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Abstract. Fluctuations in log-amplitude and travel time of teleseismic P waves
recorded by the EarthScope USArray are used to invert for the heterogeneity spectrum
of P-wave velocity in a 1000 km thick region of the upper mantle beneath the array.
These fluctuations are used to form coherence functions. Best fits to joint transverse
coherence functions require a depth dependent heterogeneity spectrum, with peaks in
narrow depth ranges. These peaks agree well with peaks predicted for the tempera-
ture derivative of seismic velocity from models of the chemistry and phase of silicate
mineral assemblages appropriate for the upper mantle, correlating with the depths of
phase changes. The results show that chemistry and phase act in concert with lateral
and depth variations in temperature to produce the observed heterogeneity in seismic
velocities in the upper mantle at spatial scales from 50 to 300 km.

AMS subject classifications: 86A15, 86A22, 74J20
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1 Introduction

The chemistry, distribution, and shapes of small-scale heterogeneity record the history of
compositional mixing of Earth’s mantle by convection and plate tectonics. Directionally
dependent scattering, focusing, and diffraction of seismic waves by small-scale hetero-
geneity also affects estimates of viscoelastic attenuation and anisotropy, which in turn are
important for estimating temperature, mineral composition, and mineral phase. Travel-
time tomography, however, fails to resolve heterogeneities having dimensions less than
several dominant wavelengths of band-passed body waves. Resolvable scale lengths are

∗Corresponding author. Email addresses: vernon.cormier@uconn.edu (V. F. Cormier),
yiteng.tian@uconn.edu (Y. Tian), yzheng12@uh.edu (Y. Zheng)

http://www.global-sci.com/cicp 74 c©2020 Global-Science Press



V. F. Cormier, Y. Tian and Y. Zheng / Commun. Comput. Phys., 28 (2020), pp. 74-97 75

Figure 1: Teleseismic wave incidence on elements of receiver arrays (triangles) and their sensitivity to hetero-
geneity (gray ellipses) beneath the arrays determined from (a) Transverse Coherence Functions (TCF) [2], (b)
angular coherence function (ACF) [3], and (c) joint transverse and angular coherence function (JTACF) [4,5],
where θ denotes the incident angle between the two plane waves and ρ denotes the lag distance between
receivers.

generally greater than 1,000 km from teleseismic body waves in the 0.01 to 0.2 Hz band.
Tomographic imaging from higher frequency (1 Hz) body waves, recorded by dense re-
gional arrays, occasionally is able to resolve structures smaller than several 100 kilome-
ters, e.g., [1]. An alternative approach is to retrieve a statistical representation of structure
from observations of the fluctuation of the amplitude and travel time of teleseismic body
waves recorded by arrays. These fluctuations are created by small-scale heterogeneities
beneath the arrays that scatter, focus, and defocus steeply incident body waves, which
can be treated as plane waves incident on the upper mantle beneath the receivers. While
deterministic seismic tomography gives both location, shape, and intensity of individual
velocity heterogeneities, the stochastic approach provides an overall description about
the assemblage of heterogeneities in terms of the spatial spectrum of velocity perturba-
tions.

Aki [2] first proposed using the transverse coherence (Fig. 1a) of travel times and log
amplitudes of teleseismic body waves to retrieve the heterogeneity spectrum of Earth
structure beneath seismic arrays from steeply incident plane waves. Flatté and Wu [3]
extended Aki’s methods to include angular coherence (Fig. 1b), using seismic waves
arriving from different incoming directions. Several studies by Wu and Flatté [4] and
Chen and Aki [5] further extended this method to include observations of the joint trans-
verse angular coherence (Fig. 1c). Wu and Xie [6] conducted successful inversions of joint
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transverse angular coherence functions (JTACFs) measured from seismograms numeri-
cally synthesized in heterogeneous Earth models. They termed this method ”stochastic
tomography”. Inversion of JTACFs are particularly effective in focusing sensitivity on
narrow depth regions, where incident rays from plane waves arriving from different di-
rections cross, allowing results to be obtained for scale lengths smaller than the array sen-
sor spacing at the surface. These earlier works all assumed that the background medium
is homogeneous. Zheng and Wu [7] extended stochastic tomography to allow a depth-
dependent reference model of seismic velocity.

