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Abstract. Seismic events have limited time duration, vary with space/traveltime and
interact with the local subsurface medium during propagation. Partitioning is a valu-
able strategy for nonstationary seismic data analysis, processing and wave propaga-
tion. It has the potential for sparse data representation, flexible data operation and
highly accurate local wave propagation. Various local transforms are powerful tools
for seismic data segmentation and representation. In this paper, a detailed descrip-
tion of a multi-dimensional local harmonic transformed domain wave propagation
and imaging method is given. Using a tensor product of a Local Exponential Frame
(LEF) vector as the time-frequency atom (a drumbeat) and a Local Cosine Basis (LCB)
function as the space-wavenumber atom (a beamlet), we construct a time-frequency-
space-wavenumber local atom-dreamlet, which is a combination of drumbeat and
beamlet. The dreamlet atoms have limited spatial extension and temporal duration
and constitute a complete set of frames, termed as dreamlet frames, to decompose and
represent the wavefield. The dreamlet transform first partitions the wavefields using
time-space supporting functions and then the data in each time-space blocks is repre-
sented by local harmonic bases. The transformed wavefield is downward-continued
by the dreamlet propagator, which is the dreamlet atom evolution weightings deduced
from the phase-shift one-way propagator. The dreamlet imaging method is formulated
with a local background propagator for large-scale medium propagation and com-
bined with a local phase-screen correction for small-scale perturbations. The features
of dreamlet migration and imaging include sparse seismic data representation, accu-
rate wave propagation and the flexibility of localized time operations during migra-
tion. Numerical tests using Sigsbee 2A synthetic data set and real marine seismic data
demonstrate the validity and accuracy of this method. With time-domain localization
being involved, the dreamlet method can also be applied effectively to target-oriented
migration and imaging.
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1 Introduction

In practice, the event in seismic section is not stationary, i.e., it changes with offsets and
traveltimes. It also has limited time duration and interacts with the local subsurface
medium during propagation. The linearity of the seismic events can only be approxi-
mated locally in the time space seismogram. For the seismic data compression, localized
basis can represent the seismic signals sparsely while still preserving useful informa-
tion [1–4].

During last decade, wave equation based localized wave propagation and imaging is
developed to overcome the limitations of many global migration methods. In strong con-
trast medium, the wave-equation-based migration methods are accurate, stable and yield
results of high quality compared to the algorithms based on eikonal equation solvers,
such as Kirchhoff migration [5]. The phase-shift method [6] is accurate, economical and
unconditionally stable for media with vertical velocity gradient. Split-Step Fourier (SSF)
migration [7] can handle velocity with smooth lateral variations and small lateral con-
trast. Various phase-screen methods [8–11] extend the concepts of the phase-shift and SSF
methods. In such methods, to take lateral velocity variations into account, the medium is
decomposed at each level into a global reference velocity and perturbations. For strong
contrast media, the perturbations can be very large, leading to difficulties in correctly
propagating large-angle waves.

In order to overcome the accuracy limitation for large-angle waves in strong contrast
media, several methods based on the local perturbation theory or Locally Homogeneous
Approximation (LHA) have been developed. Windowed screen method [12, 13] intro-
duces the local background velocity and local perturbations through Windowed Fourier
Transform (WFT). However, since the perfect WFT reconstruction is formidably expen-
sive, the method relies on the much broadly overlapped windows and empirical interpo-
lations. Therefore, it is applicable only in the case where only a few distinctive material
boundaries exist. Beamlet migration approach based on the local perturbation theory has
been proposed using the Gabor-Daubechies Frame (GDF) [14, 15] and the Local Cosine
Basis (LCB) [16, 17]. In these methods, the wavefield at every depth is spatially local-
ized with local windows and propagated with beamlet propagators (sparse propagator
matrices), followed by local perturbation corrections. Ma and Margrave [18] develops a
velocity adaptive partitioning scheme that relates window width to lateral velocity gra-
dient and wider windows are used when the lateral velocity gradient is weak since com-
putation cost is directly proportional to the number of windows. Mousa [19] treats the
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migration as a filtering process and designs short-length finite impulse response filters
with both accuracy and efficiency for strong lateral velocity variations.

