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Abstract. Numerical solution of time-lapse seismic monitoring problems can be chal-
lenging due to the presence of finely layered reservoirs. Repetitive wave modeling us-
ing fine layered meshes also adds more computational cost. Conventional approaches
such as finite difference and finite element methods may be prohibitively expensive if
the whole domain is discretized with the cells corresponding to the grid in the reser-
voir subdomain. A common approach in this case is to use homogenization techniques
to upscale properties of subsurface media and assign the background properties to
coarser grid; however, inappropriate application of upscaling might result in a distor-
tion of the model, which hinders accurate monitoring of the fluid change in subsurface.
In this work, we instead investigate capabilities of a multiscale method that can deal
with fine scale heterogeneities of the reservoir layer and more coarsely meshed rock
properties in the surrounding domains in the same fashion. To address the 3-D wave
problems, we also demonstrate how the multiscale wave modeling technique can de-
tect the changes caused by fluid movement while the hydrocarbon production activity
proceeds.
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1 Introduction

Time-lapse seismic monitoring problem requires a large amount of computational re-
sources since it needs repetitive seismic imaging and waveform inversion. A classical
approach of 4D seismic data processing is often done by migrating baseline and moni-
toring data on the same smooth tomographic model. In the 4D seismic images, we can
observe that the images are misaligned due to the change of the fluid composition in the
reservoir by calculating time-shifts or applying post-stack alignment by the computation
of image difference products. We can apply ray theory based approach such as Kirchhoff
migration for the reservoir with relatively simple structures. However, when the reser-
voir includes a complicated structure (i.e., salt diapir or karsts), we often take a wave-
equation based method to resolve the seismic images with complex geology. In this case,
an accurate simulation of seismic wave propagation is important, and the computational
burden becomes more critical when we perform the wave modeling in 3D models.

In addition, characterization of the physical properties of a reservoir for flow simula-
tions is typically performed on a coarser scale than a general seismic resolution, and that
creates significant challenges for classical methods for seismic wave simulation such as
finite difference or continuous-Galerkin finite element methods, because in many cases
the domain is discretized according to the smallest elements. When the size of the grid
cell used in flow simulations is greater than the scale of earth model (or seismic), we of-
ten need to apply an upscaling or averaging technique. This might incur a distortion of
the earth properties, and too large size of the grid cell hinders a stable simulation of seis-
mic waves with high frequency. In spite of expensive computational cost, to capture the
details of the change in reservoir we need accurate simulation of seismic waves and this
calculation should be repeated at time intervals corresponding to monitoring surveys.
Therefore, many studies have been done to develop full wavefield modeling methods
and have demonstrated a method to optimize them for time-lapse calculations. For ex-
ample, Malcolm and Willemsen [1] proposed an optimization technique where a local
solver is used around the time-lapse region to prevent recomputation of the wavefield in
the unchanged overburden.

A popular approach for solving the wave equation numerically is to apply the fi-
nite difference method (FDM) [2–7]. FDM is widely used due to its easiness for dis-
cretization; however, it also has inherent drawbacks such as the problem of free surface
topography and less flexibility to deal with an unstructured mesh. The finite element
method (FEM), in contrast, provides the solutions for more flexible mesh structuring,
which can model the complex topography or fracture networks. Various FEM approach
have been proposed, and one classical method is continuous-Galerkin (CG) FEM [8–10].
However, compared to the other FEM methods, CG FEM might be computationally ex-
pensive since the global matrix is not diagonal or block diagonal, which requires non-
trivial sparse-matrix operations for multiplication of mass and stiffness matrices with the
wave solutions at each time step. As a solution of this issue, spectral element method
(SEM) is proposed by Komatitsch et al. [11–13]. Nevertheless, CG FEM still has limita-
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tion in that all the solutions are continuous on the boundary of the elements. Thus, the
wave solution can be inaccurate when we handle a media with high impedance contrast,
especially around the high contrast layer interface. This problem is removed when we
consider discontinuous-Galerkin (DG) FEM, which is initially developed for the elliptic
problem [14–16] and transport equation [17]. The DG FEM has been more widely used,
and also applied for the time-dependent wave problems [18–21]. Nevertheless, DG FEM
has its own weakness such as more complicated implementation and dispersion anal-
ysis; however, it has strong advantage over CG FEM in that the global mass matrix is
block diagonal, which makes it easier to solve the system in wave problem with large
3-D model.

