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Abstract. In land seismic exploration, strong near-surface heterogeneities can cause
serious problems in seismic data acquisition and the quality of depth imaging. By in-
troducing random velocity models to simulate velocity fluctuations in the near-surface
layer and using the point spread function to characterize image quality, we examine
how the scattering generated in near-surface heterogeneities can affect the subsurface
image. In addition to the commonly known scattering noises which lower the signal
to noise ratio in seismic data, our results also reveal that intermediate scale hetero-
geneities generate forward scattering which forms phase or travel time fluctuations.
Due to intermediate-scale uncertainty in the shallow part of the migration velocity
model, these phase changes are carried to the target by the extrapolated wavefields,
breaking the zero phase image condition at the image point. This is a primary reason
for deteriorated image quality in regions with strong near-surface scattering. If this
intermediate-scale information can be obtained and built into the migration velocity,
the subsurface image quality can be largely improved. These results can be the ba-
sis for further numerical investigations and field experiments. The proposed analysis
method can also be used to evaluate other potential methods for dealing with near-
surface scattering.
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1 Introduction

Wave equation based prestack migration plays an important role in modern seismic
imaging and has gained wide application in oil and gas exploration. However, in land ex-
ploration, particularly in certain regions in western China and the Middle East, the near-
surface layer is often composed of highly complicated small-scale low-velocity structures
(e.g., rough topography, loess, deserts, strongly weathered layers, alluvium). Strong scat-
tering and heavy attenuation generated in this layer bring serious difficulties to seismic
acquisition and data processing [1–4]. Illustrated in Fig. 1 is a typical shot record in a re-
gion with strong shallow scattering in western China, where deep reflections are almost
completely buried in the noise. Many processes are involved in near surface scatter-
ing. Because the earth is intrinsically elastic, there are both P-to-P and P-to-S scattered
waves, causing reverberations in the shallow low-velocity layer. The undersampling due
to sparse acquisition further complicates this process. Many authors have pointed out
these effects and investigated related phenomena in either elastic or acoustic models [2,4].
For decades, researchers tested various techniques to mitigate this problem. Based on the
assumption that scattering produces random noise, most techniques attempted to sup-
press scattering effects by stacking, e.g., grouped geophones, long survey lines, wide-line
profiling and high-density acquisitions [5–7]. Although these techniques achieved lim-
ited successes in certain regions, the problems have not been satisfactorily solved in most
cases, particularly in regions with very thick gravel or rough terrain [8].
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Figure 1: A shot record in a region with strong shallow scatterings in western China.
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Figure 2: ka values versus wave frequency f and scatterer size a. ka= 10 separates the large and small angle
scattering regimes. The area enclosed by dotted line mainly generates scattered noise, and area enclosed by
dashed line mainly generates phase errors. The shaded area is the power spectrum of a 20 Hz Ricker wavelet.

The typical scales of scatterers involved in these processes are from a few meters to
several hundred meters, and their burial depths are usually less than 0.5-1 km. They
are often called ”small-scale heterogeneities” because their scales are much smaller than
those can be built into the migration velocity model. However, these heterogeneities still
cover a wide-range of scales, and scatterers of different sizes affect wave propagation in
quite different ways. The ratio between the size of the scatter and the wavelength, or the
characteristic scaleka, where k=2π/λ is the wavenumber, λ is the wavelength, and a is
the size of the scatterer, dominates the behavior of the scattering. Illustrated in Fig. 2 are
ka values in a model of 2000 m/s, and for wave frequency f between 0 and 100 Hz and a
between 0 and 500 m. Based on the scattering theory [9,10], when ka≈1 (e.g., 0.1<ka<10),
scatterers tend to deflect waves to larger scattering angles and move energy from primary
arrivals to coda waves. Because seismic migration normally assumes primary reflections,
large-angle scattering both weakens effective signals and introduces strong noise, caus-
ing low signal-to-noise ratios in data. On the other hand, when ka≫1, the intermediate
to larger scale heterogeneities tend to generate small angle (forward) scattering, mainly
causing travel time or phase errors. The actual seismic signal is broadband. The shad-
owed area in Fig. 2 represents the power spectrum of a 20 Hz Ricker wavelet. Taking
the line ka = 10 as a border to separate large/small angle scattering regimes, the a val-
ues above this line tend to cause travel time errors (area enclosed by dashed line); while
those below this line tend to generate scattering noise. Since the amplitude of scattered
wave is proportional to f 2, the high frequency wave contents below ka = 10, when in-
teracting with very small-scale scatterers, are a major source for strong scattered noise
(area enclosed by dotted line). Therefore, the scattering behavior of a broadband signal
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is jointly controlled by the frequency content of the wave and the scale distribution of the
shallow heterogeneity. The interactions generate both scattering noise and cause phase
errors. Stacking techniques may be effective for eliminating the scattering noise but not
for removing phase errors.