However, the methods mentioned above only have localization on space and work
entirely in frequency domain. The seismic data is nonstationary in nature in both space
and time. In order to decompose the wavefields sparsely and efficiently, the elemen-
tary function needs to have the ability to adapt to the local variation of the seismic data.
Therefore, the frequency domain local wavefield decomposition methods do not offer
an impressive compression on seismic data. Efforts have been made to work directly
in the compressed domain for seismic migration and imaging for decades. Curvelet
transform [20, 21], completely localized on time and space, has been successfully ap-
plied to seismic data compression [22, 23]. Meanwhile, curvelet has also been applied
to wave propagation and seismic imaging using a map migration method [24, 25]. Also,
research has been done to test the effects of using cosine/sine basis to 2D seismic data
compression [1, 26], which is proved to be an efficient method providing high compres-
sion ratio as well as preserving seismic data information. The dreamlet method [27, 28]
extends the frequency domain beamlet method to a fully time-space localized wave prop-
agator with time-space local harmonics, applying the background propagation directly
in the compressed domain. In this algorithm, the space-wavenumber localization uses
the LCB transform and the time-frequency localization adopts the local exponential tight
frame [29, 30]. Localization in time provides seismic processing with another degree of
freedom, such as de-noising and local property analysis. Dreamlet migration methods
mainly consist four steps: wavefield and propagator decomposition (compression), seis-
mic data migration, reconstruction and local perturbation correction. In the following,
we first introduce the local harmonic bases. For the dreamlet migration method, the
time-frequency and space-wavenumber localization can be treated separately. Secondly,
the detail formulation of the dreamlet propagator based on LCB (space) and LEF (time)
decomposition is given. Thirdly, the Sigsbee2A model is first used to demonstrate the
validity and image quality of this method on a synthetic model. Making use of time axis
localization, target oriented migration and imaging is tested. Field marine seismic data
application shows the feasibility and high accuracy of imaging by dreamlet migration for
the real data set.

2 Dreamlet wavefield and one-way propagator decomposition

2.1 Local trigonometric bases and local exponential frames

The basis for local cosine/sine transform is bell function windowed cosine/sine har-
monic, also known as local trigonometric basis [31]. For wavefield decomposition
on spatial axis, local trigonometric basis can be characterized by position x̄n, interval
Ln= x̄n+1− x̄n (the nominal length of the window function) and wavenumber index m as
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follows

bc
mn (x)=

√

2

Ln
Bn(x)cos

(

π

(

m+
1

2

)

x− x̄n

Ln

)

, (2.1)

bs
mn (x)=

√

2
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Bn(x)sin

(

π

(

m+
1

2

)
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Ln

)

, (2.2)

where Bn(x) is a bell function which is smooth and supported in the compact interval
[x̄n−ε, x̄n+1−ε′]. The left and right overlapping radius for the local trigonometric trans-
form is defined by ε and ε′. The bar ”¯” on the top of a parameter represents the localized
(phase-space) parameter. If the fourier transform from space to wavenumber is defined
as following:

u(ξ)=
∫

u(x)e−iξxdx, (2.3)

we can obtain the wavenumber domain local trigonometric basis
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In Eqs. (2.4) and (2.5), Bn(ξ) is the fourier transform of the bell function Bn(x) and
ξ̄m =π

(

m+ 1
2

)/

Ln. It can be seen that the local trigonometric basis always has two sym-
metric spectral lobes: a positive lobe (centered at +ξ̄m) as well as a mirror-symmetric
negative lobe (centered at −ξ̄m). Therefore the directivity is not uniquely specified for
the coefficients of spatial local trigonometric transform. The positive and negative spec-
tral lobes in the trigonometric basis can be separated by the combination of cosine basis
function in the real part and sine basis function in the imaginary part, thus forms the
local exponential functions [32]:

g+mn(x)=bc
mn(x)+ibs

mn (x)=

√

2

Ln
eiξ̄m(x−x̄n), (2.6)

g−mn(x)=bc
mn(x)−ibs

mn (x)=

√

2

Ln
e−iξ̄m(x−x̄n). (2.7)

