem (2.5). Let the approximation conditions be fulfilled:
‖Anz−Ahz‖ ≤ ψ(hn,‖z‖), ∀z ∈ Z, ‖un−uδ‖ ≤ δn. Here ψ(hn,t) and δn are estimates of
the accuracy for such approximation and hn, δn → 0 as n→∞. The function ψ(h,t) has
the same properties as Ψ. In addition, we assume that a sequence of functionals Ωn[z]
is given defined on Zn and approximating the functional Ω[z]≥0 in the following sense:
0≤Ωn[z] −Ω[z] ≤κnθ(Ω[z]), ∀z∈Zn. Here κn→0 as n→∞ and a function θ(t) is contin-
uous for t≥0. We also assume that a family of projectors Pn : Z→Zn is defined with the
property limn→∞‖Pnz−z‖=0, ∀z∈Z.

Let us apply some RA to solve the problem (2.5). Then the RA gives for the data
(Ah,uδ,h,δ) an approximate solution zη ∈Z, the accuracy of which we want to evaluate
using the data of finite-dimensional approximation, (An,un,hn,δn). Suppose that there
is a finite-dimensional version of this RA and it allows us to construct for the values
(An,un,hn,δn) an element zηn∈Zn such that zηn→zη in Z as n→∞. We will use the follow-
ing extremal problem for a-posteriori error estimate of a finite-dimensional approximate
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solution zηn: find an element z̃ηn ∈Zn such that
∥

∥z̃ηn−zηn

∥

∥=sup{
∥

∥z−zηn

∥

∥ : z∈Zn,‖Anz−un‖≤C
∥

∥Anzηn−un

∥

∥,

Ωn[z] ≤CΩn[zηn]}
de f
= εn(η). (2.18)

The task (2.18) is a finite-dimensional analogue of the problem (2.17). It can be verified
that the problem (2.18) has a solution under the assumptions made. The connection of
the a-posteriori estimator ε(η) and its finite-dimensional analog εn(η) is indicated by the
following theorem [33].

Theorem 2.3. If the set Zη = {z ∈ Z : ‖Ahz−uδ‖ ≤ ∆η , Ω[z]≤ Rη} satisfies the condition
intZη 6=∅ for each η, 0<‖η‖≤η0, then limn→∞ εn(η)= ε(η).

The error estimate of the finite-dimensional analog, Pn z̄, of the exact solution z̄
presents in the following theorem.

Theorem 2.4. If z̄∈ intZη 6=∅ for each η, 0<‖η‖≤η0, then
∥

∥Pn z̄−zηn

∥

∥≤ εn(η).

Approximate finite-dimensional data of the form Zn,An,un,Ωn with the properties
listed above often arise in applications. In the next section, we describe a special algo-
rithm for calculating the estimator εn(η). For brevity, we will use the notation σn=(ηn,κn)
for complete set of given data errors and mn=zηn for finite-dimensional approximate so-
lution. Also, we use everywhere finite-dimensional Euclidean norm, ‖·‖= ‖·‖E, and the
scalar product (·,·) in finite dimensional spaces Zn and Un.

2.5 Practical a-posteriori error estimate for linear inverse problems

We will solve a variant of the problem (2.18) to get a-posteriori error estimate for the
finite-dimensional approximate solutions, mn. As above, we set the constant C> 1 and
calculate the quantities ∆n =C‖Anmn−un‖ and Rn =C‖mn‖. Next, we introduce the set
Zn ={m∈Zn : ‖Anm−un‖≤C∆n, ‖m‖≤CRn}. Suppose that m̄=Pn z̄∈Zn, where m̄ is a
finite-dimensional approximation of the exact solution z̄. Then, the following inequality
holds:

‖mn−m̄‖≤max{‖mn−m‖ : m∈Zn}
de f
= E(σn), (2.19)

in which E(σn) is the global a-posteriori error estimate of an approximate solution mn. It can
be found by approximate calculation of the maximum (2.19).

The problem (2.19) can be written in an equivalent form, if we use the equality m=
mn+tw. Here, w=(m−mn)/‖m−mn‖, ‖w‖=1, and t=‖m−mn‖≥0:

E2(σn)=max
t,w

{

t2 : ‖w‖=1, ‖tAnw−vn‖2≤C2‖vn‖2 , ‖tw+mn‖2≤C2‖mn‖2 , t≥0
}

,

where vn = un−Anmn. Inequalities in the constraints of this extremum problem can be
rewritten taking into account the equality ‖w‖=1:

‖Anw‖2 t2−2(Anw,vn)t−D2
n ≤0, t2+2(w,mn)t−r2

n ≤0, t≥0, (2.20)
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where D2
n=(C2−1)‖vn‖2 and r2

n=(C2−1)‖mn‖2. Solving the inequalities (2.20) for every

admissible w, we obtain t∈ [0,tn(w)]. Here, tn(w)=min
{

t
(A)
n (w), t

(I)
n (w)

}

and

t
(I)
n (w)=

√

(w,mn)
2+r2

n−(w,mn)>0,

t
(A)
n (w)=







√

(Anw,vn)
2+D2

n‖Anw‖2+(Anw,vn)

‖Anw‖2
, ‖Anw‖ 6=0







≥0.

If ‖Anw‖=0, then formally we set t
(A)
n (w)=+∞. Thus, the following equality holds:

E(σn)=max
t,w

{t : t∈ [0,tn(w)], ‖w‖=1}=max
w

{tn(w) : ‖w‖=1},

and the a-posteriori error estimate E(σn) can be calculated from the solution of the opti-
mization problem

E(σn)=max
w

{tn(w) : ‖w‖=1}

with a target functional tn(w)=min
{

t
(A)
n (w), t

(I)
n (w)

}

. This approach, however, is incon-
venient, since the functional tn(w) can be non-differentiable for some w. In this regard,
we will apply the following method.