The current study serves two purposes. First, we propose a method to investigate
how shallow scattering affects the depth image. A random velocity layer is adopted to
simulate the shallow velocity structure, and the point spread function is used to char-
acterize the quality of the seismic depth image. Seismic imaging using reverse time mi-
gration (RTM) is used to connect the shallow random model to the depth image. The
random models can be characterized using a small number of parameters, and point
spread functions can be analyzed in either space or wavenumber domains. RTM does not
have limitations on complex velocity models. Jointly, they provide a concise and highly
flexible approach with which various techniques for solving surface scattering problems
can be evaluated. Our second purpose was to investigate how shallow heterogeneities
with different scales affect the image quality. Since scatterers of different scales affect the
imaging process differently, we separated the near surface heterogeneities into three sub-
categories – small (< 100 m), intermediate (100-300 m) and large (300-500 m and above)
– to investigate their contributions to the imaging process assuming typical seismic fre-
quencies and wave speeds. In the rest of this paper, we will use these definitions of scales
unless otherwise indicated.

2 The seismic image and its resolution

Considering a survey system composed of a source at xs and a receiver at xg to image a
target region V (x) located near x (refer to Fig. 3), under the Born approximation acoustic
seismic data recorded at xg can be expressed as

D
(

x,xg,xs,ω
)

=2s(ω)
∫

V(x)
k2

0GD

(

x′,xs,ω
)

M
(

x′
)

GD

(

x′,xg,ω
)

dx′, (2.1)

where ω is the frequency, x′ is the location of a scatterer inside V (x), k0 =ω/c0(x) is the
local wavenumber, c0(x) is the background velocity, δc(x′) is the velocity perturbation,
M(x′) = δc(x′)/c0(x) is the relative velocity perturbation, and s(ω) is the source spec-
trum. GD is the frequency domain Greens function, which represents either the actual
propagation of waves in the real earth, or, in a synthetic case, the Greens function cal-
culated in the true velocity model. GD (x

′,xs,ω) propagates the wave from the source to
the target, and GD

(

x′,xg,ω
)

propagates the scattered wave from the target to the receiver.
Acoustic reciprocity GD

(

x′,xg,ω
)

=GD

(

xg,x′,ω
)

is used. For an acquisition system com-
posed of multiple sources and receivers, the depth image at x′′ in the vicinity of x can be
expressed as

I
(

x,x′′,ω
)

= s(ω)∑
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∑
xg

GM

(

x′′,xs,ω
)

D∗
(

x,xg,xs,ω
) ∂GM

(

x′′,xg,ω
)

∂zg
, (2.2)
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Figure 3: Cartoon showing the image process and the coordinate system.

where GM is the Greens function for migration calculated using the migration velocity
model, zg is the z-component of xg. Eq. (2.2) forward propagates the source energy and
back propagates the time reversed data to generate the image. The superscript ”*” de-
notes the complex conjugate. Substituting Eq. (2.1) into (2.2), the depth image can be
expressed as (see e.g., [11, 12])

I
(

x,x′′,ω
)

=
∫

V(x)
M

(

x′
)

R
(

x,x′,x′′,ω
)

dx′, (2.3)

where

R
(

x,x′,x′′,ω
)

=2k2
0s(ω)s∗ (ω)

×∑
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∑
xg

GM

(

x′′,xs,ω
)

G∗D
(

x′,xs,ω
)

G∗D
(

x′,xg,ω
) ∂GM

(

x′′,xg,ω
)

∂zg
. (2.4)

The function R(x,x′,x′′), through both forward and backward propagations, maps the
velocity perturbation at x′ to the image atx′′. Therefore, R(x,x′,x′′) is also known as the
point spread function (PSF), which is the response of the imaging system to a point scat-
terer at x′ (see e.g., [11–16]). Introducing the local Fourier transform over local variables x′

andx′′ in the neighborhood of x, Eq. (2.3) can be converted into the wavenumber domain
kd [11, 12]