The LEF eliminates the directional ambiguity in the local trigonometric basis and can de-
compose the wavefield into local wavenumber domain with uniquely defined direction
information [30, 33]. For spatial decomposition, g+mn (x) and g−mn (x) stand for the right
and left propagating beamlets, respectively. Correspondingly, if LEF is used to decom-
pose the time axis, g+ij (t) and g−ij (t) are taken as the positive and negative frequency
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drumbeats,

g+ij (t)=

√

2

Tj
eiω̄i(t−t̄j), (2.8)

g -
ij (t)=

√

2

Tj
e - iω̄i(t−t̄j), (2.9)

where ω̄i=π
(

i+ 1
2

)/

Tj is the local frequency, t̄j is the time moment and Tj denotes the
time interval. The LEF is tight frame with redundancy 2 and the coefficients of a time
domain function f (t) can be calculated by the projection

f (t)=∑
i

∑
j

[〈

f (t) ,g+ij (t)
〉

g+ij (t)+
〈

f (t),g−ij (t)
〉

g−ij (t)
]

=∑
i

∑
j

[

f+ij g+ij (t)+ f−ij g−ij (t)
]

, (2.10)

and 〈,〉 stands for the inner product. Using the relation between the LEF and LCB/LSB,
the LEF decomposition coefficients f+ij and f−ij can be calculated using the LCB and LSB

decomposition coefficients f c
ij and f s

ij

f+ij =
f c
ij−i f s

ij

4
, (2.11)

f−ij =
f c
ij+i f s

ij

4
. (2.12)

The LCB and LSB decomposition coefficients can be obtained by fast algorithms [31, 34],
which makes the LEF decomposition very efficient.

2.2 Dreamlet wavefield decomposition implementation using LCB and LEF

A dreamlet (drumbeat-beamlet) atom can be formed by the tensor product of 1D local har-
monic atoms, referring to either local cosine/sine basis or local exponential frame vector.
The wavefield in the time-space domain or in the frequency-wavenumber domain can
be decomposed into the local time-frequency-space-wavenumber domain (dreamlet do-
main):

u(x,t)=∑
t̄

∑
ω̄

∑
x̄

∑
ξ̄

〈

u,dt̄ω̄x̄ξ̄ (x,t)
〉

dt̄ω̄x̄ξ̄ (x,t)=∑
t̄

∑
ω̄

∑
x̄

∑
ξ̄

ut̄ω̄x̄ξ̄dt̄ω̄x̄ξ̄ (x,t)

=∑
t̄

∑
ω̄

∑
x̄

∑
ξ̄

ut̄ω̄x̄ξ̄ gt̄ω̄ (t)bx̄ξ̄ (x), (2.13)
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where dt̄ω̄x̄ξ̄ (x,t), gt̄ω̄ (t) and bx̄ξ̄ (x) are dreamlet, drumbeat and beamlet atom, respec-
tively. And the dreamlet coefficients of the seismic data are obtained

ut̄ω̄x̄ξ̄ =
〈

u(x,t),dt̄ω̄x̄ξ̄ (x,t)
〉

=
∫∫

u(x,t)d∗t̄ω̄x̄ξ̄ (x,t)dxdt

=
∫∫

u(x,t)g∗t̄ω̄ (t)b∗x̄ξ̄ (x)dxdt. (2.14)

The basis with * is the dual basis. It is flexible to choose any localized bases to achieve
the localization in each domain. In this work, we adopt LEF as the temporal and LCB the
spatial local decompositions, the dreamlet atoms can be constructed as

dµ̄ (x,t)= g+ij (t)bc
mn(x)+g−ij (t)bc

mn(x)=d+µ̄ (x,t)+d−µ̄ (x,t), (2.15)

with µ̄ =
(

t̄,ω̄, x̄, ξ̄
)

as the dreamlet local parameter cluster. Since the LCB is orthogonal
basis and LEF is tight frame, the dreamlets constructed by the tensor product of LCB
and LEF are also frames with redundancy 2. The dual dreamlet atoms are the same as the
original ones. The wavefield decomposition by general dreamlet formulation in Eq. (2.13)
can be rewritten with the representation of LEF-LCB dreamlets as

ut̄ω̄x̄ξ̄ =
〈

u(x,t),dt̄ω̄x̄ξ̄ (x,t)
〉

=
∫∫

u(x,t)d∗t̄ω̄x̄ξ̄ (x,t)dxdt

=
∫∫

u(x,t)g∗t̄ω̄ (t)b∗x̄ξ̄ (x)dxdt, (2.16)

where u+
µ̄ and u−

µ̄ are the dreamlet coefficients for the positive and negative drumbeat
frequency. Fig. 1 shows an example of wavefield dreamlet decomposition for the 250th
shot of the Sigsbee2A model. Fig. 1(a) is the original seismogram and Fig. 1(b) is the
spectrum of the dreamlet coefficients u+

