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Abstract. We generalize the existing distorted Born iterative T-matrix (DBIT) method
to seismic full-waveform inversion (FWI) based on the scalar wave equation, so that it
can be used for seismic FWI in arbitrary anisotropic elastic media with variable mass
densities and elastic stiffness tensors. The elastodynamic wave equation for an ar-
bitrary anisotropic heterogeneous medium is represented by an integral equation of
the Lippmann-Schwinger type, with a 9-dimensional wave state (displacement-strain)
vector. We solve this higher-dimensional Lippmann-Schwinger equation using a tran-
sition operator formalism used in quantum scattering theory. This allows for domain
decomposition and novel variational estimates. The tensorial nonlinear inverse scat-
tering problem is solved iteratively by using an expression for the Fréchet derivatives
of the scattered wavefield with respect to elastic stiffness tensor fields in terms of mod-
ified Green’s functions and wave state vectors that are updated after each iteration.
Since the generalized DBIT method is consistent with the Gauss-Newton method, it
incorporates approximate Hessian information that is essential for the reduction of
multi-parameter cross-talk effects. The DBIT method is implemented efficiently using
a variant of the Levenberg-Marquard method, with adaptive selection of the regu-
larization parameter after each iteration. In a series of numerical experiments based
on synthetic waveform data for transversely isotropic media with vertical symmetry
axes, we obtained a very good match between the true and inverted models when
using the traditional Voigt parameterization. This suggests that the effects of cross-
talk can be sufficiently reduced by the incorporation of Hessian information and the
use of suitable regularization methods. Since the generalized DBIT method for FWI
in anisotropic elastic media is naturally target-oriented, it may be particularly suitable
for applications to seismic reservoir characterization and monitoring. However, the
theory and method presented here is general.
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1 Introduction

Seismic full-waveform inversion (FWI) promises images of the underground that are
sharper and of higher resolution than those in conventional migration velocity analy-
sis and travel time tomography [1–5]. However, FWI is characterized by several chal-
lenges [4], including a very strong sensitivity of the inversion to the initial model and
a very high computational cost. The sensitivity of the FWI result to the starting model
may be reduced by the use of multi-scale regularization methods [6, 7], the calculation
of higher-order Fréchet derivatives [8], envelope inversion [9] or some kind of renor-
malization [10, 11]. Also, the computational cost may be significantly reduced using a
simultaneous source method [12] and/or some kind of domain decomposition [13, 14].

Many FWI methods have been developed on the basis of the acoustic wave equation
[1–19]. The acoustic approximation may be adequate for many imaging purposes. For
applications of the FWI method to seismic reservoir characterization and monitoring,
however, it is essential to use the elastodynamic wave equation [20–25]. This is because
shear-waves contain important information about the nature and content of pores and
cracks [22, 26, 27]. To increase the realism of FWI, it may also be important to account for
the effects of seismic anisotropy [28–44].

When a seismic wave propagates in a heterogeneous medium the wavelength is often
large compared to the scale-size of pores, cracks and other heterogeneities so that the
wave cannot ‘see the details of the microstructure but only a smeared-out or averaged
structure. If the heterogeneous microstructure has certain preferred directions then the
average response on the macroscopic level will be anisotropic [26]. Many reservoirs are
transversely isotropic due to fine layering [45] and/or the presence of aligned fractures
[46]. Also, the shale layers that typically surround the reservoir formations are known to
be transversely isotropic due to the presence of aligned clay minerals [47,48]. The Curie-
Neumann principle suggests that if the microstructure has certain symmetries then the
macroscopic response will show the same symmetries [27, 49]. However, it is important
to keep in mind that symmetries in geology are always approximate [49]. In any case,
seismic anisotropy is an academically interesting topic of great practical interest.

The goal of FWI in anisotropic elastic media is to reconstruct multiple parameter fields
from the observed waveforms. In a general medium, there are 21 independent elastic
stiffness parameters and the mass density [27]. The number of independent parame-
ters can, of course, be reduced when material symmetries are present [27], but multi-
parameter FWI can be very challenging even for just a few independent parameters [36].
Involving multiple parameters increases the nonlinearity of the inversion process and
also introduces parameter crosstalk; that is, the influence of one elastic parameter on the
data associated with another elastic parameter [32, 39, 50].
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The problem with parameter crosstalk is particularly significant when using a gradient-
based steepest-descent method [39]. This is because the steepest-descent method does
not account for the multiparameter character of the anisotropic elastic FWI problem [39].
To mitigate the problem with parameter crosstalk, one can try to change the parameteri-
zation of seismic anisotropy [33–35, 37, 40–43, 51] and/or to include Hessian information
in the inversion process [39]. However, it is not obvious that a parameterization of seis-
mic anisotropy is optimal for FWI in heterogeneous anisotropic elastic media if the so-
called radiation patterns discussed in [33–35,37,40–43,51] are not overlapping very much.
This is because such radiation patterns are calculated under the unrealistic simplifying
assumption of homogeneity and isotropy. In this paper, we derive expressions for the
Fréchet derivatives of the scattered wavefield with respect to perturbations of different
stiffness tensor elements in terms of modified Green’s functions and wavefields that are
updated after each iteration during the nonlinear inversion process. These expressions
represent a more realistic model for the response of a localized stiffness perturbation
within a heterogeneous anisotropic elastic medium, because nonlinear effects of multiple
scattering are accounted for. The study of [39] implies that it is equally or more impor-
tant to account for Hessian information in the iterative inversion process, than to search
for the optimal parameterization of the model, when performing multi-parameter FWI
in anisotropic elastic media. Our experience is that one can often obtain very good in-
version results on the basis of the Voigt stiffness parameterization, provided that Hessian
information is properly accounted for and a suitable regularization method is used to
deal with the ill-posed nature of the multi-parameter FWI problem. In any case, many
researchers have already studied the benefits of using different parameterizations of seis-
mic anisotropy within the context of FWI, and there seems to be a need for more investi-
gations of the importance of Hessian information in this context. Therefore, in this study
we develop a Gauss-Newton consistent scattering approach to FWI in anisotropic elastic
media that takes into account such Hessian information in an approximate manner. More
specifically, we shall develop an elastodynamic generalization of the distorted Born iter-
ative T-matrix (DBIT) method that Jakobsen and Ursin [5] introduced for acoustic FWI.
Since our generalization of the DBIT algorithm involves not only elastodynamic effects
and seismic anisotropy but is also naturally target-oriented [52], it may be particularly
suitable for applications to seismic reservoir characterization and monitoring.