The study described in this paper applies stochastic tomography to derive a depth-
dependent heterogeneity spectrum for the upper mantle beneath the USArray from ob-
servations of amplitude and phase coherences of teleseismic P waves. Section 2 describes
the method of stochastic tomography; Section 3 describes our data and measurement of
coherences; Section 4 summarizes the results of inversions for the heterogeneity spec-
trum for the upper 1000 km of mantle beneath the USArray; and Section 5 discusses
the significance of the results for chemical and phase heterogeneity of the upper mantle.
Measurement of coherences are described in greater detail in Appendix A. Appendix B
described the approach we used for inverting for the heterogeneity spectrum from mea-
sured coherences.

2 Stochastic tomography

For a plane wave 1, we can measure the log amplitude u1(r1) and phase φ1(r1) at a station
r1. Similarly, for a second plane wave 2, we can measure the log amplitude u2(r2) and
φ2(r2) at r2. Using these measured quantities and equations from [7], we can form the
following expressions for amplitude, phase, and amplitude/phase coherences:

〈u1u2〉=(2π)−1

H
∫

0

dξa1(ξ)a2 (ξ)

∞
∫

0

J0 [κR(ξ)]cos[ωϑ1(ξ)]cos[ωϑ2(ξ)]P(ξ,κ)κdκ,

〈φ1φ2〉=(2π)−1

H
∫

0

dξa1 (ξ)a2(ξ)

∞
∫

0

J0 [κR(ξ)]sin[ωϑ1(ξ)]sin[ωϑ2(ξ)]P(ξ,κ)κdκ,

〈u1φ2〉=(2π)−1

H
∫

0

dξa1 (ξ)a2(ξ)

∞
∫

0

J0 [κR(ξ)]sin[ωϑ1(ξ)]cos[ωϑ2(ξ)]P(ξ,κ)κdκ.

(2.1)

In Eqs. (2.1), H is the thickness of the heterogeneous layer, ξ is depth, κ is the magnitude
of the transverse wavenumber, which is the horizontal projection of the wavenumber
vector.

The function a is given by:

a(p,ξ)= k2 (ξ)/kz (p,ξ) , (2.2)
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Figure 2: 2-D sketch of R function appearing in the argument of the Bessel function in Eq. (2.1).

where k(ξ) = ω/c(ξ) is the background wavenumber at depth ξ, kz (p,ξ) the vertical
wavenumber; and p the scalar ray parameter corresponding to the specific plane wave
and c(ξ) is the reference velocity at depth ξ.

The function ϑ is

ϑ(p,ξ,κ)=
1

2

d2τ

dp2

κ2

ω2
, (2.3)

where

τ(p,ξ)=
∫ ξ

0
dz
√

c−2(z)−p2 (2.4)

is the familiar delay or slope intercept time (τ(p)−p∆(p)).
The function R is

R(r1,r2,p1,p2,ξ)=
∣

∣

∣

−→
R1(p1,ξ)−

−→
R2(p2,ξ)

∣

∣

∣, (2.5)

which is the horizontal distance of two rays at depth ξ, where
−→
R1(p1,ξ) is the ray trajec-

tory connecting station r1 for plane wave p1, and
−→
R1(p1,ξ) is the ray trajectory connecting

station r2 for another plane wave p2. The geometry in 2D is shown in Fig. 2, when the
azimuths of two incoming waves are in the same direction with the station lag vector
−→r1r2.

We use an autocorrelation function of the seismic P velocity of a heterogeneous
medium to characterize the spatial scales of the magnitude of its irregularities. Here
the function P(ξ,κ) is the Fourier transform of this autocorrelation function. It is also
known as the power spectrum density function (PSDF) of the random medium.

A discretized version of Eq. (2.1) can be written as a product of a matrix and an
unknown vector representing the medium power spectrum P(ξ,κ) discretized over in-
tervals of depth ξ and transverse wavenumber κ (Appendix A). The unknown power
spectrum can then be determined by linearized inversion (Appendix B) of the vector of
observed coherences on the left hand side of a discretized version Eq. (2.1).
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The assumptions used in the derivation of this theoretical coherence function are dis-
cussed and tested in previous work of Wu and Zheng, both theoretically [8, 9] and nu-
merically [4, 6].