Regardless of the numerical approach for discretizing the wave equation, modeling
3-D seismic waves for the time-lapse problem becomes a computationally intensive task.
Most of the codes for seismic wave propagation are designed to be scalable up to hun-
dreds and even thousands of computing cores (i.e., SPECFEM3D implementing Spec-
tral Element Method [12], or SOFI3D implementing Finite Differences, [22]). Some of
the realizations are especially attractive for usage on modern supercomputers as they
take advantages of powerful and energy efficient Graphics Processing Units (GPUs) [23].
Such implementations are still rare, however, because efficient use of GPUs requires non-
trivial programming and redevelopment of classical algorithms unless they were suitable
for GPU programming model from the beginning.

Recent development of a new class of methods, commonly referred as ”multiscale
methods, allowed solution of these problems in a more efficient way. Compared to
the conventional implementation of FEM, a remarkable feature of multiscale FEM (Ms-
FEM) [24–26] is to have the basis functions incorporate the fine scale heterogeneity of the
background property model, while the classical FEM uses identical basis function, which
is independent to the model properties throughout the entire model domain. Chung et
al. [27, 28] and Gibson et al. [29] applied the concept of MsFEM to the wave problem.
Then, Efendiev et al. [30, 31] proposed to utilize multiple multiscale basis functions that
are computed from the appropriately defined local spectral problem, which method is
called as the generalized multiscale FEM (GMsFEM). Chung et al. [32] introduced the
GMsFEM using DG method for solving the second-order wave equation, and they pro-
posed the method to apply two different types of basis functions (i.e., interior and bound-
ary basis) to capture the fine scale heterogeneity of the media on coarse scale without
performing any upscaling method. Cho et al. [33] applied the GMsFEM to simulate the
elastic waves in the fracture media to efficiently incorporate the fine-scale fractures with-
out performing a model upscaling. The advantages of the GMsFEM can be defined from
two points of view. First, the multiscale methods reduce the computational cost of the
simulations by solving problems on a coarse scale by means of special multiscale basis
functions that take the fine scale heterogeneities into account and maintain the accuracy
of the approximation. Secondly, most of the multiscale approaches are embarrassingly
parallel, which means that scalable algorithms exist, and they can be efficiently imple-
mented for modern distributed supercomputer architectures.
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The main goal of this research is to apply the DG based GMsFEM approach to time-
lapse wave simulation combined with the three-phase (gas, oil, and water) fluid sim-
ulation. In this paper, we investigate how the GMsFEM, which has been successfully
used for many applications including seismic wave simulations [27, 32, 34], can be used
for the time-lapse problems and how this method can be implemented keeping modern
supercomputer architecture in mind to approach 3-D problems.

2 Theory & method

In this paper, we demonstrate that we can effectively monitor the changes in seismic due
to reservoir changes. Also, we show that the capability of the GMsFEM wave model-
ing engine is useful for time-lapse seismic monitoring as the hydrocarbon production
proceeds. We first introduce the physics that is used for the fluid simulation. Next, we il-
lustrate the method which is employed for building background properties (i.e., density,
P- and S-wave velocity) that are required for the wave simulation. We then describe the
detailed implementation of the GMsFEM in the last part of this section.

2.1 Fluid flow simulation

For simulating the fluid behavior over the production period, we used Schlumberger

Eclipse software for black oil simulators, which considers three different phases of flu-
ids: water, oil, and gas. In black oil equation [35], water flow is simulated explicitly
together with other hydrocarbon components. The black oil equation can be expressed
as
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where B and S denote volume factor and fluid saturation, respectively, and the corre-
sponding phases are noted by the subscript: o oil, g gas, and w water. ~uw, ~uo, ~ug are
Darcy velocities of the water, oil, and gas phase in reservoirs. RV is a vaporized oil in gas
phase. RS is the ratio of volume of gas to the volume of oil at standard conditions, which
represents the phase change between the oil and gas. In detail, RS becomes smaller as the
pressure decreases, and the amount of gas dissolved in oil is reduced as the magnitude of
RS decreases. Therefore, as the pressure reduces, the volume of free gas in the reservoir
increases.