The outline of this paper can be described as follows. In “The nonlinear direct scat-
tering problem”, we discuss seismic forward modeling in arbitrary anisotropic elastic
media. First we show that the particle displacement and the strain fields satisfies two
coupled integral equations. Then we express these two coupled integral equations in
operator notation and combine them into a single integral equation of the Lippmann-
Schwinger type, which can be solved using an integral operator formalism known from
the scalar case [5, 10, 14, 48, 53–56]. In “The nonlinear inverse scattering problem”, we
present an anisotropic elastic version of the DBIT method [5, 14]; and also provide some
details for implementation. In “Numerical examples”, we test it’s performance on syn-
thetic seismic waveform data”. The new elastodynamic DBIT algorithm can in principle
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be used with any parameterization of seismic anisotropy, but we show numerical results
obtained using the Voigt stiffness parameterization only. In “Concluding remarks”, we
also present some ideas for future work. The paper also contains three appendices with
modified Green’s functions, a derivation and a summary of the DBIT algorithm.

2 The nonlinear direct scattering problem

2.1 Two coupled integral equations

We work in the frequency domain and assume that the components of the particle dis-
placement vector ui(x) at point x due to a single-force source density with components
Si(x) in an anisotropic elastic medium with stiffness tensor component field Cijkl(x) and
mass density ρ(x) satisfy the elastodynamic wave equation [57, 58]

[

Cijkl(x)uk,l(x)
]

,j
+ρ(x)ω2ui(x)=−Si(x). (2.1)

We assume that ui(x) is proportional to eiωt, where ω is the angular frequency. Under the
assumption that the medium is unbounded and the wavefield goes to zero at infinity, the
solution of the elastodynamic wave equation (2.1) is given by [57]

ui(x)=
∫

dx′gij(x,x′)Sj(x
′), (2.2)

where the Green’s function gij(x,x′) per definition satisfies the following equation:

[

Cijkl(x)gkm,l(x,x′)
]

,j
+ρ(x)ω2gim(x,x′)=−δimδ(x−x′). (2.3)

In order to derive a volume integral equation for the components ui(x) of the particle
displacement field, we first decompose the stiffness tensor components Cijkl(x) and the
corresponding mass density as ρ(x) as

Cijkl(x)=C
(0)
ijkl(x)+∆Cijkl(x), (2.4)

ρ(x)=ρ(0)(x)+∆ρ(x), (2.5)

where C
(0)
ijkl(x) and ρ(0)(x) are the stiffness elements and mass density of an arbitrary

reference medium and ∆Cijkl(x) and ∆ρ(x) are the corresponding perturbations, that are
not necessarily small. From Eqs. (2.1), (2.4) and (2.5), we get

[

C
(0)
ijkl(x)uk,l(x)

]

,j
+ρ(x)ω2ui(x)=−Si(x)−

[

∆Cijkl(x)uk,l(x)
]

,j
−ω2∆ρ(x)ui(x). (2.6)

By treating the two last (contrast-source) terms on the right-hand side of Eq. (2.6) just like
ordinary sources and using Eq. (2.2), we obtain

ui(x)=u
(0)
i (x)+

∫

dx′g
(0)
ij (x,x′)

{

[

∆Cjklm(x
′)ul,m(x

′)
]

,k
+ω2∆ρ(x′)ui(x

′)
}

, (2.7)
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where

u
(0)
i (x)=

∫

dx′g
(0)
ij (x,x′)Sj(x

′), (2.8)

and g
(0)
ij (x,x′) is the solution of

[

C
(0)
ijkl(x)g

[0]
km,l(x,x′)

]

,j
+ρ(x)ω2g

(0)
im (x,x′)=−δimδ(x−x′). (2.9)

In Eq. (2.7), u
(0)
i (x,ω) is the wavefield in the reference model due to the vectorial source

with components Si(x
′), and g

(0)
ij (x,x′,ω) is the reference medium Green’s function. If

the reference medium is homogeneous then one can use simple analytical formulae to
calculate the Green’s function for the reference medium, see Appendix A. Otherwise, the
reference Green’s functions must be computed using ray theory [58] or numerically [59].

The integral equation (2.7) is not convenient for inversion, since it contains the deriva-
tives of the stiffness perturbation tensor. However, one can effectively move the gradient
operator from the stiffness perturbation to the Green’s function if one assumes that the
wavefield approaches zero at infinity. By performing a partial integration [58] and mak-
ing use of the well-known symmetries of the elastic stiffness tensor, the integral equation
(2.7) can be rewritten exactly as

ui(x)=u
(0)
i (x)+

∫

dx′M
(0)
ijk (x,x′)∆Cjklm(x

′)ǫlm(x
′)+ω2

∫

dx′g
(0)
ij (x,x′)∆ρ(x′)uj(x

′). (2.10)

In order to allow for the use of abbreviated subscripts for symmetric tensors (in
the next section), we are introducing here the well-known strain tensor ǫkl(x) =
(1/2)[uk,l(x)+ul,k(x)] and a less well-known third-rank tensor M(0)(x,x′), which has the
following tensor components [48, 60]:

M
(0)
ijk (x,x′)=−

1

2

[

g
(0)
ij,k′(x,x′)+g

(0)
ik,j′(x,x′)

]

. (2.11)

By taking spatial derivatives of Eq. (2.10) at position x, one can show that the strain field
satisfies the following integral equation [60]:

ǫij(x)=ǫ
(0)
ij (x)+

∫

dx′Γ
(0)
ijkl(x,x′)∆Cjklm(x

′)ǫlm(x
′)+ω2

∫

dx′M
(0)
ijk (x,x′)∆ρ(x′)uk(x

′),

(2.12)
where the components of the fourth-rank tensor Γ(0)(x,x′) are defined by [48, 60]

Γ
(0)
ijkl(x,x′)=

1

4

[

g
(0)
ij,kl′(x,x′)+g

(0)
kj,il′ (x,x′)+g

(0)
il,kj′(x,x′)+g

(0)
kl,ij′ (x,x′)

]

. (2.13)

Γ
(0)
ijkl(x,x′) gives the ij component of strain at x due to the kl component of stress at x′.

In accordance with the terminology used in dynamic effective medium theory [60],
one may refer to the third- and fourth-rank tensors M(0) and Γ(0) as modified Green’s
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functions [61,62]. Explicit analytical expressions for the (modified) Green’s functions of a
homogeneous isotropic elastic medium are given in Appendix A. These expressions are
used in conjunction with the integral operator formalism derived in the next section to
compute (modified) Green’s functions for more complicated heterogeneous anisotropic
elastic media required for direct iterative nonlinear inversion [5, 14].

2.2 Integral operator formalism

To allow for a rigorous mathematical derivation based on concepts from modern physics,
we now express the two coupled integral equations (2.10) and (2.12) in operator nota-
tion using Dirac’s bracket notation for linear integral operators and state-vectors in dual
Hilbert spaces [55] as

|u〉= |u(0)〉+M(0)∆C |ǫ〉+ω2g(0)∆ρ|u〉 , (2.14)

|ǫ〉= |ǫ(0)〉+ω2M(0)∆ρ|u〉+Γ(0)∆C |ǫ〉 , (2.15)

where the matrix elements of the (local) scattering potential operators ∆C and ∆ρ are
given by 〈x|∆C |x′〉= ∆Cijkl(x)δ(x−x′) and 〈x|∆ρ|x′〉= ∆ρ(x)δ(x−x′) in the real-space
coordinate representation.