I(x,kd,ω)=R(x,kd,ω)·M(x,kd), (2.5)

where

M(x,kd)=
∫

V(x)
M

(

x′
)

eikd·x
′
dx′ , (2.6)

R(x,kd,ω)=2k2
0s(ω)s∗(ω)∑

xs

∑
xg

A(x,kd;xs,xg,ω), (2.7)
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and

A
(

x,kd,xs,xg,ω
) kd=ks+kg
←−−−−−GM (x,ks,xs,ω)G∗D (x,ks,xs,ω)G∗D

(

x,kg,xg,ω
) GM

(

x,kg,xg,ω
)

∂zg
,

(2.8)
where kd=ks+kg, and ks and kg are incident and scattered wavenumbers, and R(x,kd,ω)
is the wavenumber domain PSF. The mapping from

(

ks,kg

)

to kd in Eq. (2.8) converts the
response from acquisition coordinate

(

ks,kg

)

to target wavenumber coordinate kd.

From Eqs. (2.3) or (2.5), the image process near location x can be expressed as the con-
volution between R(x,x′,x′′) and the velocity perturbation M(x′). Therefore, the PSF is
composed of information regarding the quality of an imaging system. Note, in the above
equations, an additional variable x emphasizes the analysis is localized, i.e., the PSF itself
varies from location to location. Previous investigations [11,12,15,16] all assumed the ac-
curate migration velocity model is available, i.e., GM =GD. Under this circumstance, the
PSF only reflects errors from uneven illumination. However, in real situations, the mi-
gration velocity model has errors compared to the true velocity. To introduce this error,
we assume that

GM(x,ks,xs,ω)= aseiωδτs GD (x,ks,xs,ω), (2.9)

where the factor aseiωδτs is the error caused by an inaccurate migration velocity model,
as = |GM/GD| is the amplitude error, ωδτs = arg(GM/GD ) is the phase error, δτs is the
travel time error, and subscript s denotes these errors are carried by the source side wave
and linked to the local plane wave with wavenumber ks. Similarly, we have factor ageiωδτg

for the receiver side wave. According to Eq. (2.8), when mapped to the target, they change
A into

A′
(

x,kd,xs,xg,ω
)

= a(kd)exp[iϕ(kd)]A
(

x,kd,xs,xg,ω
)

, (2.10)

where a(kd)= asag is the amplitude error,

ϕ(kd)=
|kd|c0(x)δτ

2cos
(

Oks,kg

2

) (2.11)

is the phase error, δτ= δτs+δτg, and Oks,kg
is the opening angle between ks and kg (see

e.g., Appendix B in Ref. [17]). Substituting A′ in Eq. (2.10) for A in Eq. (2.7), we see the
factor a(kd)exp[iϕ(kd)] introduces error to the kd component of the wavenumber do-
main PSF. When transformed back to space domain, these errors affect the image. In
particular, the phase error can directly destroy the zero phase image condition, causing
serious defocusing. Because the phase error is proportional to |kd|, it will affect the high
wavenumber components more seriously, causing the image to lose fine features first.
Moreover, the mapping is not one-to-one. Two pairs of incident/scattered waves having
different wavenumber magnitudes (i.e., different frequencies) and approaching the target
from different directions may be mapped to the same wavenumber kd. Eqs. (2.1)-(2.11)
reveal connections between phase errors generated in the shallow layer to the subsurface
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image, but highly complicated propagation and mapping relations prevent us from in-
vestigating this process analytically. We will turn to use numerical methods to investigate
this process.