3 Data analysis

3.1 Data selection and pre-processing

For data we used P waveforms recorded by all available stations in the USArray of the
EarthScope project [10] in the western US between latitudes 30◦ N to 50◦ N, and longi-
tudes 100◦ W to 125◦W. Waveforms were selected from earthquakes in epicentral regions
in the time range 2000-01-01 to 2017-10-01, available in Global Centroid Momentum Ten-
sor (GCMT) catalog [11]. Events and stations are shown in Fig. 3. The grouping of wave-
forms and inversions into results for three broad epicentral regions follows a procedure
similar to that used in a study by Zheng [12] to retrieve the heterogeneity spectrum be-
neath the Hi-Climb array in Tibet. Only deep focus earthquakes were chosen to minimize
effects of heterogeneity in the upper mantle of the source region and to remove surface
reflections and crustal interactions near the sources. Elimination of near source reflec-
tions improves the accuracy of the empirical source-time functions (Section 3.2) used in
the constructing reference waveforms. The three epicenter regions chosen for analysis
were:

1. Earthquakes from the Japan area: latitude from 25◦ N to 35◦ N, longitudes from
135◦ E to 145◦ E, depth from 400 km to 500 km, magnitude from 5.8 mw to 6.2 mw.

2. Earthquakes from the Tonga area: latitude from 15◦ S to 30◦ S, longitudes from 175◦

E to 175◦ W, depth from 500 km to 700 km, magnitude from 5.8 mw to 6.2 Mw.

3. Earthquakes from the Chile area: latitude from 15◦ S to 30◦ S, longitudes from 100◦

W to 125◦ W, depth from 500 km to 700 km, magnitude from 5.8 to 6.2 Mw.

In pre-processing of waveforms, we removed the instrument response and filtered
the seismograms with a band pass window between 0.3 Hz to 1.5 Hz, and then selected
only high signal to noise ratio (SNR) waveforms, using the classic calculation method [13]
and a selection threshold of 6. About 40 percent of seismograms were usable under this
criterion.

3.2 Calculation of reference P waveforms in the reference model

Since u1 and u2 (or φ1,φ2) are fluctuations of the amplitude or phase with respect to their
background values in the reference model, waveforms synthesized in a reference Earth
model are required. The 3-D tomographic images of P velocity that exist for our region
of study reveal a rich spectrum of heterogeneity at scales of several hundred kilometers,
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Figure 3: Epicenter groups (blue) and US transportable array elements (red) included in study.

affected by a complex tectonic history of subduction and hot-spot tracks, e.g. [14]. The ve-
locity perturbations of these models are typically on the order of a 1%, too small to gener-
ate significant focusing, defocusing, and multi-pathing, consistent with the assumptions
of linear tomography. Thus, even if forward modeling were numerically tractable, there
is no advantage in assuming a fully 3-D reference model having this order of P velocity
perturbation in an inversion that seeks to match the amplitude coherence of P waves.
Hence, we have chosen a 1-D reference Earth model.

The P waves we studied are in an epicentral distance range (40◦ to 90◦), removed from
the range in which body waveforms are affected by triplicated interference from interac-
tion with upper mantle phase changes. Although simple ray theory can be employed in
this distance range to accurately model geometric spreading and travel time, we instead
synthesized P waveforms using the 2.5D numerical code AxiSem [15,16] provided by the
IRIS Syngine service [17]. We used the IASP91 model [18] as the reference Earth model. To
use the IRIS Syngine service, earthquake moment tensors and source time functions must
be supplied to represent the far-field earthquake sources. For moment tensors, we used
the GCMT solutions Global Centroid-Moment-Tensor [11, 19] included as raw metadata
for each earthquake. Source-time functions were constructed empirically (Fig. 4) from P
waves stacked for each source, avoiding stations on nodes of radiation patterns.