We introduce the function ξν(a,b) = ab
ν
√

aν+bν , a,b > 0, ν ∈ N. It is easy to verify that

inequality ξν(a,b)≤min{a,b}≤ ν
√

2ξν(a,b) holds. Therefore,

ξν

(

t
(A)
n (w), t

(I)
n (w)

)

≤min
{

t
(A)
n (w), t

(I)
n (w)

}

≤ ν
√

2ξν

(

t
(A)
n (w), t

(I)
n (w)

)

.

Hence, if we solve the extremum problem: find the number

ρν(σn)=max
{

ξν

(

t
(A)
n (w), t

(I)
n (w)

)

: ‖w‖=1
}

, (2.21)

then, we get the inequality ρν(σn)≤ E(σn)≤ ν
√

2ρν(σn). Choosing a sufficiently large ν,
we can take a number ρν(σn) as an estimate of the value of E(σn) with relative accuracy
ǫ= ν

√
2−1. For example, if ν=30 then the accuracy is ǫ≈0.0234.

The functional K(w) := ξν

(

t
(A)
n (w), t

(I)
n (w)

)

is differentiable on the set {w : ‖w‖=1},
and therefore one can apply well-known optimization methods implemented in the soft-
ware packages MATLAB, SciLab, Python, etc. for solving the problem (2.21). We used the
method of conjugate gradients projection described in detail in [70] with the multistart
(as it is done in MATLAB).

Note that the a-posteriori error estimate, based on the application of the function
ρν(σn), is more preferable from a computational point of view than calculating E(σn).
The problem (2.21) contains only one constraint, while the original problem (2.19), for
calculating the function E(σn), includes two constraints defining the set Zn. Therefore,
problem (2.21) should be solved numerically faster than (2.19).
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2.6 Optimality in order for the estimator ε(η) and extra-optimal regularizing
algorithms

Let us return to the statement of the problem from Section 2.1 with the assumptions
(A)–(D). In particular, we emphasize that the problem (2.1) has a unique solution z̄∈D.
We introduce the number R=Ω[z̄] and the set MR = {z∈D : Ω[z]≤R}. Then the set of
constraints in the problem (2.16) can be presented as Zη =

{

z∈D : z∈MRη , Jη [z]≤∆η

}

.

Theorem 2.5. Let the inequalities

Rη ≤C0R, ∆η ≤λη+C0Ψ(η,R), (2.22)

are valid for 0<‖η‖≤η0, where C0>1 is a fixed constant. Then, the estimator ε(η) from (2.16)
has the optimal order of accuracy on the set MC0R, namely, ε(η)≤2∆opt(η, Jη ;MC0R).

It is possible to prove as in Lemma 2.1 that the first condition in (2.22) is fulfilled for
any RA, if Ω[z̄]>0.

Remark 2.2. Theorem 2.5 holds true for error estimates in GDP and GDM algorithms
(see [34]).

Definition 2.1. The regularizing algorithm zη = Pη(Jη ,η,Ψ) is said to be extra-optimal if its
a-posteriori error estimate, the function ε(η) of type (2.16), is of optimal order on the set MC0R.

We can see from Theorem 2.5 that the sufficient condition of extra-optimality for an
RA is the fulfillment of the inequalities (2.22). Theorem 2.5 along with the inequality
(2.15) implies that any extra-optimal RA is optimal in order on the set MC0R. Generally
speaking, the reverse is not true that is, not every optimal in order RA can be extra-
optimal. The relevant example is given in [31] for linear ill-posed problems of the form
(2.5). It follows from Remark 2.2 that Tikhonov regularization with the parameter α se-
lection according to the (generalized) discrepancy principle is extra-optimal method as
well as the GDM.

3 Piecewise uniform regularization for the inverse problem of

microtomography with a-posteriori error estimate

In geological studies, the problem of microstructure analysis of samples often arises.
Traditional methods based on surface observations, such as optical and scanning elec-
tron microscopy, are common tools for providing valuable information of microstruc-
tures [19, 21]. Recently for these purposes, the methods of computed tomography (CT)
are increasingly being used, especially X-ray tomography [19, 43, 77]. One variant of this
approach seems to be more preferable, namely, computed tomography with synchrotron
radiation (SR) source. Such approach was applied in [84] for the microanalysis of shale
specimens. It was noted in [84] that the SR X-ray beams have many advantages for CT:
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(1) monochromatized beams eliminate beam hardening which induces artifacts in CT im-
age, (2) it is energy-tunable and has a wide frequency spectrum and (3) it has high spatial
resolution.

Using SR parallel X-ray beams for tomography we can formulate the direct problem
by the use of Radon transform [46] of a function µ(x,y)∈Z

R[µ(x,y)](θ,r)=
∫

l(θ,r)
µ(x,y)ds.

Here Z is appropriate Banach space (space of solutions) and l(θ,r) : xcos(θ)+ysin(θ)= r
is a straight line in the plane R

2
xy that depends on two parameters θ and r. In fact, we

apply a more convenient form of Radon transform, that is

R[µ(x,y)](θ,r)=
∫∫

R2
xy

µ(x,y)δ(xcosθ+ysinθ−r)dxdy, (3.1)

where δ(·) is Dirac function. Then the inverse problem can be written as the integral
equation R[µ(x,y)](θ,r) = u(θ,r) with data u(θ,r) which are known as projections and
belong to a normed space U. Briefly, this equation can be written in the operator form
Aµ= u. Here A is an integral operator of the form (3.1) acting from Z into U. We shall
denote the exact solution of this equation as µ̄ ∈ Z. The uniqueness of the solution is
investigated, for example, in [46]. The choice of the space Z is determined by the available
a-priori information about the desired solution.