In this paper, we assumed the gas takes the largest portion in the pore volume. Also,
by applying the black-oil relationship (Eq. (2.1)), we took the phase change of the gas
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and oil into consideration. This is important, especially when we deal with the flow
simulation including gas, since large quantities of gas can come out of the solution if
parts of the reservoir gradually drops below bubble point during production.

For executing the black oil simulator, porosity φ and permeability K volumes are the
main inputs, and desired outputs would be the volumes of fluid with corresponding
effective pressure. In this study, we assume that the temperature is constant. By using the
information of the fluid saturation, we will extract the velocity and density information
as presented in the following subsection.

2.2 Seismic property model construction

We applied Eberhart-Phillips’s method [36] to set the initial velocity by using the fluid
simulation results. In their work, a multivariate analysis is performed to define an empir-
ical relationships among seismic velocity and relative rock properties: effective pressure,
porosity, and clay content in sandstone. According to the empirical relationship [36], P-
and S-wave velocities can be defined as a function of porosity φ, clay content of sandstone
C, and effective pressure Pe as follows:

V∗
p =5.77−6.94φ−1.73

√
C+0.446(Pe−e−16.7Pe),

Vs=3.70−4.94φ−1.57
√

C+0.361(Pe−e−16.7Pe).
(2.2)

We then additionally considered the velocity of the fluid since the information of the
fluid composition is missing in above relation. Given that Vs is less sensitive to the fluid
components, we applied a correction to Vp relation as

1

Vp
=

1−φ

V∗
p

+
φg

Vg
+

φw

Vw
+

φo

Vo
, (2.3)

where subscript g, w, and o denote gas, water, and oil, respectively. We suppose that the
whole pore volume is filled with the fluids (φ= φg+φw+φo). We also assume that the
velocity of the fluid as follows: Vg = 0.480 km/s, Vw = 1.5 km/s, and Vo = 1.3 km/s. We
calculated the density volume by taking average of the rock and fluid velocity based on
the ratio as

ρ=(1−φ)ρgr+φgρg+φwρw+φoρo, (2.4)

where ρ means the bulk density, and we assume that the whole rock consists of sandstone
(ρgr ≈ 2.67 g/cm3). We are to use the background properties (Vp, Vs, ρ) that are derived
from above relations for the multiscale wave modeling.

2.3 Seismic simulation via generalized multiscale finite element method

To solve the isotropic elastic wave equation, we followed the formulation which is de-
scribed in Gao et al. [37]. Here we give a brief overview of ideas behind it, and its
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main formulations to implement the GMsFEM. We solve the elastic wave equation in
the bounded 3-D domain Ω⊂R

3

ρ∂2
t u−∇·σ= f, (σ= c : ε),

ε=
1

2

[

∇u+(∇u)T
]

,
(2.5)

where u(x,t) displacement, ρ(x) density of the medium, σ(u) stress tensor, ε(u) strain
tensor, c(x) fourth-rank elasticity tensor, and f(x,t) external source term. We apply the
absorbing boundary condition which is implemented as absorbing layers by increas-
ing damping (ALID) [38] on all surfaces of the domain. Source function located at
x0 is represented as a product of a spatial force G(x) and the Ricker wavelet in time
f = G(x)P(θ)R(t), where P(θ) controls the direction of the source as follows: P(θ) =
(cosθ,sinθ)T. The Gaussian-correlated source term G and the time dependent source
function R(t) can be expressed as

G(x)=exp

[

−
(

x−x0

7h

)2
]

,

R(t)=(1−2ψ2)exp(−ψ2),

(2.6)

where x0 is the source position, and h is the size of the fine scale element in fine mesh.
ψ=π f0(t−t0) includes the central frequency of the wavelet f0 with corresponding time
delay t−t0.