3.3 Measurement of coherences

For amplitude fluctuations, the measurement is straightforward. After Fourier trans-
forming the time-domain waveform using a multi-taper method [20, 21], the log ampli-
tude is measured at frequency 0.7 Hz. For measuring the phase fluctuations, we used
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Figure 4: Procedure of aligning and stacking P waveforms used to retrieve the empirical source-time function.

a waveform cross-correlation method [22]. We first find the travel-time fluctuation and
corresponding phase δφ=ω �δt, and then shift the waveform to calculate the argument
function of the waveform in frequency domain [8]. The final phase fluctuation is the
sum of these two calculations. We also used the empirical source-time function to cross
correlate all the waveforms twice for better precision. After applying this processing
to both seismograms and reference synthetics, we subtracted observed amplitudes and
travel times from those predicted by the reference Earth model to get fluctuations of log
amplitude and phase.

The next step is to calculate the coherence functions using these fluctuations. For
transverse coherence functions (TCFs), we care about the coherence over the lag distance
between receivers. Therefore for every two fluctuation values at two stations (either log
amplitude or phase), we calculate the respective station lag distance and round it to the
nearest 10 km increment intervals, multiply the fluctuations as coherence, and take the
statistical mean of all products from all station pairs at each 10 km interval. Since seismic
waves from similar epicenter locations will result in the same TCFs, we can sum up the
results associated with all seismic waves from nearby areas as an ”earthquake group”,
assuming that they share the same event depth and location (longitude and latitude).
This assumption means that events from the same earthquake group will share the same
incidence angle beneath a receiver. We calculated all incident angles of source-receiver
pairs, and performed a statistical study of the angle difference within the same earth-
quake group. We found that the average incident angle difference is around 1.1 degree,
indicating a +/− 8 km positioning error for a 1000 km thick layer, which is acceptable for
the resolution for this study. By averaging the seismic waveforms, we reduce noise, sim-
ilar to filtering data via stacking. The summation of earthquake waveforms from groups
of events in a broad region will also tend to remove and smooth over any unhealed am-
plitude and phase fluctuations induced by heterogeneities in the upper mantle beneath
the source region. After all these steps, the coherence functions are calculated for these
three different earthquake groups.
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In all coherence inversions we applied a ”quasi-homogeneous” approximation [2],
which is equivalent to assuming that the power spectrum P(z,k) is a 2-D function of
depth and wavenumber. This ignores the possibility of anisotropy of heterogeneity scale
lengths, which includes the case of horizontally or vertically stretched heterogeneities.
Evidence of such scale-length heterogeneity in the crust and upper mantle has been found
in the studies of travel-time covariances [23] and is well established in some tomographic
images of the plate-decoupling region (the lithosphere/asthenosphere boundary), e.g.,
[24]. The near-vertical incidence of our teleseismic P data, however, does not span a
sufficiently broad range of angles of incidence to resolve any anisotropy of heterogeneity
scale lengths.

We investigated, but dismissed, the use of joint transverse angular coherence func-
tions (JTACFs) to describe the cross coherence of different events at different receivers.
In this case, the inverse problem becomes 10-D, depending on two receiver locations and
two source locations (latitudes, longitudes; or equivalently incident angle, azimuth, and
lag distance). Applying a quasi-homogeneous approximation, the problem is reduced
to 6-D but is still too high in dimension for practical inversion. An inversion of JTACFs
would also require a much broader range of incidence angles than is possible with our
data. Furthermore, the irregular distribution of event locations makes it also almost im-
possible to form a generalized mapping from the power spectrum to the coherence func-
tions without further approximations.

4 Inversion results

4.1 Single layer with an L-2 norm

In this case, we assume that the power spectrum is independent of depth in a 1000 km
thick layer beneath the receiver array. We construct an object function to minimize of the
form

min
(

∥

∥MtPmn−Cij

∥

∥

2
+λLPmn

)

(4.1)

(see Appendix B for the definition of the symbols in Eq. (4.1)). The second term of Eq. (4.1)
is an L-2 Tikhonov regularization [25], where L is first order derivative operator matrix
and λ is a small real number that can be determined by the L-curve technique. The result
is shown in Fig. 5. A comparison of the best fit to observed coherence functions predicted
from the inverted power spectrum is shown in Fig. 6.