3 Simulating shallow scattering using a random velocity model

The shallow scattering layer is highly complicated, and it is difficult to directly character-
ize its properties. Random velocity models were used in seismology to investigate inter-
actions between waves and scatterers of different scales. Wu and Aki [9] theoretically in-
vestigated elastic wave scattering in random media. Frankel and Clayton [18] discussed
using finite difference methods to simulate seismic wave scattering in random velocity
models. Sato et al. [10] comprehensively reviewed seismic wave propagation and scat-
tering in a generally heterogeneous Earth. Random velocity models have been used to
investigate Lg-wave energy partitions in random crustal waveguides [19–21], study Pn-
wave propagation in the random upper mantle [22], simulate anisotropic scattering in the
reservoir [23], and calculate scattering in the near surface layer [24]. Major parameters
for characterizing a random velocity model are power spectrum, correlation length and
the rms velocity perturbation (see e.g., [9, 10, 18]). The type of random spectrum and the
correlation length determine the distribution of heterogeneities versus the wavelength.
Shown in Fig. 4 are three commonly used random spectra including Gaussian, exponen-
tial and self-similar [10,18]. Given the correlation length, the Gaussian random spectrum
is dominated by low wavenumbers (large scale); the self-similar spectrum has the great-
est high wavenumber (small scale) content; and the wavenumber content of exponential
spectrum lies in between the Gaussian and self-similar spectra. The correlation length
can be different along different directions, allowing control of the aspect ratio of scatter-
ers. By properly choosing these parameters, we can build random velocity models to
meet different purposes. Shown in Fig. 5 are sample velocity models for typical random
spectra and parameters, where the model size is 2 km×2 km, the background velocity is
3.5 km/s, the rms velocity perturbation is 10 %, and ax and azare horizontal and vertical
correlation lengths. From top to bottom are Gaussian, exponential and self-similar spec-
tra. We see clearly how different parameters affect the shape of the heterogeneities. For
example, models with ax > az are more suitable for sedimentary structures.

To investigate how errors of different scales in the migration velocity model can af-
fect image quality, we first generated a 2-D acoustic model, which is 10 km along the
horizontal and 5 km in depth. The model is composed of two layers, with its upper part
being a 400 m thick random layer used to simulate shallow scattering. The layer has a
low background velocity of 2000 m/s, to which is added a random velocity fluctuation.
The fluctuation has an exponential random spectrum, the rms velocity perturbation is 10
%, and the vertical and horizontal correlation lengths, ax and az, are both 200 m. The
lower layer is a homogeneous medium with a constant velocity of 3500 m/s. The density
is assumed constant throughout the model. We use this model as the true velocity model.
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To generate migration velocity models with different accuracies, the velocity in the top
layer is smoothed using a two-dimensional Gaussian filter

W(x,z)=Bexp

{

−

[

(

x

σx

)2

+

(

z

σz

)2
]}

, (3.1)

where x and z are horizontal and vertical coordinates, σx and σz are characteristic scales
controlling horizontal and vertical cutoff wavenumbers, and B is a normalization factor.
Applying Eq. (3.1) with different characteristic scales to the true velocity model can gen-
erate migration velocity models with different accuracies in shallow heterogeneities. The
smoothed models are shown in Fig. 6, where 6a is the original true velocity model with-
out being filtered, 6h has a constant top layer without any heterogeneity, and 6b to 6g
are models filtered with σ=σx =σz = 30, 50, 100, 200, 300 and 500 m, respectively. From
panels 6a to 6h, top layers successively lose their accuracies from small to large scale.

To further check differences among these models, their wavenumber spectra are illus-
trated in Fig. 7a with double logarithmic scales, where horizontal and vertical coordinates
are the wavenumber and normalized spectral amplitude, and different curves are spec-
tra with different σ. Illustrated in Fig. 7b are velocities along the horizontal direction
at 200 m depth, where the horizontal and vertical coordinates are distance and veloc-
ity. The unfiltered random model has the highest velocity perturbation and the richest
high wavenumber content. As σ increases, the random spectra shrink towards the low
wavenumber, and the velocity models, compared to the true velocity, gradually lose their
accuracies from small to large scales in the near-surface layer. We will use these models as
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migration velocity models to test how velocity errors of different scales affect the quality
of depth image.

4 Simulating shallow scattering using a random velocity model

Seismic data are generated by waves passing through the real earth (or for synthetic data
calculated in the true velocity model), and they carry information from heterogeneities
of all scales. Ideally, during migration, time reversed seismic data are back propagated
through the same velocity model, recovering the phase and amplitude of the original
wavefield. However, when there are errors in the migration velocity model, the back
propagated wavefields are distorted and lose correct amplitude and phase. We chose
two basic situations, plane wave and spherical wave, to investigate how the velocity er-
rors of different scales in the shallow layer can affect the reconstructed wavefield. Using
the velocity shown in Fig. 6a as the true velocity model, upward-traveling plane wave
passes through the shallow random layer, being recorded by receivers on the surface. We
then time reverse the recorded wave, followed by downward extrapolation to reconstruct
the original plane wavefield. During this process, we use models in Figs. 6a-6h as the mi-
gration velocity model and investigate relations between errors in the migration velocity
and errors in the reconstructed wavefield. Fig. 8 captures the wavefield snapshot at the
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Figure 8: Snapshots for back propagated plane waves in migration velocity models with different accuracies.
Wavefields in (a) to (h) are corresponding to velocity models in Figs. 6a to 6h, respectively.