Following [5, 60], we now rewrite the two coupled integral equations (2.14)-(2.15) for
the displacement and strain fields in block-matrix form as

|ψ〉= |ψ(0)〉+G(0)V |ψ〉 , (2.16)

where

|ψ〉=

[

|u〉
|ǫ〉

]

, |ψ(0)〉=

[

|u(0)〉

|ǫ(0)〉

]

(2.17)

represent the combined displacement-strain state in the actual and reference medium,
respectively; and

G(0)=

[

ω2g(0) M(0)

ω2M(0) Γ(0)

]

, V=

[

∆ρ 0
0 ∆C

]

(2.18)

are 2×2 matrices of integral operators.

The higher-dimensional integral equation (2.16) for the combined displacement-strain
state vector |ψ〉 has the same form as the Lippmann-Schwinger equation in quantum
scattering theory [55, 56]. This is an agreeable feature because it permits us to modify
the highly developed perturbative and iterative methods developed to solve scattering
problems in quantum mechanics for the use in seismic modelling. Following [55, 56], we
now introduce a transition operator (or T-matrix) by

V |ψ〉=T |ψ(0)〉, (2.19)
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where V is given in Eq. (2.18) and T is the transition operator. We can then rewrite the
Lippmann-Schwinger equation (2.16) as

|ψ〉= |ψ(0)〉+G(0)T |ψ(0)〉. (2.20)

In order to obtain an integral equation for the transition operator, we first apply the scat-
tering potential operator V on the integral equation (2.20) from the left

V |ψ〉=V |ψ(0)〉+VG(0)T |ψ(0)〉. (2.21)

By using the definition (2.19) of the T-matrix in conjunction with Eq. (2.21), we obtain

T |ψ(0)〉=V |ψ(0)〉+VG(0)T |ψ(0)〉. (2.22)

Since the reference medium and hence the reference state vector |ψ(0)〉 may be chosen
arbitrarily, it follows that the transition operator also satisfies an integral equation of the
Lippmann-Schwinger type [5]

T=V+VG(0)T, (2.23)

which has the following exact formal solution

T=(I−VG(0))−1V, (2.24)

where I is the identity operator.
Since the above solution is equivalent to (a well-known expression [55, 56] derived in

Appendix B):

T=V(I−G(0)V)−1, (2.25)

the transition operator also satisfies the following integral equation

T=V+TG(0)V. (2.26)

Therefore, it follows from Eqs. (2.20) and (2.26) that the integral equation (2.16) is equiv-
alent to

|ψ〉= |ψ(0)〉+GV |ψ(0)〉, (2.27)

where the Green’s operator G for the actual medium satisfies the following integral equa-
tion

G=G(0)+G(0)TG(0), (2.28)

that in conjunction with Eqs. (2.16) and (2.27) will be used later in the context of nonlinear
inverse scattering to update the forward model and the data residuals after each iteration.

If Gaussian elimination is used to solve the integral equation (2.23) or (2.26) via matrix
inversion in the real-space coordinate representation then the asymptotic computational
complexity of calculating the T-matrix in the general anisotropic case will scale like N3

for large numbers of grid blocks N. However, Gaussian elimination is not optimal [63]
and so we may try to accelerate the T-matrix approach by domain decomposition [14].
Also, one can avoid the need to invert a huge matrix by using a variational approach
discussed at the end of this section.
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2.3 Domain decomposition via scattering-path operator formalism

Without loss of generality, we assume that the arbitrary heterogeneous and anisotropic
background medium contains a population of Nd heterogeneous (and non-overlapping)
domains, so that the scattering potential operator V given in Eq. (2.18) for the whole
model can be written in diagonal block matrix form as

V=
{

Vαδαβ

}

, α,β=1,··· ,Nd, (2.29)

where δαγ is the Kronecker delta and the operator Vα represents the scattering potential
operator for the αth domain, that is generally anisotropic and heterogeneous. We can also
write the Green’s function operator G(0) in non-diagonal block matrix form as

G(0)=
{

G
(0)
αβ

}

, α,β=1,··· ,Nd, (2.30)

where G
(0)
αβ is related to the interaction between two domains β and α that may or may

not the same; in the sense that the source and receiver may or may not be in the same
domain. Following [14, 64], we then assume that the corresponding transition operator
can be written as

T=
{

Tαβ

}

, α,β=1,··· ,Nd, (2.31)

where the scattering-path operator (SPO) elements Tαβ account for all scattering events
that start and end in domains α and β, respectively [64]. By using the above decom-
position in conjunction with the Lippmann-Schwinger equation (2.23) for the transition
operator, one can show that [14]

Tαγ=Vαδαγ+Vα

Nd

∑
β=1

G
(0)
αβ Tβγ. (2.32)

The above equation can be rewritten exactly as [14, 60]

Tαγ= tαδαγ+tα

Nd

∑
β=1

G
(0)
αβ (1−δαβ)Tβγ, (2.33)

where

tα =Vα+VαG
(0)
αα tα (2.34)

is the t-matrix for the αth domain; it is considered isolated from all the other domains (see
also [48]). This scattering-path operator decomposition is highly suitable for implemen-
tation on a parallel computing platform. On the basis of the scalar wave equation, [14]
discuss a block-matrix representation of the SPO and an interesting link to Strassen’s [63]
algorithm for fast matrix inversion that could be used to further develop and implement
the above equations in the real-space coordinate representation.
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2.4 Estimates of the transition operator via a variational approach

In quantum scattering theory, researchers [55, 56] use two main types of approaches;
namely, perturbation theory and variational methods. Perturbation theory is commonly
used in the seismic community, but variational methods are less well-known. Perturba-
tion theory is often based on the assumption of weak scattering (e.g., the distorted Born
approximation). Renormalization methods can in principle be used to eliminate the weak
scattering assumption, but this is easier to do for the nonlinear direct scattering problem
than for the corresponding nonlinear inverse scattering problem [11]. Variational ap-
proaches are fundamentally different from perturbation theory, since they are not based
on an expansion of the wavefield or the various integral operators in powers of a cou-
pling constant. We here focus on the application of the variational approach to direct
nonlinear scattering, but it is possible that variational methods may be useful in future
attempts to reduce the sensitivity of scattering-based FWI on the starting model.