For this model, the R-squared (coefficient of determination) is 0.74 and the reduced
chi-squared is 1.65. The reduced chi-squared is calculated as chi-squared per degree of
freedom, as an indicator of goodness of fit. If the value is above 1, it means the problem
is under-fit. If the value is below 1, it means too many pending parameters are chosen,
resulting in an over-fit.
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Figure 5: Inversion result: spectrum retrieved under a single layer approximation and L-2 regularization.

4.2 Inversion regularized by a parameterization of spectrum function

Klimes [26] demonstrated that most of the commonly studied random media are special
cases of the following function:

F̂(k)=σ2
[

a−2
v +k2

]−
d+2N

2 exp

(

−
a2

gk2

4

)

, (4.2)

where d is the spatial dimension, k is the wavenumber, σ is the parameter of model vari-
ance, and N is defined as the Hurst parameter. ag and av are the correlation lengths, which
are the Gaussian correlation length and von Karman correlation length respectively.

Using this equation, the shape of the power spectrum in wavenumber k can be written
as a function of 4 unknown parameters ag, av, σ, N. The object function then becomes

min
(

∥

∥MtP
(

av,ag,σ,N
)

−Cij

∥

∥

2
)

. (4.3)

Using a constraint on the Hurst parameter, for physically reasonable scaling properties
of geological structures [27, 28]:

−
3

2
≤N≤1. (4.4)

Recognizing that P
(

av,ag,σ,N
)

is a nonlinear function, an iterative solution using a gra-
dient descent is used to locate the parameters that minimize Eq. (4.3). With X standing
for one parameter of

(

av,ag,σ,N
)

, we have

Xnew=Xold−γ�∇
∥

∥MtP(Xold)−Cij

∥

∥, (4.5)

which is

Xnew=Xold−γ
(

MT
t

(

MtP(Xold)−Cij

)

)T
JPX , (4.6)
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Figure 6: Comparison: Coherence functions (solid red line) calculated from the inverted heterogeneity spectrum
of Fig. 5 compared with observed coherences (blue outlined circles).

where JPX is the Jacobian of the function P with respect to parameter X. The inversion
result is that ag=28,N=−0.4,σ=0.9; av becomes extremely large as the gradient descent
iteration continues, so we set av = 2000 to the physical reasonable limit: 2000 km as the
scale invariance up-limit length [29]. A comparison of the best fit to observed coherence
functions predicted from the inverted power spectrum is shown in Fig. 7.

For this model, R-squared is 0.52 and the reduced chi-squared is 1.71. Note although



84 V. F. Cormier, Y. Tian and Y. Zheng / Commun. Comput. Phys., 28 (2020), pp. 74-97

Figure 7: Comparison: Coherence functions (solid red line) calculated from the inverted heterogeneity spectrum
regularized by the Klimes parameterization compared with observed coherences (blue outlined circles).

the prediction is not as good a fit, with a significant smaller coefficient of determina-
tion, the chi-square per degree of freedom is very similar to the previous inversion using
Tikhonov regularization with more parameters. This suggests the Klimes function is still
a good representation of the shape of the heterogeneity spectrum in wavenumber because
it uses many fewer parameters (only four).

4.3 Inversion adding depth dependence

All traditional global tomographic studies resolve a strong depth dependence to the het-
erogeneity spectrum in the upper mantle, e.g., Ref. [30]. The fitting of TCFs from a com-
bination of three epicentral regions in the inversion should intrinsically have strong sen-
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Figure 8: P velocity variations from the inverted power spectrum assuming depth dependency.

sitivity to this depth dependence due to the effects of crossing ray-paths similar to those
illustrated for ACF and JCTAF in Figs. 1b and 1c. Recognizing this, we next added a
depth dependency to see if we could achieve a better fit to the measured coherence mea-
surements. We let

P(k,z)=σ2(z)P(k) . (4.7)

P(k) is the inversion result obtained for the assumption of a single layer and σ(z) be-
comes the new inversion target function. σ is a measure of standard deviation of the P
velocities. In this case the gradient descent iteration becomes:

σnew =σold−2γ
(

MT
t

(

Mt

(

σ2
oldPk

)

−Cij

)

)T
σoldPk. (4.8)

The inversion result is shown in Fig. 8. A comparison of the best fit to observed coherence
functions predicted from the inverted power spectrum is shown in Fig. 9. Note in Fig. 9
that the fit to the observed coherence functions has improved considerably compared to
that obtained with the assumption of depth-independent heterogeneity (Figs. 6 and 7).
For this model, R-squared is 0.80 and the reduced chi-squared is 1.05. This improved
result shows the data are well fit and the number of the pending parameters is properly
chosen.
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Figure 9: Comparison: Coherence functions (solid red line) calculated from the inverted heterogeneity spectrum
assuming depth dependence with observed coherences (blue outlined circles).