Usually, the exact data of such a problem are unknown, and we have at our disposal
their approximations, i.e. right-hand side uδ(θ,r) ∈U,‖u(θ,r)−uδ(θ,r)‖6 δ and an ap-
proximate kernel of Eq. (3.1), Kh(θ,r,x,y)=δh(xcosθ+ysinθ−r), which is determined by
a family of functions δh(·) that approximates the delta function (see, e.g. [73]). Thus, we
solve in fact the integral equation

∫∫

R2
xy

Kh(θ,r,x,y)µ(x,y)dxdy=uδ(θ,r), µ∈Z. (3.2)

In the operator form we will write it as Ahµ= uδ, where Ah : Z→U is an integral oper-
ator presented in (3.2). In what follows we assume that U = L2(D), where D is a range
of variables (θ,r). The operator Ah approximates the operator A on the element µ̄ ∈ Z
with an error εA = ‖Ahµ̄−Aµ̄‖U. This error must be taken into account in the method
of solving the inverse problem (3.2). In some cases, when there is additional a-priori
information about the solution, one can find an upper estimate h for εA and then solve
problem (3.2) on the class of functions µ for which the inequality ‖Ahµ−Aµ‖U ≤h holds
(see, e.g. [71]). Therefore, the residual of Eq. (3.2) on the element µ̄ approximates the exact
residual, ‖Aµ̄−u‖U =0, with an accuracy h+δ:

∣

∣‖Aµ̄−u‖U−‖Ahµ̄−uδ‖U

∣

∣≤‖Ahµ̄−Aµ̄‖U+‖u−uδ‖U ≤h+δ.
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This means that when a regularization method is applied to solve the inverse problem,
we must use η=h+δ instead of δ in a procedure of choosing the regularization parameter.
The quantity h can often be neglected if condition h≪δ is valid.

The integral equation (3.2) can be conveniently solved using the Tikhonov regulariza-
tion method [70]. In doing so, we obtain a solution in the form µα(η)∈Z, where

µα =argmin
{

αΩ(µ)+‖Ahµ−uδ‖2
U : µ∈Z

}

, (3.3)

Ω(µ) is a regularizing functional, and α= α(η)> 0 is a regularization parameter chosen
in a special way, for example, according to the discrepancy principle (DP) [44]. The reg-
ularizing functional must be chosen so as to provide the required type of convergence of
approximate solution to the exact one when data errors vanish, η→0.

Similar procedure for solving inverse problems was applied by many authors (see,
for example, [9, 71], etc.) for various spaces Z, functionals Ω(µ) and parameters α(η).
In particular, for the discrete problem (3.2), the space ℓ1 was taken as the solution space
in [84]. This provides the so-called sparse regularization. Another approach is proposed
in [3] where the space BV of functions with BV-variation (see, e.g. [18]) was applied as
the space of solutions. This allows considering discontinuous or close to discontinuous
solutions of inverse problems. Consideration of such functions is important, for exam-
ple, when analyzing the internal structure of geological samples that have a granular or
crystalline structure. The choice of a regularizing functional in the form Ω(µ) = ‖µ‖BV

then ensures L1-convergence of the approximate solutions to the exact one.
In this paper, we use the space VH of functions with bounded VH-variation as Z.

This space was introduced in [23, 24] by generalizing the concept of a function with a
bounded Hardy-Krause variation. Properties of functions from this space are described
in [23–27]. In particular, such functions can be discontinuous, and this allows us to use
such functions in solving inverse problems along with functions from BV . It turns out
that in the Tikhonov regularization with Z = VH a piecewise uniform convergence of
approximate solutions to the exact solution can be obtained. This makes it possible to
reconstruct the solution sufficiently well outside the vicinity of the lines of discontinuity
which themselves can be well contrasted (see [26, 27]).

The second feature of this paper is the method of a-posteriori error estimation for the
obtained approximate solutions. In most works (see, for example, [9] and the references
therein), theoretical a-priori error estimates are carried out. They, as a rule, are obtained
with very strict additional constraints on the desired solution. Moreover, these estimates
often contain constants, the practical calculation of which is difficult. Therefore, it is
impossible to obtain an a-priori error estimate in the form of a number in most cases. In
this regard, the theory of a-posteriori error estimates has recently been developed (see
[5, 33–35, 66, 88]). Using the methods of this theory, one can obtain numerical estimates
of the accuracy of approximate solutions. In this paper, we apply the approach to an a-
posteriori error estimate given in [33–35]. More importantly, we propose and test a new
algorithm for obtaining a-posteriori error estimate in the solution space L2 for the inverse
tomography problem (3.2).
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3.1 Solution of the inverse microtomography problem in the class of
VH-functions

We shall assume for simplicity that supp(µ̄)⊆Π=[0,1]×[0,1]. Suppose that the function
µ̄(x,y) is continuous everywhere in Π except on a set G,G ⊂ Π, of unknown disconti-
nuity points. We assume that the set G has a zero 2D-measure. Given the data of our
inverse problem we wish to construct a function µη(x,y), such that µη(x,y)→ µ̄(x,y) as
η→0 uniformly on any closed subset D, D⊂Π, containing no discontinuity points of the
function µ̄(x,y). The procedure of constructing such functions µη(x,y) is called piecewise
uniform regularization. The piecewise uniform regularization in N-dimensional case has
been studied theoretically in [23–27]. In these investigations the functions of bounded
variation were widely used. Note that in the N-dimensional case the concept of the vari-
ation of a function can be represented in several ways. The properties of corresponding
functions of bounded variation depend essentially on the particular construction of vari-
ation and, in general, can differ from some standard properties in the one-dimensional
case. Therefore, not all constructions of N-dimensional variation are theoretically suitable
for piecewise-uniform regularization. For instance, the application of the BV-variation
(cf. [18]) to the Tikhonov regularization only ensures convergence in Lp, 1≤ p< N

N−1 , of
the approximate solutions (see, e.g., [3]). Also, a counterexample is presented in [25]
demonstrating that, in general, the use of BV-variation does not guarantee pointwise
(and therefore, piecewise-uniform) convergence. For piecewise uniform regularization,
the most suitable is the construction of the VH-variation. Readers can learn more about
the theory of VH-variation in [23–26]. Here, for brevity, we give only the main facts
without proofs.