The purpose of variational formulas is to develop approximations for the wavefield,
the Green’s function or the T-matrix [56]. In this section, we shall modify the varia-
tional formulas that Newton [56] derived for the estimation of the transition operator in
quantum scattering theory so that it can be used to estimate the transition operator in
elastodynamic scattering theory. Let us first insert Eq. (2.23) into Eq. (2.26) to obtain the
nonlinear equation

T=V+TG(0)T−TG(0)VG(0)T, (2.35)

which is then subtracted from the sum of Eqs. (2.23) and (2.26),

T=V+VG(0)T+TG(0)V−TG(0)T+TG(0)VG(0)T. (2.36)

The first variation of the left-hand side produced by small changes in V on the right side
is given by [56]

δT=(V−T+TG(0)V)G(0)δT+δTG(0)(V−T+VG(0)T)=0, (2.37)

by virtue of Eqs. (2.23) and (2.26). Thus, if we start with a guess of the transition operator
(e.g., the transition operator from a previous iteration of the DBIT algorithm) and insert
it to the RHS of Eq. (2.36), the calculated T will be a considerable improvement [56].

The above variational approach can in principle be used to estimate the overall tran-
sition operator for the whole model. Alternatively, the variational approach can be used
to estimate the individual t-matrices of the different domains involved in the domain de-
composition method described in the previous section. In any case, the main idea of the
variational approach is to allow for iterative estimates of the transition operator that are
not based on a perturbation expansion and, therefore, not based on any weak scattering
assumptions [56].
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3 The nonlinear inverse scattering problem

3.1 The distorted Born iterative T-matrix inversion method

The nonlinear inverse scattering problem in anisotropic elastic media is to estimate the
stiffness tensor and mass density fields from measurements of the displacement-strain
state vector |ψ〉 defined in Eq. (2.17) performed at the receiver surface. The nonlinear
inverse scattering problem can be reduced to a sequence of linear inverse problems by
using the distorted Born iterative T-matrix inversion (DBIT) method that can be described
as follows: First, we invert the variation in the projection of the displacement-strain state
vector onto the receiver surface 〈r|ψ〉−〈r|ψ(i)〉 for the variation in the scattering potential
operator (V(i+1)−V(i)) using a distorted Born approximation [5, 14, 55, 56, 65]:

〈r|ψ〉−〈r|ψ(i)〉= 〈r|G(i)(V(i+1)−V(i))|ψ(i)〉, i=1,2,··· . (3.1)

The above equation represents the change in the data vector due to a small change in the
model between two successive iterations. Here G(i) and |ψ(i)〉 are the Green’s operator
and the wavefield corresponding to the scattering potential operator V(i) from the ith it-
eration, which is given by Eq. (2.18) and assumed known; V(i+1) is the updated scattering
potential matrix at iteration i+1. Then we update the displacement-strain state vector |ψ〉
within the model and the Green’s function operator G using Eqs. (2.20) and (2.28)

|ψ(i+1)〉= |ψ(0)〉+G(0)T(i+1) |ψ(0)〉, (3.2)

G(i+1)=G(0)+G(0)T(i+1)G(0), (3.3)

where

T(i+1)=T (V(i+1)) (3.4)

is the corresponding T-matrix. In Eq. (3.4), the T -symbol denotes either the exact solution
(2.25), the more variational estimate (2.36) and/or the domain decomposition method
discussed in Subsection 2.3. Although the updated reference media in the above algo-
rithm may be anisotropic, the sequence of estimated scattering potentials V(i) is defined
relative to a fixed homogeneous isotropic elastic reference medium; which simplifies the
parameterization of seismic anisotropy.

The distorted Born iterative T-matrix inversion (DBIT) method described above is
fully consistent with the Gauss-Newton method [5], which is known to converge quadrat-
ically, provided that the initial model is sufficiently close to the true (unknown) model.
However, our implementation of the Gauss-Newton method based on an integral equa-
tion description may be more attractive for certain applications than a conventional im-
plementation based on finite differences and the adjoint state method. This is because our
approach gives the Fréchet derivative operator directly in terms of the modified Green’s
function and strain field that can be updated after each iteration in an efficient manner
based on domain decomposition and the variational methods discussed below.
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3.2 Fréchet derivatives

In accordance with common practice, we now assume that only the particle displacement
vector data are available, so that the data residual equation (3.1) reduces to

〈r|u〉−〈r|u(i)〉=ω2〈r|g(i)(∆ρ(i+1)−∆ρ(i))|u(i)〉+〈r|M(i)(∆C(i+1)−∆C(i))|ǫ(i)〉, (3.5)

where we have used Eqs. (2.17)-(2.18). In the real-space coordinate representation [5, 64],
Eq. (3.5) becomes

uk(r)−u
(i)
k (r)=ω2

∫

dxg
(i)
kl (r,x)

[

∆ρ(i+1)(x)−∆ρ(i)(x)
]

u
(i)
l (x)

+
∫

dxM
(i)
klm(r,x)

[

∆C
(i+1)
lmno (x)−∆C

(i)
lmno(x)

]

ǫ
(i)
no (x), (3.6)

or

uk(r)−u
(i)
k (r)=ω2

∫

dxg
(i)
kl (r,x)

[

∆ρ(i+1)(x)−∆ρ(i)(x)
]

u
(i)
l (x)

+
∫

dxM
(i)
kL (r,x)

[

∆C
(i+1)
LM (x)−∆C

(i)
LM(x)

]

ǫ
(i)
M (x), (3.7)

in the abbreviated subscript notation of Auld [66], where repeated upper case indices run
from 1 to 6. Here, we have also used Einstein’s summation convention and the defini-
tion of stiffness and mass density perturbations given in Eqs. (2.4)-(2.5). Eq. (3.7) can be
expressed more compactly as

δu
(i)
k (r)=ω2

∫

dxg
(i)
kl (r,x)δρ(i+1)(x)u

(i)
l (x)+

∫

dxM
(i)
kL (r,x)δC

(i+1)
LM (x)ǫ

(i)
M (x), (3.8)

δu
(i)
k (r)≡uk(r)−u

(i)
k (r), (3.9)

δρ(i+1)(x)≡∆ρ(i+1)(x)−∆ρ(i)(x), (3.10)

δC
(i+1)
LM (x)≡∆C

(i+1)
LM (x)−∆C

(i)
LM(x), (3.11)

where δu
(i)
k (r) is the data residual wavefield at the ith iteration and δC

(i+1)
LM (x) (δρ(i+1)(x) )

is the variation in the stiffness elements (mass density) between two successive iterations.
The next step is to decompose the mass density and stiffness model perturbations as

∆ρ(x)=ρ(0)(x)m(0)(x), ∆CLM(x)=
21

∑
p=1

B
(p)
LM(x)m(p)(x), (3.12)

where m(0)(x) is a perturbation of the mass density normalized to the density of the
reference medium, m(p)(x) represents the perturbation of one of the 21 elastic parameters

and B
(p)
LM(x) represents the tensor field structure related to the model (elastic) parameter

m(p). The B-matrices in Eq. (3.12) associated with different elastic parameters depend on
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the parameterization of the model. In this study, we parameterize the model by using
perturbations in the elastic stiffness elements that are normalized to the corresponding

properties in an isotropic reference medium, or some other stiffness parameters. If C
(0)
KL is

non-zero, we use the following expression for the normalized stiffness perturbations

m(p)=(CKL−C
(0)
KL )/C

(0)
KL , K,L→ p=1,··· ,21, (3.13)

and a similar expression for the normalized mass density perturbations. By using model
parameter perturbations that are normalized in this way, we ensure that the different
(non-zero) model parameter perturbations are of approximately similar size, which is an
advantage for multi-parameter FWI.