GMsFEM operates on two grids (Fig. 1) with different cell size: a coarse mesh T H

and a fine mesh T h, where h≪ H. The algorithm of this multiscale method is typically
split in two stages for convenience of understanding and implementation: the offline and
online stages. In the offline stage, we construct the basis functions on a coarse cell, which
incorporate the fine scale heterogeneity of the background properties (i.e., velocity and
density). Here, the key goal of the GMsFEM is to incorporate the highly heterogenous
background properties into the wave modeling without applying any upscaling tech-
nique. In the online stage, we perform the actual wave simulation in coarse grid by using
the basis functions that are built in the previous offline stage.

2.3.1 Offline stage: computation of basis functions

The offline stage includes preliminary computations and does not involve the solution
of the underlying wave propagation problem. The idea of coarsening in the GMsFEM is
in using the so-called multiscale basis functions that are computed on the fine grid T h

within each coarse element K ∈T H. These basis functions, therefore, take into account
the fine scale heterogeneities of media such as finely layered reservoir domains. To con-
struct the basis functions in Discontinuous-Galerkin (DG) formulation, we split the space
spanned by the multiscale basis functions in two subspaces VH(K)=V1

H(K)⊕V2
H(K). The

subspace V2
H is defined to compute the eigenmodes of the interior part the coarse element
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!"

Figure 1: Schematic sketch of the multiscale mesh with two different sizes: fine and coarse grids.

K, while another subspace V1
H considers the local eigenvalue problem at the boundary of

each coarse element ∂K.
To build the subspace V1

H(K) of boundary basis functions, we start with the local
linear elasticity problem which can be written as

−∇·(c : ε)=0 in K,

ε=
1

2

[

∇w+(∇w)T
]

,

w=δj on ∂K,

(2.7)

where δ is the delta function, and j indexes boundary nodes on ∂K including fine nodes
from h around the shaded cell in Fig. 1. Then the snapshot space W̃1

H [31, 39] (a linear
span of the harmonic extensions shown in Eq. (2.7)) can be defined as

W̃1
H =span{w1,w2,··· ,wdp}, (2.8)

where d is the level of spatial dimension (3 in this case), and p is the total number of fine-
scale boundary nodes of a coarse cell. When we deal with large model in 3-D problems,
the test function space includes a significant number of eigenvectors and corresponding
eigenfunctions. Hence, for practical implementation, we select only a few important
modes from the snapshot space W̃1

H to the actual space of the boundary basis functions
V1

H. The important modes are obtained by solving the following eigenproblem:
{

∫

K
σ(wµ) : ε(v)dx

}

û=µ

{

∫

∂K
ρwµ ·vdS

}

û, ∀v∈WH(K), (2.9)

with w,v∈W̃1
H. However, by considering the first Nb eigenvectors q={û1,û2,··· ,ûNb

} cor-
responding to the smallest eigenvalues µ1≤···≤µNb

≤···≤µall, we can take the most dom-
inant wave modes into consideration for the wave modeling. Given that the form of the
generalized eigenvalue problem is similar to the frequency-domain wave equation, the
solution of the local eigenvalue problem can be analogous to the dominant wave frequen-
cies. To put it differently, lower wave modes (or smaller µ) include longer wavelength
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information, while higher modes cover the wave components from shorter wavelength.
In this regard, the final subspace V1

H can be expressed as V1
H = span{ϕ1,ϕ2,··· ,ϕNb

}. The
subspace V1

H(K) is therefore spanned by the basis functions as

ϕi,k=Σqi,jwj,k, (i=1,2,··· ,Nb), (2.10)

where the indexes i and j denote the j-th node in the i-the vector.
To build the subspace V2

H(K) of interior basis functions, we need to find the pair

−∇·(c : ε)=λρw in K,

ε=
1

2

[

∇w+(∇w)T
]