time when the leading edge is 2 km deep, with 8a to 8h corresponding to velocity models
6a to 6h. When using the true model 6a as the migration velocity model, the recon-
structed wavefield has the highest accuracy. While models 6b to 6h are used, the results
(Figs. 8b to 8h) show increasingly distorted wavefields, in which travel time errors make
the wave front biased from the original plane wave, and focusing/defocusing cause am-
plitude fluctuations. They form the amplitude and phase errors in Eq. (2.9). Some energy
is moved from the primary wave to the coda wave behind the back propagation direc-
tion. Precursors, converted from time-reversed coda waves formed during the forward
propagation, appear in front of the wavefront. The coda waves and precursors form the
scattering noise. For a spherical wavefront, similar results can be seen in Fig. 9, with 9a
to 9h as back propagated wavefield snapshots corresponding to velocity models 6a to 6h.
Due to the shrinking wavefront, the precursors are more severe than in the plane wave
case. In both cases, we see that errors in shallow velocity models can seriously affect the
accuracy of the reconstructed wavefields. As the migration velocity model loses more
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Figure 9: Similar to Fig. 8, except for spherical waves. Wavefields in (a) to (h) are corresponding to velocity
models in Figs. 6a-6h, respectively.

intermediate and large scale components, the back propagated wavefront becomes more
distorted. The accuracy of the migration velocity model, particularly its intermediate to
large scale accuracy, is vital to reconstruct a high quality back propagated wavefield for
imaging.

5 The effects of shallow scattering on the point spread function

From Eq. (2.3) or Eq. (2.5), the image can be expressed as a convolution between R(x,x′,x′′)
and the velocity perturbation M(x′). As a generalized image, the PSF contains all infor-
mation about the resolution and defects of the imaging system. Investigating the behav-
ior of PSFs allows study the influence of velocity model error on the quality of an imaging
system. There are two different ways to calculate the PSF. With the first method, we could
calculate Greens function GD using the true velocity model and GM using the migration
velocity model with given errors, followed by using Eqs. (2.5)-(2.8) to calculate the PSF
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Figure 10: The PSFs calculated in different migration velocity models. The rows from top to bottom are
space-domain PSFs and their amplitude and phase spectra in wavenumber domain. The four columns are
calculated in the true velocity model (Fig. 6a), 100-m smoothed model (6d), 300-m smoothed model (6f), and
the background model (6h), respectively.

(Refs. [11, 12]). According to Eq. (2.3), if the velocity perturbation is a sufficiently small
scatterer, i.e., M(x)≈ δ(x), where δ(x) is the Dirac delta function, we have I(x)≈ R(x).
Alternatively, the PSF could be directly obtained by imaging a point scatterer [24, 25].
The PSFs calculated from both methods are equivalent. We used the second method in
following calculations.

We used the velocity model shown in Fig. 6a and implanted a point scatterer with 10
% velocity perturbation at (5000 m, 3000 m) to generate the synthetic data. The acqui-
sition system was composed of 101 surface shots located between distances 2500 m and
7500 m. Each source has 501 receivers with the source located at the center of the receiver
array. The shot and receiver intervals were 50 m and 10 m, and the source time function
was a 16 Hz Ricker wavelet. Then, we used velocity models shown in Fig. 6 as the mi-
gration velocity models to calculate PSFs. The results are shown in Fig. 10, where three
rows from top to bottom are space-domain PSFs and their amplitude and phase spectra
in wavenumber domain. The four columns from left to right were calculated using the
true velocity model (Fig. 6a), 100-m smoothed model (6d), 300-m smoothed model (6f),
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and the background velocity (6h), respectively. The space-domain PSF obtained using
the true velocity model, even with strong scattering in the synthetic data, was well fo-
cused and unbiased. When using velocity models in Fig. 6d, the corresponding PSF was
slightly affected but still well focused. When the smoothing radius increased to 300 m,
the near-surface layer started to lose middle to large scale velocity perturbations. The
PSFs were seriously affected, and apparent artifacts develop. If we do not have any in-
formation on velocity perturbations in the near surface layer, the PSF has to be calculated
using the constant background velocity, and its focusing is severely degraded.