First, we formulate the definition of a total VH-variation given in [23, 24].
Let K,L be arbitrary numbers in N\{1}. We introduce a grid SKL of the size K×L in

Π: SKL={xk,l}K L
k=1,l=1 with xk,l =(xk,yl), 0= x1< x2< ···< xK =1, 0=y1<y2< ···<yL =1.

Definition 3.1. The value

VH(µ,Π)=sup
SKL

{

K−1

∑
k=1

|µ(xk+1,1)−µ(xk,1)|+
L−1

∑
l=1

|µ(x1,l+1)−µ(x1,l)|

+
K−1

∑
k=1

L−1

∑
l=1

|µ(xk+1,l+1)−µ(xk+1,l)−µ(xk,l+1)+µ(xk,l)| :

∀K,L∈N\{1}, ∀SKL ={xk,l}KL
k=1,l=1

}

is called the total VH-variation of the function µ(x,y) in the domain Π. If the value VH(µ,Π)
is finite, then we say that the function µ(x,y) has bounded VH-variation.

The set of all functions with bounded VH-variation equipped with the norm ‖µ‖VH=
|µ(0,0)|+VH(µ,Π) is a Banach space, which we denote by VH(Π). If µ ∈ VH(Π)
then µ(x,y) is bounded and continuous in Π everywhere except perhaps in points of
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discontinuity belonging to no more than a countable set of coordinate lines. Hence,
VH(Π)⊂ Lp(Π), p≥1.

We will further assume that µ̄∈VH(Π) and µ̄(x,y)|∂Π=0. From the results of [23–27]
(see, for example, Theorem 4 and Theorem 5 in [24]) it follows in particular that the
Tikhonov regularization with Ω(µ)= ‖µ‖VH and with a choice of the regularization pa-
rameter by the discrepancy principle guarantees the piecewise uniform convergence of
approximate solutions to the exact one when η → 0. This means that the convergence
µα(η)→ µ̄ will be uniform in any closed region where the function µ̄ is continuous.

Consider a discrete version of the inverse problem and an algorithm for solving it.
Let S be a uniform grid in Π with K = L = M+1. Let’s further SMM = {xk,yl}, k,l =
1,··· ,M, be a grid composed of centers (xk,yl) of the grid S . We will use the set of values,
m= {µ(xk,yl)}, as a discretization of a function µ(x,y), which, like the function µ̄(x,y),
satisfies the condition µ(x,y)|∂Π = 0. Moreover, we use the notations dδ = {uδ(θi,rj)} for
the measured projections. For these experimental data, the finite-dimensional Euclidean
norm ‖·‖E will be used. Next, we denote by A and Ah the finite-dimensional operators
obtained by the discretization of the integral operators A,Ah in (3.1) and (3.2) on the grids
SMM and {(θi,rj)}. We will also assume that ‖Am−Ahm‖E ≤ h and the error estimate
of the operator, h, is known. Then, the inverse problem (3.2) in discrete form can be
formulated as a system of linear algebraic equations (SLAE) Ahm= dδ. We note that the
matrix Ah is sparse, (in our computational tests the sparsity is about 0.9983 [84]).

As a regularizer, we choose the discrete version of the norm ‖µ‖VH:

Ω(m)=
K−1

∑
k=1

L−1

∑
l=1

|m(xk+1,l+1)−m(xk+1,l)−m(xk,l+1)+m(xk,l)|

taking into account that m|∂Π = 0. The Tikhonov regularization of the form (3.3) with
such a functional Ω requires the optimization of non-smooth functionals. To avoid this,
the replacement of Ω(m) by a smoothed functional

Ωε(m)=
K−1

∑
k=1

L−1

∑
l=1

fε (m(xk+1,l+1)−m(xk+1,l)−m(xk,l+1)+m(xk,l))

was proposed and justified in [24–26]. Here fε(t) is a smoothing function, properties

of which are listed, for example, in [25]. In what follows, we take fε(t) =
√

t2+( ε
KL )

2.

Then, 0≤Ωε(m)−Ω(m)≤ ε. The quantity ε can be taken arbitrarily small. Being applied
in the Tikhonov regularization (3.3), this functional ensures the piecewise-uniform reg-
ularization of the inverse problem with the help of the approximate solutions mα(η,ε)=

argmin
{

αΩε(m)+‖Ahm−dδ‖2
E

}

, as η,ε → 0 (see [24–27] and [71] for proofs). Here the
regularization parameter α(η,ε) is chosen according to the discrepancy principle [44]. To
find the approximations mα(η,ε), we use a variant of the well-known method of conju-
gate gradients projecting (see e.g., [70, p.88,92]). Previously, we applied this version of
the method to solving many practical problems and therefore we do not give a detailed
description of it.
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3.2 A-posteriori error estimate for the solution of the microtomography
inverse problem

We tested the proposed technique of solving the microtomography inverse problem
(3.2) on the class VH with the a-posteriori error estimate (2.21) for the standard model
problem with Shepp-Logan phantom [61]. In our case, the dimension of the recon-
structed image was dimm=K×L= 683×683, and the dimension of the projections was
dimdδ=dim{(θi,rj)}=180×683. The matrix An of the problem Anm=dδ was previously
used to solve the inverse problem of microtomography in the work [84].