5 Discussion and conclusions

5.1 Results assuming a single layer approximation

Figs. 5 and 6 show the inversion results with only L-2 regularization, from which we
conclude:

• 1. Large power coefficient at low wavenumbers (< 0.018 km-1) suggests that sig-
nificant heterogeneity power exists in the upper mantle at large-scale (> 350km).

• 2. A power peak at 0.022 km-1 suggests the existence of an important characteristic
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length scale of 280 km. We can also see ripples between 0.058 km-1 and 0.11 km-1,
representing smaller heterogeneity peaking at 60 km to 100 km scale length.

• 3. The power decays with increasing wave number. For wavenumber larger than
0.12 km-1, the power coefficient tends to zero. The inverted power spectrum for a
at least depth-independent model of upper mantle heterogeneity is approximately
shaped like a low pass spatial filter.

Fig. 7 shows the result of the regularized Eq. (4.2). These inverted parameters of are
ag = 28, N =−0.4, σ = 0.9, av > 2000. The inner and outer cutoff scales of the self-affine
random media [29] are the upper and lower limit for self-affine length scale:

ag ≪ x≪ av. (5.1)

The result shows that upper mantle structure may be self-affine to even larger scale (hun-
dreds of kilometers). This agrees with studies of smaller scales revealed by well-logging
data that find the Earth to be fractal [31–33]. The parameter ag is Gaussian low pass fil-
ter’s characteristic length scale. The result ag = 28 indicates that smaller heterogeneities
(smaller than 28 km) are excluded in this generalized spectrum, which agrees with our
inversion result in Fig. 5. Although these parameters have reasonable physical meanings,
the calculated coherence functions, however, are under-fit in Fig. 7. This is may be be-
cause the spectrum is over regularized by the Klimes function, true spectrum being more
complex in a broader band, and/or that the spectrum is depth dependent.

5.2 Results assuming depth dependency

5.2.1 Effects of discontinuity topography

The inverted depth dependent P-wave variance in Fig. 8 shows a rather interesting result.
Notice there are velocity variance peaks at different depths, including at the transition
zone boundaries near 400 km and 650 km. One possibility is that these large velocity
variances are the result of topography of the solid-solid phase changes at the transition
zone boundaries. The difference between a reference Earth model with no topography
on the phase changes and a true Earth with topography on those boundaries would be
equivalent to heterogeneity perturbations concentrated along the hills and valleys of the
phase change topography.

The topography of the velocity discontinuities near 400 and 650 km have been shown
to generate underside reflections of body waves that arrive as precursors to the body
waves reflected once at the surface, SS and PP. The majority of these studies have re-
solved features having lateral scale lengths on the order of 1000 km and greater, e.g.,
Ref. [34]. The maximum estimated perturbations to phase change depths approach 50
km, consistent with estimated temperature differences on the order of 50o to 300o K [35].
If temperature acted alone to affect the topography of phase changes, our coherence re-
sults suggest that significant lateral temperature differences exist in the mantle at signifi-
cantly smaller scale (50 km to 350 km) than have been previously inferred from studies of
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PP and SS precursors. From estimates of the thermal diffusivity of the upper mantle [36],
the lower scale bound (50 km), is close to the limits of the plausible persistence of the this
scale of observable temperature anomalies.