µ̄ (u−
µ̄ are conjugate of u+

µ̄ ). In Figs. 1(c), 1(e) and
1(g) are the selected time-space blocks in the seismogram for the detailed demonstration
and in Figs. 1(d), 1(f) and 1(h) are the corresponding dreamlet coefficients. We see the
sparsity of the dreamlet coefficients of the seismogram. This example shows the capabil-
ity of dreamlet atoms representing oscillating and directional seismic signals. Dreamlets
are decomposed on the data plane and the extrapolated data plane, and in the migration
step, only large coefficients are propagated further for subsurface imaging.

2.3 One-way propagator in the dreamlet domain

Wu et al. [35] prove that the dreamlet can be considered as a type of physical wavelet
defined on an observation plane, which is advantageous for application in wavefield de-
composition, propagation and imaging. The dreamlet coefficient of the wavefield can
be propagated by ray-based or the one-way wave equation based propagator. Geng et
al. [36] give the relationship between dreamlet and Gaussian packet coefficients and the
dreamlet coefficients are migrated for long range propagation in smooth heterogeneous
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Figure 1: LEF-LCB dreamlet wavefield decomposition of the Sigsbee2A model 250th shot data: (a) seismic data;
(b) Dreamlet coefficients; (c), (e) and (g) are the enlargement of the selected window in the seismogram and
(d), (f) and (h) below each are their corresponding dreamlet coefficients. Only positive drumbeat coefficients
are displayed.

medium by high-frequency asymptotic propagation. The ray based methods can im-
age the steep structures in subsurface but have difficulty in complex areas due to high
frequency approximation. The conventional one-way wave equation based migrations
downward-continued the wavefield in depth and have limitations on the imaging of
challenging structures, such as the overhung salt flanks. However, some recent devel-
oped one-way propagators can well image the overhung or vertical structures [37–39]. In
this work, we give the dreamlet migration theory based on the one-way wave equation
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migration method. For wave propagation migration and imaging in local phase space,
the local decomposition not only decomposes the wavefield but also the propagator to
form the phase-space propagator matrix. The main task for the dreamlet migration is to
derive propagators in the chosen dreamlet domain. The evolution of dreamlets is gov-
erned by an operator which involves a square root operator [40]

aµ̄ (x,t;∆z)= e
±i

√

∂2

∂2
x
− 1

v2(x,z)
∂2

∂2
t

∆z
dµ̄ (x,t). (2.17)

Where aµ̄ (x,t;∆z) is a function evolved from a dreamlet dµ̄ (x,t) propagating in the het-
erogeneous medium. The plus and minus sign in Eq. (2.17) are for the downward and
upward wave propagation. In this way, the evolution of dreamlets observes the wave
equation. After propagation, a dreamlet atom spreads into other cells in the localized
phase-space due to propagation distortion. The dreamlet propagator is formulated by
the redecomposition of the distorted dreamlet into new dreamlets

P
µ̄′

µ̄ =
〈

d+µ̄′+d−µ̄′ ,a(x,t;∆z)
〉

=
〈

d+µ̄′+d−µ̄′ ,P
(

d+µ̄ +d−µ̄

)〉

. (2.18)

Here P= e
±i

√

∂2

∂2
x
− 1

v2(x,z)
∂2

∂2
t

∆z
stands for the one-way propagator. For the general problem,

there is no exact analytical solution for propagator P. Various approximations are in-
voked to make the calculation practical. Wu et al. [17, 41] applied local perturbation
approximation to the one-way wave equation, resulting in a split-step implementation of
wave propagation in the local-phase space domain. The wavefield propagation is step-
by-step downward continued using the propagator matrix which incorporates with bi-
scale decomposition of the velocity. At each step, the laterally varying velocity profile is
decomposed by window-width piecewise homogeneous medium v0(x̄n,z) for large scale
background propagation and the small-scale component which is the local perturbation.
Due to the adaptability of local reference velocity to the lateral variation of the true ve-
locity model, the wave propagation in the local background velocity is accurate enough,
so that the first order approximation of the square-root propagator P is good enough for
the local perturbation correction. For the large-scale background propagation, dreamlet
propagator can be derived by the analytic solution of wave equation in the frequency-
wavenumber domain for each homogeneous piecewise velocity medium. This leads to
the approximation of the one-way operator P as