It follows from Eqs. (3.8)-(3.12) that

δu
(i)
k (r)=

∫

dxF
(i,0)
k (r,x)δm(i+1,p)(x)+

21

∑
p=1

∫

dxF
(i,p)
k (r,x)δm(i+1,p)(x), (3.14)

where the full set of scalar and vectorial Fréchet derivatives after the ith iteration is given
by

F
(i,0)
k =ω2g

(i)
kl (r,x)ρ(0)u

(i)
l (x), F

(i,p)
k (r,x)=M

(i)
kL (r,x)B

(p)
LM(x)ǫ

(i)
N (x), p=1,··· ,21. (3.15)

Note that m(i,p) represents the inverted perturbation in the pth model parameter relative
to a static reference medium, whereas δm(i,p) is the variation of this quantity between two
successive iterations.

After a discretization of the seismic model involving Nr receivers and N grid blocks,
Eq. (3.14) can be expressed as

δu(i)=
21

∑
p=0

F(i,p)δm(i+1,p), (3.16)

where dim(δu(i))=3Nr , dim(F(i,p))=3Nr×N and dim(δm(i+1,p))=N×N.
Finally, we rewrite Eq. (3.16) in standard matrix form suitable for the application of

linear inversion theory [67] at each iteration of the nonlinear DBIT algorithm as

δu(i)=F(i)δm(i+1), (3.17)

where
F(i)=(F(i,0),F(i,1),··· ,F(i,21)), (3.18)

and
δm(i)=(δm(i,0),δm(i,1),··· ,δm(i,21))T, (3.19)

are block-matrices of Fréchet-derivatives and model parameter perturbations, respec-
tively.

The above form (3.17) of the data perturbation equation is convenient, since it allows
us to use standard theory for solving linear inverse problems at each iteration of the
distorted Born iterative method for nonlinear inversion.
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3.3 Regularized least-squares solution for each linearized inversion step

In order to estimate the model parameter perturbation vector δm(i+1) given an observa-
tion of the data residual vector δu(i) after the ith iteration, we minimize the following
objective function [5, 14]

O(δm(i+1))= ||δu
(i)
obs−F(i)δm(i+1)||2+(λ(i))2||δm(i+1)||2, (3.20)

where λ(i) is a regularization parameter depending on the iteration number, discussed
at the end of this section. By minimizing the above objective function, we arrive at the
following iterative algorithm for updating the model parameter vector [4, 5]:

m(i+1)=m(i)+
[

H(i)+(λ(i))2I22N

]−1
G(i), (3.21)

where I22N is the 22N×22N unit matrix,

G(i)=ℜ
[

(F(i))†δu(i)
]

(3.22)

is the gradient vector (in the direction of steepest descent), and

H(i)=(F(i))†F(i) (3.23)

is the corresponding approximate Hessian matrix; which is very important for multi-
parameter FWI [39]. In Eqs. (3.22)-(3.23), the † symbol denotes the Hermitian conjugate.
The selection of the optimal regularization parameter for nonlinear inverse scattering is
challenging [5, 67–70]. Here we adjust the regularization parameter automatically after
each iteration using a variant of the Levenberg-Marquard scheme for self-adaptive selec-
tion of the regularization parameter detailed by [67, 69]. In this scheme, we start with
an initial value of the regularization parameter derived by comparing deterministic and
Bayesian inversion approaches [69]

λ(0)=
√

mean
[

diag(H(i))
]

. (3.24)

The value of the regularization parameter at the ith iteration is given by

λ(i)= aλ(i−1), (3.25)

where a is a constant that is smaller or larger than unity if the change in the relative resid-
ual data error ǫd between two successive iterations is negative or positive, respectively.

The relative residual data error ǫ
(i)
d is defined by [5]

ǫ
(i)
d =

||δu(i)−δuobs||

||δuobs||
. (3.26)

According to Morozov’s discrepancy principle [14, 68], the iterative nonlinear inversion
procedure should preferably stop when ǫd approaches the noise level η. A pseudo code
for implementation of the DBIT inversion algorithm in conjunction with the scheme for
adaptive regularization parameter adjustment associated with Eqs. (3.21)-(3.26) and Mo-
rozov’ discrepancy principle [14, 68] is given in Appendix C.
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4 Numerical examples

The DBIT algorithm for anisotropic elastic media developed in this study can in prin-
ciple be used to invert for the mass density and elastic stiffness fields of arbitrary het-
erogeneous anisotropic media. However, we shall in the numerical experiments restrict
ourselves to heterogeneous transversely isotropic (VTI) media with vertical symmetry
axes with known mass density fields. As discussed by [27, 66], a VTI medium is gener-
ally characterized by the five independent Voigt stiffness parameters C11, C33, C55, C66,
C13. Since we have five independent elastic parameters to invert for at every point in
space, the inverse scattering problem in VTI media is still very challenging, both due to
the large memory requirements and CPU times required and due to the problem with
cross-talk in the multi-parameter FWI [33, 37, 38, 40, 42, 44].

Although we shall use a normalized version of the Voigt stiffness parameterization
(Eq. (3.13)), it is important to realize that the generalized DBIT algorithm we have de-
veloped can in principle be used with any parameterization of the seismic anisotropy,
as long as one knows the corresponding B-matrices. The novelty of the present work
is mainly related to our treatment of the nonlinear effects of multiple scattering (in the
forward problem); which are taken into account by updating the (modified) Green’s func-
tions and wavefield within the model after each iteration by using the transition operator
formalism (see Eqs. (3.2)-(3.4)).

4.1 The three-layered VTI model

We first apply the anisotropic elastic DBIT algorithm to the three-layered VTI model
shown in Fig. 1, where a strongly anisotropic VTI medium is sandwiched between two
weakly anisotropic VTI media. The values we have used for the different Voigt param-
eters are given in Table 3 in the paper of Jakobsen and Johansen [47], suggesting we are
here using realistic values for the Voigt stiffness parameters based on ultrasonic labora-
tory measurements of shales samples from a borehole in the Brage field, North Sea. In
our model parameterization based on Eq. (3.13), we employ a homogeneous isotropic ref-
erence medium with α=4270 m/s, β=2735 m/s and ρ=2300 kg/m3. Thus, the contrast
between the initial model and the true (unknown) model is relatively large (See Fig. 1).