The numerical matrix An differs from the exact matrix A, which is used in the stan-
dard module Radon.m of the MATLAB package. For the model problem solved in this
section, in which the condition |µ̄(x,y)|≤1 is satisfied, we can estimate the value of h. It
turned out that h≈4.2·10−6. Thus, we can assume that h+δ≈ δ for the values of δ used
below. In the calculations, we also assume that ε=10−8, C=1.1, n=30.

Fig. 1(a) shows the data of the inverse problem (projections) dδ, and the exact solu-
tion, m̄, is given in Fig. 1(b). In Fig. 2(a), the approximate solution mσ=mα(η,ε) (see Section
3.1) for unperturbed data is presented. The relative residual of the approximate solution

found is
‖Ahmσ−dδ‖E

‖dδ‖E
=6.6·10−6. To obtain the approximation, it took 1000 iterations. The

calculation time was about 593 seconds on the PC Intel (R) Core (TM) i7-2600 CPU 3.40

GHz, RAM 8Gb. The relative a-posteriori error estimate, e(σ) = E(σ)
‖mσ‖E

, approximately

found by solving the problem (2.21) turned out to be e(σ)≈0.13·10−5 against the directly

found relative error
‖mσ−m̄‖E

‖m̄‖E
=0.11·10−5. It took about 292 seconds to get the error esti-

mate.

For comparison, the results of the solution to the inverse problem for data perturbed

by normally distributed errors with δ=
‖dδ−d‖E

‖d‖E
=0.01 are presented on Fig. 2(b). Here, the

relative a-posteriori error estimate was about 0.0756 against the relative error 0.0487 (see
Table 1).

Now we compare the accuracy of the Tikhonov regularization for solving the inverse
problem on the functional class VH and the class BV , i.e. with regularizers Ω(µ)=‖µ‖VH

and Ω(µ)=‖µ‖BV . In both cases, the regularization parameter was chosen by the discrep-
ancy principle. Results of calculations for different relative levels of data disturbance,

δ0=
‖uδ−u‖L2

‖u‖L2

, are presented in Table 1.

Table 1: Global errors ∆C=‖m̄−mσ‖C(Π)/‖m̄‖C(Π) in Π and errors ∆C=‖m̄−mσ‖C(R)/‖m̄‖C(Π) in continuity

regions R=R1−4.

global, Π region 1, R1 region 2, R2 region 3, R3 region 4, R4

δ0 ∆VH
C ∆BV

C ∆VH
C ∆BV

C ∆VH
C ∆BV

C ∆VH
C ∆BV

C ∆VH
C ∆BV

C

0.01 0.0431 0.0335 1.79e-4 2.52e-4 2.06e-4 2.88e-4 1.71e-4 2.99e-4 1.52e-4 3.45e-4

0.001 0.0059 0.0036 1.72e-5 2.58e-5 2.03e-5 2.94e-5 1.63e-5 3.03e-5 1.53e-5 3.48e-5
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Figure 1: (a) Exact and approximate data. (b) Exact image.
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Approximate solution
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Figure 2: (a) Approximate solution for unperturbed data. (b) Approximate solution for perturbed data with
δ=0.01.

Columns 2-3 show global relative uniform errors, ∆C=‖m̄−mσ‖C(Π)/‖m̄‖C(Π), of both
methods. It can be seen that the BV-method gives a better global accuracy than the VH-
method. However, it is known [23–26] that the VH-method has a theoretical advantage.
It guarantees the piecewise uniform convergence of approximate solutions when δ0 →0,
while the BV-method ensures only convergence in some spaces Lp [3]. Columns 4-11
of Table 1 allow to compare relative uniform errors ∆C = ‖m̄−mσ‖C(R)/‖m̄‖C(Π) of the
methods in certain areas of continuity, R=R1−4. These areas are shown in Fig. 3 in orange
color. For all domains, the errors of the VH-method turn out to be substantially less than
the errors of the BV- method, and this ratio is preserved when decreasing the data error
level δ0.

Thus, as noted earlier in [23–26], the VH-method is more preferable in solving in-
verse problems with exact solutions that have discontinuity lines separating regions of
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Figure 3: Selected regions of continuity R1−4 for error estimates.

continuity. A typical example of such solutions for tomography problems is the Shepp-
Logan phantom. Solutions of this type appear in the study of shales structures by the
microtomography methods [84], as well as in image processing problems [26].

Finally, we consider numerical results concerning a-posteriori error estimates of the
approximate solutions mσ, computed from the VH-method. In doing so, we note that
estimates of the form (2.19) can be obtained for a part of the solution defined in a region

R⊂Π: ‖mn−m̄‖E(R)≤max
{

‖mn−m‖E(R) : m∈Zn

} de f
= ER(σn). Here, ‖·‖E(R) is the Eu-

clidean norm calculated for the grid functions mn,m̄ and m restricted to the domain R.
Arguing as above, we can prove that

ER(σn)=max
w

{

tn(w)||w||E(R) : ‖w‖=1
}

.

Next, we can find the number ρ
(R)
ν (σn)=max

{

ξν

(

t
(A)
n (w), t

(I)
n (w)

)

||w||E(R) : ‖w‖=1
}

and

obtain the inequality ρ
(R)
ν (σn)≤ ER(σn)≤ ν

√
2ρ

(R)
ν (σn) that is used to estimate the value

ER(σn).
So, we use the method from Section 2.5 to estimate the quantity ∆E=‖m̄−mσ‖E/‖m̄‖E

for R=Π and R=R1−4. Table 2 shows the true values of these errors and their relative

a-posteriori estimates, e(σ)= E(σ)
‖mσ‖E

and eR(σ)=
ER(σ)
‖mσ‖E

.