5.2.2 Effects of chemical and phase heterogeneity

An additional effect that can explain the peaks observed in the mantle heterogeneity spec-
trum is that of chemical heterogeneity, which can combine with the effects of lateral tem-
perature heterogeneities. Stixrude and Lithgow-Bertelloni [37–39] have demonstrated
that the temperature derivative of the velocity is a functional characterization of chem-
ical and phase heterogeneity in the deep Earth. The isomorphic and metamorphic part
is explained in a phase change diagram in Fig. 10, reproduced from their papers. The
phases included are: orthopyroxene (opx), clinopyroxene (cpx), high-pressure Mg-rich
clinopyroxene (hpcpx), garnet (gt), olivine (ol), wadsleyite (wa), ringwoodite (ri), per-
ovskite (pv), CaSiO3 perovksite (capv), and ferropericlase (fp), and stishovite (st). The
metamorphic contribution to mantle heterogeneity is hard to recognize by the resolv-
able scale-lengths and effects of regularization in traditional deterministic tomography
(Fig. 11).

Figure 10: Calculated phase equilibrium [37-39]. Red line assumes an adiabatic temperature profile, which
can be considered as the isomorphic contribution. Blue lines are complete phase equilibrium, which can be
considered as metamorphic contribution.

If we compare our inversion to Stixrude and Lithgow-Bertelloni’s predictions [39],
from 100 km to 800 km, as in Fig. 12, we can see that the inverted spectra seem to capture
the metamorphic contribution very well. This explains that velocity variance peaks in
our inversion result are an effect of lithofacies metamorphosis. In this mechanism 3-
D differences in temperature can move the heterogeneous collection of silicate minerals
that comprise Earth’s mantle into different regions of their phase diagrams, affecting the
relative proportions of phases and their compositions, and hence their elastic velocities
and densities.
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Figure 11: Temperature derivative of the shear wave velocity isomorphic (red-dash) and metamorphic (blue-
line), compared with example tomography model S20RTS (black-line) [39]. (Adapted from an original figure
by Stixrude and Lithgow-Bertelloni [39].)

Figure 12: Inversion result for P velocity variance (upper) compared with the total temperature derivative of S
wave velocity that incorporates effects of chemistry and phase [39].

Advances in computational seismology beginning in the 1970s, began to make it pos-
sible to identify phase changes near 400 km and 650 km from the analysis body waveform
complexities due to triplications induced by sharp changes with depth in P and S veloci-
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ties, e.g. [41]. The peaks in heterogeneity in Figs. 8 and 12 near 250 km and between 400
and 650 km, however, are not routinely identified from analyses of waveform complexity
or reflected and converted body waves, suggesting that their associated phase and chem-
istry changes are spread out over depth intervals. The peak near 800 km in Figs. 8 and 12
may be a chemical signature of slab stagnation [42] at near that depth beneath western
North America.

5.3 Summary results and future applications

In this work, we have demonstrated that stochastic tomography can be an important tool
to understand the origin of mantle heterogeneity. The association of peaks in the depth
variation of heterogeneity power with predicted solid-solid phase changes in known
mantle silicates shows that lateral temperature and chemical variations act in concert
with phase equilibria to produce significantly higher perturbations in elastic velocities
than would be predicted from the temperature derivative of a mantle in a constant phase.

To achieve our results, we took care to eliminate the effects of source-side heterogene-
ity by the use of deep focus earthquakes and by averaging individual coherences mea-
surements from clustered epicentral groups. Individual body wave measurements were
also corrected for the source-time functions and radiation patterns. With these processing
steps, applied to separate epicentral groups and large continental arrays, it may eventu-
ally be possible to employ stochastic tomography to verify or discover new solid-solid
phase changes in the deep mantle.
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Appendices

A Coherences predicted from specific heterogeneity spectra

A.1 Discretization

To calculate coherences from specific power spectra, we discretize the coherence func-
tions given by Eq. (2.1) in Section 2 as follows:

〈u1u2〉

〈φ1φ2〉

〈φ1u2〉











= IntegralMarix�P(h,k) , (A.1)
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where the Integral Matrix (I.M.) is

I.M.=
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(A.2)

Here dh and dk are numerical integral increments of depth and wave number. Subscript
i denotes the iteration over depth and j denotes iteration over wavenumber. These func-
tions a and R are only functions of depth, while θ and Bessel term J0(j�dk�Ri) are func-
tions of both wave number and depth. Functions a1 and a2 are:
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(A.3)

The τ function (pre-calculated for all ray parameter p, with increment and its first deriva-
tive are discretized as