P≈ e
±i

√

ω2

v2(x̄n,z)
−ξ2∆z

e
±iω

(

1
v(x,z)

− 1
v(x̄n,z)

)

∆z

= e±iζn∆ze
±iω

(

1
v(x,z)

− 1
v(x̄n,z)

)

∆z

=P0(x̄n;∆z)P1(x, x̄n;∆z), (2.19)

where ζn =
√

ω2
/

v2(x̄n,z)−ξ2 is the local vertical wavenumber with the local reference

velocity v0(x̄n,z) and ξ is the horizontal wavenumber. Eq. (2.19) is a dual domain split-
step approximation of the operator P. The first term P0(x̄n;∆z) in Eq. (2.19) is a phase
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shift in the local frequency-wavenumber domain using the local reference velocity; the
second term P1(x, x̄n;∆z) is a local phase-screen term in the local frequency-space do-
main. Here below, we give the dreamlet propagator derivation for the local reference
velocity propagation. Eq. (2.17) can be rewritten as

P0

(µ̄′,µ̄)
(x̄n;∆z)=

〈

d+µ̄′ ,P
0(x̄n;∆z)d+µ̄

〉

+
〈

d+µ̄′ ,P
0(x̄n;∆z)d−µ̄

〉

+
〈

d−µ̄′ ,P
0(x̄n;∆z)d+µ̄

〉

+
〈

d−µ̄′ ,P
0(x̄n;∆z)d−µ̄

〉

=P
0(++)
(µ̄′,µ̄)

(∆z)+P
0(+−)
(µ̄′,µ̄)

(∆z)+P
0(−+)
(µ̄′,µ̄)

(∆z)+P
0(−−)
(µ̄′,µ̄)

(∆z). (2.20)

The four components in Eq. (2.20) stand for the different interactions between positive

and negative frequencies. Taking P
0(++)
(µ̄′,µ̄) (x̄n;∆z) for example, insert the time-frequency

atoms into the propagator, and then we get

P
0(++)
(µ̄′,µ̄)

(x̄n;∆z) =
1

2π

∫

dω
(

g+
t̄′ω̄′ (−ω)

)∗
g+

t̄′ω̄′ (ω)P0

(x̄′ ξ̄ ′ x̄ξ̄)
(ω,∆z), (2.21)

where g+
t̄ω̄ (ω) is the fourier transform of g+

t̄ω̄ (t) and

P0

(x̄′ ξ̄ ′ x̄ξ̄)
(ω,∆z)=

1

(2π)D−1

∫

dξb∗x̄′ ξ̄ ′ (−ξ)bx̄ξ̄ (ξ)e±iζn(ω,ξ)∆z (2.22)

is the beamlet propagator [17]. In Eq. (2.22), D standing for 2 or 3 is the spatial dimension.
For the simplification of migration operation, we keep the bell function same for all the
time windows, then

g+t̄ω̄ (ω)=

√

2

Tj
ei(ω+ω̄) T

2 eiω t̄ B0(ω+ω̄). (2.23)

Here B0(ω) is the fourier transform of time window at t̄=0.
Plugging Eq. (2.23) into Eq. (2.21), the dreamlet propagator equation (2.21) becomes

P
0(++)
(µ̄′,µ̄)

(∆z)=
1

πT

∫

dωeiω(t̄−t̄′)ei(ω̄−ω̄′) T
2 B0(ω+ω̄)B0

(

ω+ω̄′
)

P0

(x̄′ ξ̄ ′ x̄ξ̄)
(ω,∆z). (2.24)

In a similar way, other components of the dreamlet propagator can be expressed as

P
0(+−)
(µ̄′,µ̄)

(∆z)=
1

πT

∫

dωeiω(t̄−t̄′)ei(ω̄+ω̄′) T
2 B0(ω+ω̄)B0

(

ω−ω̄′
)

P0

(x̄′ ξ̄ ′ x̄ξ̄)
(ω,∆z), (2.25)

P
0(−+)
(µ̄′,µ̄)

(∆z)=
1

πT

∫

dωeiω(t̄−t̄′)ei(−ω̄−ω̄′) T
2 B0(ω−ω̄)B0

(

ω+ω̄′
)

P0

(x̄′ ξ̄ ′ x̄ξ̄)
(ω,∆z), (2.26)