Table 2: Errors ∆E and relative a-posteriori error estimates e(σ) in R=Π and in continuity regions R=R1−4.

global, Π region 1, R1 region 2, R2 region 3, R3 region 4, R4

δ ∆E e(σ) ∆E eR(σ) ∆E eR(σ) ∆E eR(σ) ∆E eR(σ)

0.01 0.0487 0.0756 0.0016 0.0066 0.0020 0.0092 0.0103 0.0134 0.0125 0.0152

0.001 0.0041 0.0066 0.0002 0.0008 0.0003 0.0012 0.0009 0.0009 0.0011 0.0012
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These results show that the value of e(σ) fairly well estimates the true relative errors
of solutions both globally and in the areas of continuity.

4 Magnetic parameters inversion method with full tensor

gradient data

In geophysical prospecting, data measured at, above, or below the ground are obtained
during field survey (a forward problem), and extraction of the physical properties of the
Earth from the data is a mathematical problem (an inverse problem) which is essential
for processing and interpretation. Meanwhile, the use of magnetics for geophysical ex-
ploration is widely studied.

Traditional magnetic data are total magnetic intensity (TMI). With the development of
a high temperature superconducting quantum interference devices (SQUIDs) operating
in liquid nitrogen, a novel rotating magnetic gradiometer system has been designed. This
system allows to measure components of the gradient tensor. Gradient measurements
also provide valuable additional information, compared to conventional total-field mea-
surements, when the field is undersampled. Many discussions are given on the advan-
tages of magnetic gradient tensor surveys as compared to the conventional total magnetic
intensity (TMI) surveys [11, 15, 57–59, 85, 86].

Inversion of physical parameters, such as the magnetic susceptibility and the magne-
tization, are main scientific problems using magnetic field data [52, 53]. Here, a lot of re-
search works have been done so far. Wang and Hansen [76] reformulated the gravimetric-
magnetic model in wavenumber domain into coordinates invariance form, and extended
the original magnetic inversion method CompuDept into three-dimensional case, which
allowed a large amount of airborne magnetic data being involved in inversion; Li and
Oldenburg [38] recovered 3D susceptibility models by incorporating a priori information
into the model objective function using one or more appropriate weighting functions;
Pignatelli et al. [51] considered using dipole source to approximate the discrete gridded
model of the anomaly, encompassed the depth weighting function into the discrete po-
tential field function and employed the L–M method to solve the corresponding linear
equation to get the solution with depth resolution.

According to the potential theory, the measurement points of the magnetic fields can
be described by the integral equations of the first kind. This means that the observed
data is far less than the desired susceptibility, as a result, magnetic inverse problems
are always ill-posed [89]. The main problems are the nonuniqueness and instability of
the solution. Sometimes, missing geological information in the survey area may also
lead to difficulty in explanation of the inversion results. Therefore it is crucial to choose
proper norm to restrict the solution space of the model. This is meaningful in reducing
ill-posedness and enhancing numerical stability. The norm should be chosen according to
the a-priori information of the model. Due to the fact that the magnetic data lack the reso-
lution in depth, pure norm constraint on the model is not sufficient to reflect the medium
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layers. To overcome this problem, there are two ways. One is based on the Tarantolas
statistical theory [63], assuming that the data and the model are both uncertain and obey
the Gaussian distribution, and constructing the fitting function using the maximum a-
posteriori likelihood function; another is based on Tikhonov regularization theory [70].
It can be proved these two forms are equivalent under proper conditions. Retrieval of
magnetization parameters using magnetic tensor gradient measurements receives atten-
tion in recent years. The direct determination of subsurface properties (e.g., position,
orientation, magnetic susceptibility) from the observed potential field measurements is
referred to as inversion.

4.1 Mathematical modeling

The equation describing magnetic field B f ield dipole of dipole sources m is defined as [85,86]

B f ield dipole=
µ0

4π

(

3(m·r)r
r5

−m

r3

)

,

where

m=mxi+myj+mzk, r=(x−xs)i+(y−ys)j+(z−zs)k,

r =
√

(x−xs)2+(y−ys)2+(z−zs)2 is a distance between point (xs,ys,zs), which corre-
sponds to allocation of the triaxial sensor that measures magnetic field B f ield dipole, and
point (x,y,z) of dipole source m, µ0 is a permeability in vacuum.

Transforming B f ield dipole into following form

B f ield dipole=Bx dipolei+By dipolej+Bz dipolek

=
µ0

4π

(

(

3(m·r)(x−xs)

r5
−mx

r3

)

i+

(

3(m·r)(y−ys)

r5
−my

r3

)

j

+

(

3(m·r)(z−zs)

r5
−mz

r3

)

k

)

and redefining the variables as i=x,y,z and p=(px,py,pz)≡(xs,ys,zs), we have following
representation for components of vector B f ield dipole:

Bi dipole=
µ0

4π

(

3(m·r)(i−pi)

r5
−mi

r3

)

.

Taking derivative of Bi dipole with respect to spatial variable i= x,y,z and j= x,y,z 6= i,
we have the diagonal elements and non-diagonal elements of tensor matrix Btensor:

Bii=
µ0

4π

(

6mi(i−pi)

r5
+

3(m·r)
r5

− 15(m·r)(i−pi)(i−pi)

r7

)

,

Bij =
µ0

4π

(

3mi(j−pj)

r5
+

3mj(i−pi)

r5
− 15(m·r)(i−pi)(j−pj)

r7

)

.
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Note, that we define full tensor magnetic gradient Btensor, which unlike to magnetic
induction B f ield dipole (that has only 3 components) has 9 components and can be written
in the following matrix form:

Btensor≡ [Bij]≡

















∂Bx

∂x

∂Bx

∂y

∂Bx

∂z
∂By

∂x

∂By

∂y

∂By

∂z
∂Bz

∂x

∂Bz

∂y

∂Bz

∂z

















≡





Bxx Bxy Bxz

Byx Byy Byz

Bzx Bzy Bzz



,

where
∂Bx

∂y
=

∂By

∂x
,

∂Bx

∂z
=

∂Bz

∂x
,

∂By

∂z
=

∂Bz

∂y
,

∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
=0.