The three-layered test model, which is 2000 m wide and 500 m deep, was discretized
into 80 × 20 grid blocks that are 25 m in each direction. The grid blocks take up the
entire model in Fig. 1. Synthetic seismic waveform data in the frequency domain were
generated for this model using a full integral equation solution in the frequency domain
(Fig. 2). Frequency domain waveform data can be difficult to interpret, but they include
diffractions and internal multiples in addition to travel time and amplitude data as well
as turning rays. To avoid inverting unrealistically small data residuals, we added random
Gaussian white noise to the computed waveform data. The signal-to-noise ratio was 60
dB. We employed 80 sources and 80 receivers uniformly distributed along a single line at
the top of the model. The sources were explosive and we used all three components of
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Figure 1: The true three-layered VTI model. Displayed are images of the perturbations in the different Voigt
parameters normalized to the corresponding property in the homogeneous isotropic reference medium.
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Figure 2: Synthetic waveform data corresponding to the true three-layered VTI model in Fig. 1 with the signal-
to-noise ratio 60 dB. Displayed are the different components of the data vector dk, which contain the three
different components of particle displacement at all receiver positions for all source positions, organized into
a single vector with components k= 1,··· ,3Ns Nr , where Ns and Nr are the numbers of sources and receivers,
respectively.
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Figure 3: Results of anisotropic elastic FWI based on the DBIT algorithm for the synthetic waveform data
shown in Fig. 2.

the particle displacement vector at the surface as data.
We performed a sequential inversion of data corresponding to 3 Hz, 5 Hz, 7.5 Hz, 10

Hz and 15 Hz using the normalized version of the Voigt stiffnesses parameterization de-
fined in Eq. (3.13). We carried out DBIT inversion using the workflow with self-adaptive
selection of the regularization parameter described in Appendix C. The initial model was
a homogeneous isotropic elastic medium identical to the isotropic elastic medium used in
the parameterization of the model. In accordance with Morozov’s discrepancy principle,
we exited the iteration loop when the normalized data error became similar to the noise
level (0.001). The inverted model is shown in the form of images and model vectors in
Figs. 3 and 4, respectively. Clearly, one can see from Figs. 1, 3 and 4 that the inverted
three-layer VTI model is very similar to the true three-layer VTI model. Fig. 5 illustrates
the performance of the DBIT algorithm. Here one can see that both the overall model
errors decreased monotonically down to their minimum values, leading to very encour-
aging initial inversion results for this simple test model.

4.2 A resampled VTI Hess model

It is necessary to investigate the performance of the anisotropic elastic DBIT algorithm for
a more complicated and realistic model of the underground. We choose the resampled
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Figure 4: Results of anisotropic elastic FWI based on the DBIT algorithm for the synthetic waveform data shown
in Fig. 2. Displayed is a comparison of the true model vector mk (straight lines) with the inverted model vector
mk (oscillatory curve) obtained using the DBIT algorithm on the synthetic waveform data in Fig. 1. Also shown
is the model parameter vector corresponding to the homogeneous isotropic initial model. The blue horizontal
line represents the starting model.
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Figure 5: Performance of the DBIT algorithm for the layered VTI model shown in Fig. 1. Plots number 1 and
2 from the top show how the relative residual data ǫd and model errors ǫm vary with the number of iterations.
Plots 3 and 4 from the top show the value of the regularization parameter λ and the frequency f used at the
different iterations. The relative residual data error ǫd is defined in Eq. (3.26). The overall model inversion
error ǫm at the ith iteration is defined by ||mtrue−mi||/||mtrue||.
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Figure 6: The true VTI Hess model. Displayed are images of the non-dimensional perturbation in the different
Voigt parameters normalized to the corresponding property in the homogeneous isotropic reference medium.

version of the VTI Hess model shown in Fig. 6; which is laterally inhomogeneous and
includes a high-velocity salt body as well as several faults and layers with different VTI
elastic properties. We employ an arbitrary homogeneous isotropic reference medium
with arbitrary but typical velocities α = 3652 m/s and β = 1778 m/s and mass density
ρ= 2300 kg/m3. This implies that the difference between the initial model and the true
(unknown) model is relatively large (Fig. 6). The resampled Hess VTI model, which is
1000 m wide and 400 deep, was discretized into 40×16 grid blocks that are 25 m in each
direction. The grid blocks take up the entire model in Fig. 6.

Synthetic seismic waveform data in the frequency domain were generated for this
model using a full integral equation solution in the frequency domain (not shown). We
first added random Gaussian white noise to the computed waveform data, so that the
signal-to-noise ratio was 80 dB and 40 dB in two different numerical experiments. We
employed 40 sources and 40 receivers uniformly distributed along a single line at the
top of the model. The sources were explosive and we used all three components of the
particle displacement vector at the surface as data.

Again, we performed a sequential inversion of data corresponding to 3 Hz, 5 Hz, 7.5
Hz, 10 Hz and 15 Hz using the normalized version of the Voigt stiffnesses parameteri-
zation defined in Eqs. (3.13). We employed the anisotropic elastic DBIT algorithm with
self-adaptive selection of the regularization parameter described in Appendix C. The ini-
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Figure 7: Results of anisotropic elastic FWI based on the DBIT algorithm for the VTI Hess model in Fig. 6
when the signal-to-noise ratio is 80 dB.