P
0(−−)
(µ̄′,µ̄) (∆z)=

1

πT

∫

dωeiω(t̄−t̄′)ei(−ω̄−ω̄′) T
2 B0(ω−ω̄)B0

(

ω−ω̄′
)

P0

(x̄′ ξ̄ ′ x̄ξ̄)
(ω,∆z). (2.27)

Here P
0(++)
(µ̄′,µ̄)

, P
0(+−)
(µ̄′,µ̄)

, P
0(−+)
(µ̄′,µ̄)

and P
0(−−)
(µ̄′,µ̄)

are the kernels of the dreamlet propagator in the

background media. The plus and minus sign stand for the positive and negative local
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frequencies respectively. Since the coefficients for the positive and negative frequency
drumbeat are conjugated, only two of the propagator matrices in Eqs. (2.24)-(2.27) are

needed. In the following tests, we only use P
0(++)
(µ̄′,µ̄)

and P
0(−+)
(µ̄′,µ̄)

for positive drumbeat

coefficients computation in wave propagation.

3 Dreamlet prestack depth migration

The study of single dreamlet atom evolution in space is very important and can be con-
sidered as intermediate status of the point source and plane wave. The point source
and plane wave are two elementary solutions to the wave equation. The point source
solution has exact space location precision but the wave propagates into all directions.
The plane wave has unique propagation direction but it extends to infinity spatially. The
dreamlet atoms propagate like localized plane wave in the media. In Fig. 2, it shows com-
posite plot of three snapshots of the single dreamlet atom propagation in a homogenous
medium. Fig. 2(a) is the snapshots of a vertical propagating dreamlet and Fig. 2(b) is an
oblique propagating dreamlet. The wavefront of the dreamlet atoms propagate in a lim-
ited angular range with also limited space extension. The oblique propagating dreamlet
has two vertical symmetrical propagating directions because the LCB basis used for the
space decomposition always has symmetrical positive and negative wavenumbers.
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Figure 2: Single dreamlet propagation snapshots in homogenous medium: (a) Vertical propagating dreamlet;
(b) Oblique propagating dreamlet.
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Figure 3: Sigsbee 2A velocity model for migration.

Figure 4: LEF-LCB dreamlet migration result using the migration velocity shown in Fig. 3.

The benchmark data Sigsbee2A from the SMAART Project consisting of 500 shot gath-
ers with 348 receivers per-shot. The time sample interval is 8 ms with 1500 samples for
each trace. The migration velocity model shown in Fig. 3 has 2133 samples in horizontal
plane with an interval of 37.5 feet and 1200 samples in depth with an interval of 25 feet.
The source for the migration is the ricker wavelet with a dominant frequency at 20 hz.
Fig. 4 shows the LEF-LCB dreamlet migration image. The sediments, the two rows of
point diffractors and the straight baseline reflector at the bottom of the model are all well
imaged.

One advantage of dreamlet decomposition is its high compression ratio and the imag-
ing in the compressed domain [17, 28]. Fig. 5 shows the amount of dreamlet coefficient
extrapolated at each depth during the migration process for the Sigsbee2A model. The
dash line in the figure is for the receiver side and the solid line for the source. During mi-
gration, the average compression ratio on the receiver side is around 10 and the number
of the dreamlet coefficient does not increase. The coefficient amount on the source side
is increasing in shallow depth but gradually becomes saturated and still keeps a higher
average compression ratio. In this salt model migration test, we apply the automatic gain
control on the time series, that is, the recorded seismic data is multiplied by the square
root of the recording time. The number of the velocity in the background propagator is
50, equally spaced from the minimum to the maximum velocity in the model.
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Figure 5: Coefficient amount variation during migration. The dash line is for the receiver side and the solid line
for the source side wavefield.

One benefit of the localization on time using dreamlet is the easy application to target
oriented migration/imaging. For a specific target area, its reflected signal on the surface
is only in a few time windows in the traces at different locations. Only migrating these
target related portion of data can not only accelerate the migration process but also get a
better and cleaner image in the target area. For the Sigsbee2A model, suppose we focus
our target on some area beneath the salt body, indicating by the box in Fig. 4. The first
arrival traveltime is first calculated and then time windows around are picked in the
traces. The migration result using this portion of data is shown in Fig. 6(b). The same
area with the full data set (Fig. 6(a)) is cut out from Fig. 4 for comparison. It shows clearly
that the fault and reflectors in the target oriented migration are strongly imaged than that
in using full data set.