So, actually, we have only 5 different components of the tensor matrix.
Thus, for the whole object, for volume V of which we want to restore the magnetic

moment density M (M=Mxi+Myj+Mzk), we have the following 3D Fredholm integral
equations of the 1st kind:

B f ield dipole=
µ0

4π

∫∫∫

V

(

3(M ·r)r
r5

−M

r3

)

dv,

Bii=
µ0

4π

∫∫∫

V

(

6mi(i−pi)

r5
+

3(M ·r)
r5

− 15(M ·r)(i−pi)(i−pi)

r7

)

dv,

Bij=
µ0

4π

∫∫∫

V

(

3mi(j−pj)

r5
+

3mj(i−pi)

r5
− 15(M ·r)(i−pi)(j−pj)

r7

)

dv,

which can be rewritten as the following system of two 3D Fredholm integral equations
of the 1st kind:























B f ield dipole(xs,ys,zs)=
µ0

4π

∫∫∫

V

KTMI(x−xs,y−ys,z−zs)M(x,y,z)dv,

Btensor dipole(xs,ys,zs)=
µ0

4π

∫∫∫

V

KMGT(x−xs,y−ys,z−zs)M(x,y,z)dv,
(4.1)

where B f ield dipole = [Bx By Bz]T and Btensor dipole = [Bxx Bxy Bxz Byz Bzz]T. Kernels KTMI and
KMGT of these integral equations can be written as

KTMI(x−xs,y−ys,z−zs)

=
1

r5





3(x−xs)2−r2 3(x−xs)(y−ys) 3(x−xs)(z−zs)
3(y−ys)(x−xs) 3(y−ys)2−r2 3(y−ys)(z−zs)
3(z−zs)(x−xs) 3(z−zs)(y−ys) 3(z−zs)2−r2




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and

KMGT(x−xs,y−ys,z−zs)

=
3

r7













(x−xs)[3r2−5(x−xs)2] (y−ys)[r2−5(x−xs)2] (z−zs)[r2−5(x−xs)2]
(y−ys)[r2−5(x−xs)2] (x−xs)[r2−5(y−ys)2] −5(x−xs)(y−ys)(z−zs)
(z−zs)[r2−5(x−xs)2] −5(x−xs)(y−ys)(z−zs) (x−xs)[r2−5(z−zs)2]

−5(x−xs)(y−ys)(z−zs) (z−zs)[r2−5(y−ys)2] (y−ys)[r2−5(z−zs)2]
(x−xs)[r2−5(z−zs)2] (y−ys)[r2−5(z−zs)2] (z−zs)[3r2−5(z−zs)2]













.

If we take into account that V⊂P={(x,y,z) : Lx≤x≤Rx, Ly≤y≤Ry, Lz≤z≤Rz} and
the system of sensor planes is restricted by rectangular parallelepiped Q= {(xs,ys,zs)≡
(s,t,r) : Ls≤s≤Rs, Lt≤ t≤Rt, Lr≤r≤Rr}, we can rewrite the system (4.1) in the following
operator form

AM=
µ0

4π

Rx
∫

Lx

Ry
∫

Ly

Rz
∫

Lz

K(s,t,r,x,y,z)M(x,y,z)dxdydz=B(s,t,r), (4.2)

where B(s,t,r) and M(x,y,z) are vector–functions: B= [Bx By Bz Bxx Bxy Bxz Byz Bzz]T and
M=[Mx My Mz]T, kernel K(s,t,r,x,y,z) is a matrix-function: K=[KTMI KMGT]

T (K=KTMI

in the case of total magnetic intensity model without using full tensor magnetic gradient
data and K=KMGT in the opposed case).

4.2 Tikhonov regularization

We assume that M ∈ W2
2 (P), B ∈ L2(Q), and integral operator A with the kernel K is

continuous and injective. Norms of the right-hand side of Eq. (4.2) and the solution are
introduces as follows:

‖B‖L2
=
√

‖Bx‖2
L2
+‖By‖2

L2
+‖Bz‖2

L2
+‖Bxx‖2

L2
+‖Bxy‖2

L2
+‖Bxz‖2

L2
+‖Byz‖2

L2
+‖Bzz‖2

L2
,

‖M‖W2
2
=
√

‖Mx‖2

W2
2

+‖My‖2

W2
2

+‖Mz‖2

W2
2

.

Suppose that instead of exact data, B̄ and A, their approximations Bδ and Ah are
known, such that ‖Bδ−B̄‖L2

≤ δ, ‖A−Ah‖W2
2→L2

≤ h. In what follows, we denote the

error levels of the data as η = {δ,h}. As the inverse problem (4.2) is ill-posed it is nec-
essary to apply a regularizing algorithm for its solving. We use the algorithm based on
minimization of the Tikhonov functional [70, 89] of the form

Fα[M]=‖AhM−Bδ‖2
L2
+α‖M‖2

W2
2
. (4.3)

For any α> 0, an unique element Mα
η exists, which implements the minimum of Fα[M]

in W2
2 (P). One can find such elements using well-known optimization methods, for
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example, the conjugate gradient method. When selecting the regularization parameter
α=α(η), we use the generalized discrepancy principle [16] that is, solve the equation

ρ(α)=‖AhMα
η−Bδ‖2

L2
−
(

δ+h‖Mα
η‖W2

2

)2
=0 ⇒ α=α(η) (4.4)

by the methods presented in [70], [71, Sect. 2.14] and based on multiple minimization
of the functional (4.3) for different α. Then, using the parameter found, an approximate

solution M
α(η)
η is calculated. It is proved in [70, 71] that M

α(η)
η tends to the exact solution

as η→0 in W2
2 .