We further analyze effects of shallow velocity errors on the amplitude and phase spec-
tra of PSFs in the wavenumber domain. The results are shown in the second and third
rows in Fig. 10. The amplitude spectra are normalized to unity and the phase spectra are
normalized to between ±π/2. For spectrum obtained using the true velocity model, the
amplitude spectrum is rich in high-wavenumber content, indicating the highest spatial
resolution. The phase spectrum is close to zero in a broad wavenumber domain, indi-
cating the zero phase image condition is met even for relatively high wavenumbers. As
the near surface layer gradually loses accuracies from small- to large-scale, the ampli-
tude spectra continually shrink towards the low-wavenumber and the phase error in-
creases and damages the zero phase image condition (columns 2 to 4). When the phase
error approaches±π/2 , constructive interference becomes impossible. As pointed out
in Eqs. (2.7) to (2.11), the phase and travel time errors are generated in the near surface
layer, and then carried to the target by the propagation and mapping to affect the PSF.
Numerical calculations clearly reveal this, even with complex processes involved.

6 Influence of migration velocity errors on the depth image

To investigate the effect of near surface scattering on the seismic image, we constructed
velocity models which included both a shallow random velocity layer and deep reflec-
tors. The model size, acquisition geometry and source parameters were the same as those
used before. A similar random velocity model was used for the shallow layer. The lower
part of the model was composed of 5 layers (as in Fig. 11a). Four sets of synthetic data
were calculated for models with their top layers having rms perturbations of 0%, 5%,
10%, and 15%, but their random shape functions were the same as in Fig. 11a. Shown in
Fig. 12 are shot gathers calculated in these models. For the three rows from top to bottom,
the shot locations are at distances 2.5, 5.0, and 7.5 km, respectively. For the four columns
from left to right, the rms velocity perturbations are 0%, 5%, 10%, and 15%, respectively.
As can be seen in the left column in Fig. 12, without shallow scattering (rms= 0%), the
primary and head waves are clearly seen. Reflections from deep interfaces can be clearly
identified and their phases are highly coherent. With the increase of rms perturbations
in the random layer, strong coda waves are formed, making the signal-to-noise ratio low.
The reflection signals become incoherent. When the rms velocity fluctuations increase
to 10%-15% (columns 3 and 4), the shot gathers are dominated by scattering noise and
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Figure 11: Similar to those shown in Fig. 6, except their lower parts are replaced by a layered structure.

reflection signals can hardly be identified. The synthetic data appear like the real data
shown in Fig. 1, except here we used the acoustic model.

As the first test, assuming we do not have detailed information in the near surface
layer, the velocity model with a constant top layer, Fig. 11h, is used for migration. Depth
images are calculated using RTM, and are shown in Fig. 13, where 13a-13d are from
synthetic data sets with rms velocity perturbations of 0%, 5%, 10%, and 15%, respectively.
In Fig. 13a, since there is no near-surface scattering in the true velocity model (rms= 0),
the deep reflectors can be perfectly imaged. When the rms velocity perturbations in the
true velocity reach to 5%, the depth image is only slightly affected. However, if rms
velocity fluctuations in the true velocity model reach to 10%-15%, the image encountered
serious problem. Recall the results in Section 4, where there are serious phase errors in
reconstructed wavefield. The phase error is the primary reason responsible for the image
problem. These results resemble the situation encountered in practice.

By investigating the behavior of PSFs in previous sections, we see that if certain in-
termediate to large scale velocity perturbations can be built into the migration velocity,
the amplitude and phase errors in PSF can be significantly reduced. To verify this in the
imaging process, we chose the model shown in Fig. 11a (rms= 10%) as the true veloc-
ity model to calculate a synthetic data set. To generate migration velocity models with
different accuracies, we follow the previous sections and apply Eq. (3.1) to smooth the
shallow velocity perturbations in the true velocity model. Resulting models are shown
in Fig. 11, where 11a is the true velocity model without being smoothed, 11h is the model
without perturbations in the top layer, and 11b-11g are models smoothed with σ = 30,
50, 100, 200, 300 and 500 m, respectively. From panels 11a to 11h, top layers gradually
lose their accuracies from small to large scale. Then, RTM was performed using these



182 X.-B. Xie et al. / Commun. Comput. Phys., 28 (2020), pp. 167-186

0

3

4

2

1

rms=0 rms=5 rms=10 rms=15

0

3

4

2

1

0

3

4

2

1

-5 0 5 -5 0 5 -5 0 5 -5 0 5

(a)

(b)

(c)

offset/km

ti
m

e/
s

ti
m

e/
s

ti
m

e/
s

offset/km offset/kmoffset/km
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models as the migration velocity. No first arrival muting or demultiple was used. The
resulted images shown in Figs. 14a to 14h were calculated by using models 11a to 11h as
the migration velocity.