tial model was a homogeneous isotropic elastic medium identical to the isotropic elastic
medium used in the parameterization of the model. In accordance with Morozov’s dis-
crepancy principle, we exited the iteration loop when the normalized data error became
similar to the noise level. The inverted models for signal-to-noise ratio equal to 80 dB or
40 dB (noise levels equal to 1e-4 and 1e-3) are shown in the form of images in Figs. 7 and 8,
respectively. Clearly, one can see from Figs. 6, 7 and 8 that the inverted VTI Hess models
at 80 dB and 40 dB signal-to-noise ratios are very similar to the true VTI Hess model, and
that the results are stable with respect to increments in the noise. It is interesting to see
that the parts of the VTI Hess model with large contrasts in the elastic parameters (e.g.,
the salt body) are better reconstructed than the interfaces with weaker contrasts in the
anisotropic elastic properties. Figs. 9 and 10 illustrates the behaviour of the anisotropic
elastic DBIT algorithm at 80 dB and 40 dB signal-to-noise ratio. Since the inversion is
terminated when the data error becomes equal to the noise level, it should not come as a
surprise that total computation time is larger at 80 dB than at 40 dB signal-to-noise ratio.
In both Figs. 9 and 10, the relative residual data error is seen to decrease monotonically
with increasing number of iteration, except from the last three iterations in the case of 80
dB. The overall model error is seen to decrease monotonically with the iteration number
and to remain stable when the data error starts to increase.
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Figure 8: Results of anisotropic elastic FWI based on the DBIT algorithm for the VTI Hess model in Fig. 6
when the signal-to-noise ratio is 40 dB.
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Figure 9: Performance of the DBIT algorithm for the true VTI Hess model shown in Fig. 6 when the signal-
to-noise ratio is 80 dB. Plots number 1 and 2 from the top show how the relative residual data ǫd and model
errors ǫm vary with the number of iterations. Plots 3 and 4 from the top show the value of the regularization
parameter λ and the frequency f used at the different numbers of iterations. The total CPU-time including the
generation of synthetic seismic waveform data for selected frequencies were 118.4 min.
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Figure 10: Performance of the DBIT algorithm for the true VTI Hess model shown in Fig. 6 when the signal-
to-noise ratio is 40 dB. Plots number 1 and 2 from the top show how the relative residual data ǫd and model
errors ǫm vary with the number of iterations. Plots 3 and 4 from the top show the value of the regularization
parameter λ and the frequency f used at the different numbers of iterations. The total CPU-time including the
generation of synthetic seismic waveform data for selected frequencies were 84.1 min.

5 Concluding remarks

We have generalized the distorted Born iterative T-matrix (DBIT) method that Jakobsen
and Ursin [5] developed on the basis of the scalar wave equation so that it can be used in
conjunction with the elastodynamic equation for an arbitrary anisotropic elastic contin-
uum with variable mass density as well as elastic stiffnesses. The theory is general, but
the numerical results were performed for laterally homogeneous and inhomogeneous
VTI media with known mass density. We found a good match between the true and
inverted models using a normalized Voigt stiffness parameterization and we think that
the use of approximate Hessian information was essential for the good performance of
our Gauss-Newton consistent DBIT algorithm. We used the exact solution (2.25) to up-
date the transition operator after each iteration, but we have found that the variational
estimate (2.36) gives practically identical results. The memory requirements and compu-
tational cost scales like N2 and N3, respectively. Therefore, future research will focus on
the acceleration of the generalized DBIT method presented here, for example, by involv-
ing the use of Fast Fourier transforms for the calculation of certain convolution integrals
and the use of hierarchical matrices for the computation of the inverse Hessian for large
models. The anisotropic elastic FWI method presented here may be particularly suit-
able for time-lapse studies, since the inversion can then be focused on a relatively small
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target-domain (a reservoir under production) under the assumption that the background
model is known. The fact that the DBIT method involves an explicit expression for the
sensitivity matrix in terms of modified Green’s functions and strain fields will become an
advantage when it comes to the estimation of uncertainties via Bayesian inversion meth-
ods. Our plans for future research include numerical experiments on lower anisotropy
symmetry media and applications to seismic fracture characterization as well as time-
lapse studies.

A Reference Green’s function and it’s spatial derivatives

A.1 Ray-theory (modified) Green’s function

Assuming that there are no caustics, ray-theory Green’s function G at the receiver R
generated at the source S in a vertically inhomogeneous isotropic medium, in which c
and ρ are the space-dependent P- or S-wave velocities and density, reads:

Gin(R,S;ω)=
A(R)gi(R)gn(S)exp[iωτ(R,S)]

4π[ρ(S)ρ(R)c(S)c(R)]1/2
. (A.1)

Here τ(R,S) is the traveltime from S to R, A(R) is the scalar ray amplitude at R, g(X) is a
unit polarization vector at X and ω is a circular frequency. To construct the derivative of
the ray-theory Green’s function, we need to know the slowness vectors p(S) and p(R).
They are given by

p(S)=g(S)/c(S), p(R)=g(R)/c(R). (A.2)

The first derivative Gin,k(R,S;ω) of the Green’s function with respect to xk(S) then reads

Gin,k(R,S;ω)= iωGin(R,S;ω)pk(S). (A.3)

Similarly, the derivative Gin,l(R,S;ω) of the Green’s function with respect to xl(R) reads

Gin,l(R,S;ω)= iωGin(R,S;ω)pl(R). (A.4)

As an example, here is the second derivative Gin,kl(R,S;ω) of the Green’s function with
respect to xk(S) and xl(S):

Gin,kl(R,S;ω)=−ω2Gin(R,S;ω)pk(S)pl(S). (A.5)

The other second derivatives can be obtained in a similar way. For each wave, one needs
to know the traveltime and the ray amplitude, τ and A, and two unit vectors, t(S) and
t(R), tangent to the ray at S and R, calculated by using a computer program like for ex-
ample ANRAY [71]. In case of P wave, one can specify a polarization vector g as follows:

g(P)≡ (t1,t2,t3). (A.6)
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In case of S wave, one can specify polarization vectors g as follows:

g(S1)≡D−1(t1t3,t2t3,−D2), g(S2)≡D−1(−t2,t1,0), (A.7)

D=(t2
1+t2

2)
1/2, t2

1+t2
2+t2

3=1. (A.8)

Here ti are components of the unit vector t. This way of the determination of polarization
vector is possible in homogeneous and vertically inhomogeneous media. In generally
heterogeneous media, it will be necessary to provide S-wave polarization vectors at R
using a computer program like for example ANRAY [71].

A.2 Leading-term (modified) ray-theory Green’s function

The classic ray-theory formulas for the (modified) Green’s function given above are rel-
atively simple but correspond to the far-field approximation. Since near-field effects can
obviously be important for multiple scattering within a seismic model, we derive here
new results that are nearly as accurate as the exact formulas, but much simpler and more
suitable for semi-analytical calculations.

In a homogeneous isotropic medium, the exact Green’s function G can be expressed
in the form of a three-term ray series. The ray series can be split into two parts, one
corresponding to P waves, the other to S waves. It was shown that the dominant role in
each of the series (for P and S waves) is played by two terms. The first term, the zero-
order term represents the well-known far-field approximation. The second term, in the
ray theory called the additional term, represents a part of the first-order term of the ray
series. It is the part, which contributes to the direction perpendicular to the polarization
of the zero-order term. In the case of P waves, the additional term is perpendicular to the
direction of the propagation of the P wave, in the case of S waves, the additional term
is parallel to the direction of the propagation. Together, the two above-described terms
are called the leading term of the ray series. As [72] shows, the accuracy of the leading
term does not differ much from the complete (exact) Green’s function. Because of its
importance, we concentrate on the leading term only, in the following.