4.3 Numerical aspects of the algorithm

The details of the algorithm for minimizing the functional in (4.3) are described in [39,40],
including some recommendations of its effective parallelization.

After discretization, the necessary and sufficient condition for the minimum of the
functional (4.3) can be written as

(AT
h Ah+αRTR)M=AT

h Bδ. (4.5)

Here R and Ah are finite-dimensional approximations, matrices, of operators R: ‖M‖W2
2
=

‖RM‖L2
and Ah, respectively, and M is a finite dimensional solution. The dimensions of

these quantities are as follows: dimR=(NR×N), dimA=(NA×N), dimM=(N×1).

For numerical solving of system (4.5) we use the conjugate gradient method (CGM)
in the following form. Let M(s) be an iterative sequence of the CGM with an initial guess
M(1), p(s), q(s) be auxiliary vectors, and suppose that p(0)=0. Then formulas of the CGM
for searching of solution M(ν) of system (4.5) can be presented as follow:

r(s)=

{

AT
h

(

Ah M(s)−Bδ

)

+αRT
(

RM(s)
)

, if s=1,

r(s−1)−q(s−1)/
(

p(s−1),q(s−1)
)

, if s≥2,

p(s)= p(s−1)+
r(s)

(

r(s),r(s)
) ,

q(s)=AT
h

(

Ah p(s)
)

+αRT
(

R p(s)
)

,

M(s+1)=M(s)− p(s)
(

p(s),q(s)
) .

In numerical experiments, we assumed that M(1)=0 and used the following rule for stop-
ping iterations: ν=min

{

s: s∈N,
∥

∥AhM(s+1)−Bδ

∥

∥≤δ+h
∥

∥RM(s)
∥

∥

}

to get the approximate

solution M(ν).
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4.4 Numerical results

At first, we wanted to compare different models, namely TMI, TMI+ MGT and MGT
models. To do this, we performed the simulation of the experimental data with Gaussian
nose of the level δ∼4%, both for TMI and MGT, which are close enough to the practical
field experiments. For testing calculation, we used the solution domain,

P={(x,y,z) : −5000≤ x≤5000, −5000≤y≤5000, −105≤ z≤95},

with the uniform grid of the size (Nx,Ny,Nz)=(80,80,1), and the observation domain,

Q={(xs,ys,zs)≡ (s,t,r) : −400≤ s≤4000, −4000≤ t≤4000, r=2000},

with the simulated field data at the points of the grid having the size (Ns,Nt,Nr) =
(350,20,1). The normalized magnitude of the model magnetic moment density, M, is
represented on Fig. 4(a). The results of calculations with TMI, TMI+MGT and MGT mod-
els are represented of Fig. 4(b,c,d). The RMS error of the components of the reconstructed
vector M is 0.12263 for TMI-model, 0.12262 for TMI+MGT-model and 0.12527 for MGT-
model. This means that all listed models give “equal” results, but Fig. 4(c) shows that
MGT-model produce more detailed solution.

The main conclusion from testing calculations is that 1) MGT-model is able to produce
the better reconstruction for the magnitude of the small details of the solution, 2) the
MGT-model should be used alone without combining TMI- and MGT-data.

For calculations, we used 128 processors of the shared research facilities of HPC com-
puting resources “Lomonosov–1” at Lomonosov Moscow State University [55]. Time of
calculations is about 5 minutes.

5 Conclusions

The following theoretical points are central to our article:

(a) General theory of Tikhonov’s regularization with practical examples is considered.

(b) An overview of a-priori and a-posteriori error estimates for solutions of ill-posed
problems is presented as well as a general scheme of a-posteriori error estimation.

(c) A posteriori error estimates for linear inverse problems and its finite-dimensional
approximation are considered in detail together with practical a-posteriori error estimate
algorithms.

(d) Optimality in order for the error estimator and extra-optimal regularizing algo-
rithms are also discussed.

We suppose that the following applications of this theory are important for practical
inverse problems:

(A) The use of functions with bounded VH-variation for a piecewise uniform regu-
larization of the inverse problem of computer tomography has a theoretical and practical
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Figure 4: Results of testing calculations: a) model solution (the normalized value of the magnitude of the
magnetic moment density M), b) retrieved solution for the TMI-model, c) retrieved solution for the MGT-
model, d) retrieved solution for the TMI+MGT-model. The MGT-model produces the better reconstruction for
the magnitude of the small details of the model solution. The use of the combined TMI+MGT-data does not
give any advantages in reconstruction quality comparing with the using of TMI-data only.

advantage. It ensures piecewise-uniform convergence of approximate solutions. This ad-
vantage was confirmed by numerical experiments. A piecewise-uniform regularization
of this problem was not considered at all before.

(B) A new algorithm for a-posteriori error estimation (see the problem (6)) makes it
possible to estimate the error of the solution in the form of a number. It turns out that
the a-posteriori error estimate, based on the application of the function ρν(σ), is more
preferable from a computational point of view than the algorithm proposed in [33, 34].
The problem (6) contains only one constraint, while the original problem (4) for direct
calculation of the function E(σ) includes two constraints defining the set Zσ.
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(C) Tikhonov’s regularization is very effective in magnetic parameters inversion
method with full tensor gradient data. The regularization algorithms allow to compare
different models in this method and choose the best one, MGT-model.

(D) Application of Tikhonov’s regularization to magnetic inverse problem is straight-
forward since it belongs to volume detection. It is obvious other inverse problems in
geophysical exploration can be immediate applied, such as gravimetric inversion, elec-
tromagnetic inversion, and seismic inversion.
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[41] P. Mathé and S. V. Pereverzev. Geometry of linear ill-posed problems in variable Hilbert
scales. Inverse Problems, 19 (2003), 789-803.
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