,
(2.11)

where we set zero Dirichlet boundary condition as w=0. Then local problem shown in
(2.11) corresponds with the following system:

{

∫

Kin

σ(u) : ε(v)dx

}

zλ =λ

{

∫

Kin

ρw·vdx

}

zλ, ∀v∈V0
h (K) (2.12)

where V0
h (K) is a space of fine scale bilinear basis functions that are zero on ∂K. Kin

means the nodes that are not on ∂K, but in inner part of the coarse element K. Similarly,
as shown in the space of the boundary basis functions, we choose the first Ni eigen-
vectors corresponding to the smallest eigenvalues λ1 ≤ ··· ≤ λNi

≤ ··· ≤ λall , serving as
the interior bases V2

H(K)= span{φ1,φ2,··· ,φNi
}. Thus, the final multiscale basis function

space VH(K) =V1
H(K)⊕V2

H(K), which consists of the subspace of the interior basis and
the boundary basis, can be written as

V1
H =span{ϕ1,ϕ2,··· ,ϕNb

},

V2
H =span{φ1,φ2,··· ,φNi

}.
(2.13)

In the GMsFEM, these basis functions are computed only once for a specific model,
and all simulations are computed on the coarse grid. In other words, the multiscale
basis functions are independent of the source and receiver locations. Thus, this advan-
tage becomes greater when we simulate repetitive multiple shots and receiver sets such
as the wave equation based imaging or full-waveform inversion cases. Especially, in
full-waveform inversion with the GMsFEM wave modeling engine, the seismic property
model is updated in each iteration, so we would have to go back to the offline stage to
alter the basis functions. However, as we can greatly accelerate the wave modeling while
we loop over multiple shots, repetitive offline stage adds little effort to the total compu-
tation. Also, these basis functions incorporate the most dominant modes computed from
the local spectral problems, so utilizing them for the wave simulation on coarse grid can
greatly accelerate computations.

For the actual implementation of the offline stage, we applied the oversampling tech-
nique to enhance the accuracy of the GMsFEM solutions. The main goal of oversampling
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is to reduce the influence of the fixed boundary conditions that are prescribed on a cer-
tain coarse element K when we solve the local spectral problems. The concept of the
oversampling technique is that we consider a larger domain of the coarse element Kos

than the actual size of coarse element K as presented in Fig. 1 as a gray area. However,
we still maintain the boundary conditions and the formulations of the local eigenvalue
problem. After obtaining the solutions of the eigenproblem on the extended region Kos,
we resample the value on the inner part, which corresponds to the original region of K.
Through this oversampling technique, we can reduce the contribution of the prescribed
boundary condition of the local problem so the final multiscale basis functions have a
better representation of the fine-scale heterogeneity of the background properties. Gao et
al. [37] demonstrated that the oversampling plays an important role in reducing the error
of the wave solutions from the GMsFEM, and this becomes more critical when we deal
with a discontinuous-Galerkin formulation than a continuous-Galerkin approach.

2.3.2 Online stage: wave simulation in coarse mesh

At the online stage we actually solve the underlying wave equation in a significantly
reduced coarse scale space VH. The first task is to compose the global mass and stiffness
matrices by projecting the fine scale matrices to the coarse scale. We assemble the fine
scale global matrices Mh, Kh, and the source vector Fh by following the conventional
finite element assembly approach. We then build a global projection matrix R, which
consists of the multiscale basis functions as

R=(R1,R2,R3,··· ,RN)
T, (2.14)

where N is the total number of coarse elements, and the component of each row of the
global projection matrix can be expressed as

Ri=
[

Φi,1,Φi,2,··· ,Φi,j

]

, (2.15)

with Φi,j being the j-th multiscale basis function at i-th coarse node, which is determined

by Eq. (2.13). Thus, the dimension of the global projection matrix R would be ∑
N
j=1(Nb+

Ni)j×n, where n is the number of degrees of freedom of the mesh T h. By applying the
global projection matrix, we can compute the global mass and stiffness matrices in coarse
mesh as follows:

MH =RMhRT, KH =RKhRT, FH =RFh. (2.16)