A.2.1 Leading-term Green’s functions for P- and S-waves

In the case of a homogeneous elastic isotropic medium, the leading term has the form [72]:

Gkl(r,ω)=GP
kl(r,ω)+GS

kl(r,ω), (A.9)

where

GP
kl(r,ω)∼

A(r)

r

(

NkNl+
α

iωr
eJkeJl

)

(A.10)

and

GS
kl(r,ω)∼

B(r)

r

(

eJkeJl+
β

iωr
NkNl

)

. (A.11)
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In Eqs. (A.10) and (A.11), α and β are P- and S-wave velocities, r is the source-receiver
distance, vector N is identical with the vector g(P) defined in Eq. (A.6) and vectors e1 and
e2 are identical to vectors (A.7). Lower-case indices run from 1 to 3, upper-case indices
run from 1 to 2. Einstein summation rule is applied. The terms A(r) and B(r) are defined
as

A(r)=
exp(iωr/α)

4πρα2
(A.12)

and

B(r)=
exp(iωr/β)

4πρβ2
. (A.13)

A.2.2 Modified Green’s function for P-waves

We concentrate first on the GP
kl part of the Green’s function. Eq. (A.10) can be rewritten to

the following form:

GP
kl(r,ω)∼

A(r)

r2

[

aδkl+
xkxl

r

(

1−
a

r

)]

, (A.14)

where

a=α/iω. (A.15)

Let us introduce the following notation:

X(r)=A(r), Ykl(r)= aδkl+
xkxl

r

(

1−
a

r

)

, Z(r)= r2. (A.16)

Eq. (A.14) can be then rewritten as

GP
kl(r,ω)=

XYkl

Z
. (A.17)

From Eq. (A.17), we obtain for the first and second spatial derivatives of GP, the following
expressions:

GP
kl,i=

(X,iYkl+XYkl,i)Z−XYklZ,i

Z2
(A.18)

and

GP
kl,ij=

X,ijYkl+XYkl,ij+X,iYkl,j+X,jYkl,i

Z

−
Z,ijXYkl+X,iZ,jYkl+Ykl,iZ,jX+X,jZ,iYkl+Ykl,jZ,iX

Z2
+2

Z,iZ,jXYkl

Z3
. (A.19)

The first and second spatial derivatives of X, Ykl and Z read:

X,i=A,i=A
iωxi

αr
=

A

a

xi

r
, (A.20)
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X,ij =A,ij=A
[ iω

αr

(

δij−
xixj

r2

)

−
ω2xixj

α2r2

]

=
A

a

[1

r

(

δij−
xixj

r2

)

+
xixj

ar2

]

, (A.21)

Ykl,i=
δikxl+δilxk

r

(

1−
a

r

)

−
xkxlxi

r3

(

1−2
a

r

)

, (A.22)

Ykl,ij =
δikδjl+δilδjk

r

(

1−
a

r

)

−
δikxlxj+δilxjxk+δjkxlxi+δjlxkxi+δijxkxl

r3

(

1−2
a

r

)

+
xkxl xixj

r5

(

3−8
a

r

)

, (A.23)

Z,i=2xi, (A.24)

Z,ij=2δij. (A.25)

A.2.3 Modified Green’s function for S-waves

Let us now concentrate on S waves (in elastic, isotropic and homogeneous media).
Eq. (A.11) for GS

kl part of the Green’s function can be rewritten to the form:

GS
kl(r,ω)∼

B(r)

r

[

δkl+
xkxl

r2

(2b

r
−1

)]

, (A.26)

where

b=β/iω. (A.27)

Let us introduce the following notation:

V(r)=B(r), Wkl(r)=δkl+
xkxl

r2

(2b

r
−1

)

, U(r)= r. (A.28)

Eq. (A.26) can be then rewritten as

GS
kl(r,ω)=

VWkl

U
. (A.29)

From Eq. (A.29), we obtain for the first and second spatial derivatives of GS, the following
expressions:

GS
kl,i=

(V,iWkl+VWkl,i)U−VWklU,i

U2
(A.30)

and

GS
kl,ij=

V,ijWkl+VWkl,ij+V,iWkl,j+V,jWkl,i

U

−
U,ijVWkl+V,iU,jWkl+U,jWkl,iV+V,jU,iWkl+Wkl,jU,iV

U2
+2

U,iU,jVWkl

U3
. (A.31)
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The first and second spatial derivatives of V, Wkl and U read:

V,i=B,i=B
iωxi

βr
=

B

b

xi

r
, (A.32)

V,ij=B,ij=B
[ iω

βr

(

δij−
xixj

r2

)

−
ω2xixj

β2r2

]

=
B

b

[1

r

(

δij−
xixj

r2

)

+
xixj

br2

]

, (A.33)

Wkl,i =
δikxl+δilxk

r2

(2b

r
−1

)

−2
xkxlxi

r4

(3b

r
−1

)

, (A.34)

Wkl,ij =
δikδjl+δilδjk

r2

(2b

r
−1

)

(A.35)

−2
δikxl xj+δilxjxk+δjkxl xi+δjl xkxi+δijxkxl

r4

(3b

r
−1

)

+2
xkxlxixj

r6

(15b

r
−4

)

,

U,i=
xi

r
, (A.36)

U,ij=
1

r

(

δij−
xixj

r2

)

. (A.37)

B Derivation of Eq. (2.25)

The transition operator T is given by Eq. (2.24):

T=(I−VG(0))−1V. (B.1)

By inverting the above Eq. (B.1) we obtain

T−1=V−1(I−VG(0)), (B.2)

or
T−1=V−1−G(0). (B.3)

By operating on Eq. (B.3) with V from the right, we obtain

T−1V= I−G(0)V. (B.4)

Inversion of the above Eq. (B.4) yields

V−1T=(I−G(0)V)−1. (B.5)

Finally, we operate on Eq. (B.5) with V from the right and obtain

T=V(I−G(0)V)−1, (B.6)

which is identical with Eq. (2.25).
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C DBIT algorithm for anisotropic elastic media

Algorithm 1 Pseudo code for implementation of the anisotropic elastic DBIT algorithm
based on a self-adaptive scheme for selection of the crucial regularization parameter λ.
In all our numerical experiments, we used a = 0.5 and b = 1.4, but these numbers are
somewhat flexible [69].

Setup source-receiver configuration
mini=minitial

for ω = ωmin to ωmax do

i=0
ǫd =1, ǫ′d=1
while ǫd > η do

i= i+1
T=Tmatrix(m,ω)

|ψ〉= |ψ〉(0)+G(0)T |ψ(0)〉
G=G(0)+G(0)TG(0)

F=FrechetDerivative(|ψ〉 ,G,ω)
H=F†F
if i==1 then

λ=
√

mean[diag(H)]
end if

m=mini+[ℜ(H)+λ2 I22N ]\ℜ(F†δu)
ǫd =‖δu−δuobs‖/‖δuobs‖
if ǫd <ǫ′d then

mini=m
λ= aλ

ǫ′d=ǫd

else

m=mini

λ=bλ

end if

end while

end for
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