Fig. 14a is the image calculated by using the true model as the migration velocity. The
deep reflectors are properly imaged. The results indicate that, even with strong scatter-
ing noise and serious phase fluctuations in the data, a correct migration velocity model
can repair the wavefield during the back propagation, and a depth image of reasonable
quality can be obtained. At the other extreme, if the background velocity is used, the



X.-B. Xie et al. / Commun. Comput. Phys., 28 (2020), pp. 167-186 183

0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

 D
ep

th
/k

m
 

Distance/km
0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

Distance/km

0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

 D
ep

th
/k

m
 

0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

(a) (b)

(c) (d)

Figure 13: RTM images. The synthetic data sets are calculated in models with different rms velocity perturba-
tions in shallow layers, with (a) 0%, (b) 5%, (c) 10%, and (d) 15%, respectively. The images are calculated in
migration velocity models with a constant top layer.

0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

 D
ep

th
/k

m
 

Distance/km
0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

Distance/km

0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

 D
ep

th
/k

m
 

0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

 D
ep

th
/k

m
 

0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

 D
ep

th
/k

m
 

0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 14: Depth images calculated using different migration velocity models shown in Fig. 11, where panels
(a) to (h) corresponding to velocity models shown in 11a to 11h.



184 X.-B. Xie et al. / Commun. Comput. Phys., 28 (2020), pp. 167-186

image quality is poor (Fig. 14h). Although it is difficult to create a migration velocity
model including every detail, it is possible to retrieve certain intermediate to large scale
perturbations and build them into the migration velocity to improve the image quality.
By investigating Figs. 14b-14g, when the smoothing factor σ≤ 100 m, the image is only
slightly affected. As σ reaches 300 m (Fig. 14f), the image is apparently affected. With
even larger σ, images are seriously affected. These results indicate that velocity pertur-
bations of intermediate to larger scales are important for high quality imaging. By com-
bining techniques such as the near-surface high-precision velocity model building, full
waveform inversion in near surface layer, wave equation based static correction, or other
more sophisticated methods [26–28] , it is possible to obtain a high-precision near surface
velocity model just for the top 0.5-1.0 km to meet the required accuracy. On the other
hand, the small scale velocity errors in the migration model do not contribute much to
the phase error in the image. Considering retrieving such small-scale velocity structures
is impractical, their effect may be removed using a filtering or stacking method.

7 Discussions and conclusion

We studied how shallow heterogeneities affect the seismic image. A random velocity
model was used to simulate the shallow velocity structure, and reverse time migration
was used to connect the errors in the migration velocity model to the errors in the depth
image. In addition to the commonly known scattering noise which lowers the signal
to noise ratio of the data, the phase errors generated by the intermediate to large scale
heterogeneities due to multiple forward scattering is another important source of de-
graded image. The behavior of seismic wave scattering is closely related to the wave-
length and the size of the scatterer. To investigate how these characteristic scale lengths
affect the imaging process, we generated migration velocity models with accuracies of
different scales, and studied their effects in different aspects including data noise, wave
front distortion and coda/precursor in downward extrapolated wavefield, the amplitude
and phase errors in point spread function, and the quality of depth image. Our investiga-
tion indicated that, if high resolution velocities down to 100-300 m scale can be built into
the near surface migration velocity model, the phase errors can be largely removed and
the image quality can be significantly improved. It is possible using current acquisition
density for imaging and the corresponding near-surface velocity inversion techniques to
build velocity models with such accuracy. Most existing methods attempt to suppress
scattering through stacking and filtering, which should be effective for reducing the ran-
dom noise. However, coherent phase errors should be compensated using high precision
migration velocity mode. The current numerical simulations were conducted in a con-
stant density acoustic media under the 2D geometry, and no free surface condition was
used. Further studies may be extended to more realistic situations, e.g., elastic model, 3D
scattering, and using random velocity parameters based on local near surface velocity
structures.
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