τi(p)=
i

∑
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√

1

c2
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−p2, (A.4)
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(A.6)

Function R is the horizontal distance (great circle distance) of the two rays at specific
depth. As discussed in Section 2.1, is a function of r1, r2, p1, p2 and depth. If we do
not consider the effect of azimuth (assuming zero azimuth), and with two given incident
plane waves (fixed ray parameters), R only depends on the depth and the surface lag
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Figure 13: Geometry of two rays propagating to an array element.

distance between receivers. With the first derivative of τ function (pre-calculated), we
can easily compute R using following formula:

Ri= abs
[

lag−τ′
i (p1)+τ′

i(p2)
]

. (A.7)

If we take the azimuth into consideration, the calculation of R will differ. For the 3D case,
as shown in Fig. 13, p1 and p2 are in different planes. We may rotate them to p1

′ and p2
′

so that the rays are in the same plane.
In this case, since ZA′ is a rotation of ZA, these two length are both τ′, as well as ZB

and ZB′. If we take ∆ϕ as the rotation angle’s difference, then apply the cosine law to
triangle ∆ZBB′ and ZAA′, we can easily have the following equation.
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2
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, (A.8)

where R′ is a transform from Eq. (A.7),

R′= abs
[

lag+τ′
1−τ′

2

]

. (A.9)

Although the formulas in Eq. (2.1) integrate κ from 0 to ∞, we set an upper limit to
avoid under-sampling the integrand in regions of where it rapidly oscillates. For high
wavenumber, the grid spacing should meet:

dk≤
4πω

kτpp
. (A.10)

In numerical tests, we found a stable and accurate integration is achieved by choosing
the dκ integration interval to be 0.001 km-1 and the upper limit to be 0.3 km-1.
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B Inversion of coherence functions

Eq. (2.1) can be written as

C
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x
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where C
(

⇀

x
)

are the measured coherence functions, M
(

⇀

x,
⇀

k ,z
)

is the discretized integral

operator in Eq. (A.1); P
(⇀

k,z
)

is the 2.5-d power spectrum density function with respect
to depth and wavenumber. With an axisymmetric approximation, this can be considered
as the layered anisotropic power spectrum at each depth.

Using the measured coherence functions, we can solve for the power spectrum of the
heterogeneity by minimizing
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Figure 14: Transformation T1 and T2 in Eq. (B.5) as an up-sampling mapping, which is used to satisfy the
limitation Eq. (A.10).
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As discussed in Appendix A, the integral operator M can be discretized as an integral
matrix. Then the equation becomes

Cij =MijmnPmn, (B.3)

where Mijmn is the integral matrix in Eq. (A.2), with a dimension of (ij×mn), where i and j
are the iterations over different discrete receivers, m and n are discrete intervals of depth
and wave number respectively. i and j can be reduced to one variable or expanded to
more variables depending on the calculation of either the transverse coherence functions
(TCFs), or angular coherence functions (ACFs) or both.

We need to consider, however, the integral stability limitation, as discussed in Ap-

pendix A. If we let the grid spacing be small enough to satisfy this limitation, P
(⇀

k,z
)

may

become a function with more unknown parameters than C
(

⇀

x
)

, making this inversion an
under-determined problem. We may perform a linear transform to deal with this issue.
Assuming the operator M, we calculate the integral over wave number first, then the
integral over depth. The transform will then be

Pm′n′ =T1T2Pmn, (B.4)
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Pm′×n′ is the transformed target spectrum function and is the real target spectrum func-
tion with fewer parameters. The matrices of T1 and T2 actually work as an up-sampling
transform, which is illustrated in Fig. 14.

If we let Mt=MijmnT1T2, the object function then becomes

min
∥

∥MtPmn−Cij

∥

∥

2
. (B.6)
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The most straightforward way to do the inversion is to use a Moore Penrose inverse

P=MT
t

(

MtM
T
t

)−1
C. (B.7)

Or a more computationally efficient way, a apply gradient descent method, by iterating

Pnew=Pold−γ·∇‖MtPold−C‖. (B.8)

Since the direct inversion is hard to regularize, we may invert the coherence functions
step by step: first assuming a single layer spectrum, then add depth dependence.
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