By using the coarse scale matrices, the wave simulation can be performed in the coarse
mesh. We employed a second order explicit time scheme for solving the wave equation

MH
Un+1

H −2Un
H+Un−1

H

∆t2
+KHUn

H =Fn
H+DH

Un+1
H −Un−1

H

2∆t
, (2.17)

where MH, KH and DH are mass, stiffness and damping (for absorbing boundary con-
dition) coarse scale matrices, respectively. The GMsFEM uses the Symmetric Interior
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Penalty Discontinuous-Galerkin (SIPDG) method [37, 40, 41] for assembling these coarse
scale matrices. Solving Eq. (2.17) yields the solution in coarse mesh. Regarding the stabil-
ity condition of the GMsFEM, we can apply the similar range of ∆t to the time marching
as defined in the fine-scale solution. A rigorous demonstration of the stability and disper-
sion relation of the GMsFEM in solving elastic wave equation might be beyond the scope
of the paper. However, relative demonstrations can be found from other researchers’
work. For example, Chung et al. [42] presented a rigorous proof of the stability and con-
vergence of the similar multiscale method for solving the acoustic wave equation. Gibson
et al. [29] also demonstrated some examples of the numerical analysis of dispersion er-
ror for different GMsFEM parameters in the acoustic wave problem. In addition, Gao et
al. [37] showed multiple numerical examples of stability condition for conventional CG
and DG FEM in the multiscale method. Considering a rough estimation of the accuracy,
the number of basis functions around 10% of the degree of freedom provides admissible
range of errors. After obtaining the coarse scale solutions, we can reproject the coarse
scale solutions into fine mesh as

Uh=RTUH, (2.18)

where Uh has the same dimension with the fine scale grid.

2.4 Parallel implementation

Each of the two stages of the computational procedure of the method can benefit from
different types of parallelism. At the offline stage the computation of multiscale basis
functions can be performed independently for each coarse element K∈T H. Therefore,
the offline algorithm belongs to the class of embarrassingly parallel ones, and should
be essentially implemented with the MPI paradigm. Our experiments confirm a linear
speedup when the number of computing cores increases up to the number of coarse cells.

At the online stage, when the solution of the wave equation is performed on a coarse
scale, the most computationally intensive part is the matrix-vector multiplication for the
projection of fine-scale mass and stiffness matrices (Mh and Kh) into coarse-scale matrices
(MH and MH) by applying Eq. (2.16), and therefore it can also run in parallel. After im-
plementing this stage with OpenMP and CUDA parallel paradigms (using cuSparse library),
we conclude that the performance of the latter is much higher, and therefore desirable for
the parallel execution of much more computationally intensive 3-D problems.

3 Synthetic reservoir model

We selected the SPE-10 [43] model (Fig. 2) for testing the multiscale time-lapse wave sim-
ulation. The original dimension of the model is 60×220×85; however, in this case, we
only considers a part of the model 60×60×80 to have a better observation on the seis-
mic waves. The model consists of two main zones – upper and lower zone represent the
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Figure 2: A part of SPE-10 porosity model.
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Figure 3: Comparison of SPE-10 formations in map view: part of (a) Tarbert formation at 50 m and (b) Upper
Ness formation at 150 m depth.

Tarbert and Upper Ness formation, respectively. The upper formation shows a prograd-
ing (coastline advance toward the ocean as a result of the sediment accumulation) near
shore environment (Fig. 3(a)), while lower formation is fluvial which includes multiple
channels as shown in Fig. 3(b). Note that the region covered by fluvial channels show
higher porosity with good connectivity. The SPE-10 model has sufficiently fine layer
along the vertical axis, and has simple geological structure with plane top and bottom
horizons with no structural variations such as faults. The reason for choosing this model
for testing the GMsFEM wave modeling algorithm is that the SPE-10 model has fine ver-
tical layers (20% of the lateral grids) compared to lateral grid size. Therefore, we can
demonstrate how the GMsFEM can capture the fine scale model heterogeneity without
employing any averaging or upscaling methods.
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4 Numerical examples