The second example shows the application of LEF-LCB dreamlet migration with real
marine seismic data. A 2D inline section is selected for this test. There are totally 1400
shots with 240 receivers each on this inline towing from left to right, with a source and
receiver interval of 25 meter respectively. The time sampling interval is 2 ms with a
recording length of up to 6 seconds. For the dreamlet migration, the full frequency band
is used as the source wavelet (spectral amplitude is equal to 1.0 up to 140 Hz). The
velocity model (shown in Fig. 7) used here is obtained by ray based tomography. It
contains 3100 and 800 grid points horizontally and vertically, with a cell size 12.5 by 5
meter.

For the background dreamlet propagator, a total of 100 reference velocities are calcu-
lated and equally sampled from the minimum to maximum of the velocity in this model.
The threshold for the compression is 10−4 of the maximum dreamlet coefficients value at
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Figure 7: Migration velocity for the field marine seismic data.

each depth. Fig. 8(a) shows the LEF-LCB dreamlet migration result. Overall, the image
contains broad frequency band and the fine layers are depicted clearly. The rugged sea
floor is also well imaged. Due to the accurate localized wave propagation of dreamlet, the
structures of buried mountain below the depth of 3 km is also imaged with reasonably
continuous boundaries (black arrows in Fig. 8). For comparison, image from Kirchhoff
and Reverse Time Migration (RTM) are shown in Figs. 8(b) and 8(c). In general, for this
data set, the image quality of dreamlet migration is comparable to that of the other two
methods. The image bandwidth difference is mainly due to the data filtering before mi-



124 B. Wu et al. / Commun. Comput. Phys., 28 (2020), pp. 111-127

Distance (Km)
10 20 305

0

1

2

3

4

D
ep

th
 (

K
m

)

(a)(a)

Distance (Km)
10 20 305

0

1

2

3

4

D
ep

th
 (

K
m

)

(b)

Distance (Km)
10 20 305

0

1

2

3

4

D
ep

th
 (

K
m

)

(c)

Figure 8: Marine field data migration results: (a) dreamlet migration; (b) Kirchhoff migration; (c) reverse time
migration.

gration. Another difference for the images is beneath the rugged sea floor (strong lateral
velocity variation), such as the horizontal location 21 and 35 km. The images of dreamlet
underneath those locations are better than that of Kirchhoff migration and slightly in-
ferior to that of RTM. The reason is that the dreamlet propagator is approximate to the
velocity lateral variations at the scale of spatial window length. The fast lateral veloc-
ity change such as the rugged sea floor, smaller spatial window length will improve the
result but at the cost of migration efficiency [17].
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4 Conclusions and discussions

In this paper, we first present the dreamlet migration formulation using LCB for space-
direction localization and LEF for the time frequency localization. At each depth, the
data set is decomposed into dreamlets leading to a migration in the compressed domain
scheme. The dreamlet propagator matrix is applied to obtain the dreamlet coefficients at
the next depth level. The dreamlet propagation includes the propagation in local homo-
geneous reference medium followed by the local phase-screen correction. Numerical ex-
amples using Sigsbee2A model and field data example verify the high accuracy and good
image quality of the method on salt model and real data. Wavefield data decomposition
by dreamlet and then imaging in the dreamlet domain by dreamlet propagator have some
salient features and advantages over other time-space imaging methods. First, dreamlet
coefficients obtained from seismic data are very sparse due to the fact that dreamlet is a
type of physical wavelet which satisfy the causality (or dispersion relation), and there-
fore only sit on a hyper surface in the four-dimensional time-space; second, the dreamlet
propagator propagates wavefield in the dreamlet domain (compressed domain) and the
sparse data can remain sparse during the imaging process, which can save computer
storage substantially; third, due to the time-space localization of dreamlet representa-
tion, it is possible and easy to realize target-oriented data selection and imaging, which
can not only has the flexibility of imaging a specific target of interest, but also to isolate
the data portion which is responsible for the image formation. This target-oriented data
and image windowing has both the high-efficiency and the high-quality of target imag-
ing by shutting off the unnecessary data and interference. Preliminary numerical test
shows the feasibility and potential application of this method to the targeted orientation
migration/imaging.
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