4.1 Fluid simulation and velocity model construction

First, we performed the fluid simulation by using Eclipse black oil simulator. The fine
scale grid size is 10 m in x and y axis, and 2 m in z axis. There are a couple major initial
conditions for the fluid simulation such as pore pressure and fluid saturation. We applied
a uniform fluid pressure as an initial condition of the pressure. The pore pressure on the
first day is presented in Fig. 4(a). Note that we used the same visual perspective on the
3D cube with the pressure volumes for the rest of the 3-D property images shown in this
paper. As marked in Fig. 4, the injection well is located at the origin of the coordinate
system, and the production well is located at the point (1200 m,1200 m). Total period
of simulation is 700 days, and we inject water to enhance the production volume of hy-
drocarbon. Fig. 4(a) exhibits that the pore pressure is lower around the production well.
Also, as the production proceeds, the pore pressure of the reservoir reduces as displayed
in Fig. 4(b). At the production well, as the fluid pressure goes down, the effective stress
goes up and the rock stiffens (waves go faster).
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Figure 4: Pressure P during the injection of water over the production period: pressure at (a) day 1 and (b)
day 700.

Another important initial condition is fluid saturation – the ratio of the fluid compo-
sition trapped in pore volumes. Figs. 5(a), 5(c), and 5(e) show the initial fluid saturation.
In this case, gas takes the largest volume of the pore, and water and oil share the rest
of the volume equivalently. After 700 days of water injection and hydrocarbon produc-
tion, we could get the fluid saturation as presented in Figs. 5(b), 5(d), and 5(f). Given the
fluid saturation volumes after 700 days, we can find that water replaced the rest of the
hydrocarbons (gas and oil). In gas saturation, though large portion of gas is produced,
there still remains gas around the region with low permeability. One of key goals of this
research is to demonstrate whether the GMsFEM wave modeling engine can detect this
fine scale fluid variation without performing upscaling. Therefore, after obtaining the
outcomes of the fluid simulation, the next step would be generating velocity and density
model for the background properties of the wave modeling.
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Figure 5: Comparisons of initial and final fluid saturation over the production period: (a) gas saturation – day
1, (b) gas saturation – day 700, (c) oil saturation – day 1, (d) oil saturation – day 700, (e) water saturation –
day 1, and (f) water saturation – day 700.

We are able to compute seismic media properties such as density, P- and S-wave ve-
locities using the empirical relation of velocity with reservoir properties [44]. The initial
values for the P- and S-wave velocities needed for the Gassmann workflow are calcu-
lated with an empirical formula from Eq. (2.2). The distribution of the P-wave velocities
in the initial reservoir condition is shown in Fig. 6(a). After generating the velocity vol-
ume of the both reservoirs (before and after the production), we subtracted those velocity
volumes as Vp,Day 700−Vp,Day 1. The volume of P-wave velocity difference is displayed in
Fig. 6(b). After a large amount of gas has been produced, the velocity increased since the
pore volume is occupied with water instead of gas (vw > vg). Therefore, the sign of the
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Figure 6: Calculated initial properties with the difference (Day 700−Day 1): (a) initial P-wave velocity
(Vp,Day1), (b) difference of Vp (Vp,Day700−Vp,Day1), (c) initial S-wave velocity (Vs,Day1), (d) difference of

Vs,Day700−Vs (Vs,Day1), (e) initial density (ρDay1), and (f) difference of ρ (ρDay700−ρDay1).

difference volume is positive. In contrast, given the difference volume shown in Fig. 6(d),
S-wave velocity shows little change despite the altered fluid composition. A pure change
in fluid composition (i.e. same effective stress) will only affect Vs through a change in
the bulk density. The trend of S-wave velocity follows the trend of the effective pressure
(Eq. (2.2)) rather than that of the fluid variation. This phenomena becomes more obvious
when we express the P- and S-wave velocity as a function of Lamé constant s. When we
assume the elastic properties of isotropic linear case, the wave velocities can be deter-
mined as: Vp =

√

(λ+2µ)/ρ and Vs =
√

µ/ρ, where λ is the first Lamé parameter and µ
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is shear modulus. According to the relations, S-wave is governed by the shear modulus
and density, and the shear modulus of the fluid is negligible compared to that of the rock
matrix. Therefore, the fluid variation has little influence on the S-wave velocity volume
as displayed in Fig. 6(d), and the only effect is due to a change in bulk density. Note that
the scale of S-wave difference is less than 25 m/s, which might be hard to be detected
by applying a classical seismic measurement; however, the maximum difference of the
P-wave velocity is around 500 m/s. Figs. 6(e) and 6(f) present the initial density and the
differences in the properties, respectively. Considering the sign of the density difference,
which is positive, we could assume that the fluid density in pore volume would increase
as time goes. In other words, as the water replaces the gas, the bulk density would in-
crease.

Given the differences of the P-wave velocity and density volumes, we would expect
that the massive gas production induces the change of the travel time and the amplitude
in the time-lapse seismic. In the following section, we are to demonstrate the results of
the GMsFEM wave modeling by using these density and velocities as the properties of
the elastic media.

4.2 Multiscale wave modeling

After extracting the velocity and density information from the fluid simulation volume,
we added over- and under-burden layer to the reservoir model. We assumed that the
change of seismic properties is only triggered by the change of fluid composition. Also,
another hypothesis that we have set in this study is that there is no fluid change on the
over- and under-burden layer. Hence, we extended the model in such a way that there
is a homogeneous layer above and below the reservoir (Fig. 7(a)). The properties of the
homogeneous over- and under-burden layer are as follows: Vp=2500 m/s, Vs=1300 m/s,
and ρ=2000 m/s. In the designed model, the thickness of the reservoir is 320 m, and we
located the source at the center of the model and at a depth of 50 m. We assumed that
a horizontal well is drilled for monitoring purpose s, and the receivers are installed in
the well at 650 m depth. By investigating multiple seismic data which is acquired at
different times, we will demonstrate the influence of the change of fluid components
on the seismic waves (i.e., travel time or amplitude). The mesh used for the GMsFEM
wave modeling is presented in Fig. 7(a). The mesh is finely discretized in the reservoir
layer and the near surface area. As the source may be unstable when the size of mesh
is too coarse to capture the detailed variation around the source location [34, 37, 45], we
finely designed the mesh at near surface. When we applied a local refinement to the
mesh without placing the transition zone, the solution of the GMsFEM might include
numerical artifacts such as unnecessary reflections around the place with abrupt change
of the size of the coarse grid cells, which hinders accurate observation of the change of the
time-lapse seismic. Therefore, to suppress the numerical artifacts, we added a transition
zone colored in dark gray as presented in Fig. 7(a).

Before modeling the seismic waves at different time step of flow simulations, we first
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Figure 7: (a) Coarse scale mesh with (b) acquisition geometry. The red star indicates the seismic source, and
the green triangles show output locations (receivers). Variations in mesh cell geometry are described in the text.

demonstrate the accuracy of the GMsFEM solution by comparing the multiscale solu-
tions with the solution of spectral element method (SEM) [13]. For the test, we applied
the Ricker wavelet with 20 Hz central frequency. In SEM, we utilize the fine scale mesh
for wave modeling, and consider the solution of SEM as a reference (Fig. 8(a)). The mesh
information for the fine scale modeling in the target reservoir is as follows: dx = 10 m,
dy = 10 m, dz = 2 m. We then perform the GMsFEM wave simulation by varying the
number of basis functions. We made comparisons among the GMsFEM with different
number of basis functions to demonstrate the performance of the proposed method (Ta-
ble 1). The run-time for computing the basis functions (to f f line) is 1092 s, and the corre-
sponding run-time for the wave modeling (tonline) is measured by varying the number of
basis functions as shown in Table 1. According to the table, increasing the number of in-
terior basis functions more than ten (Ni>10) could not make a tangible difference on the
accuracy. Considering the dramatic decrease of the degree of freedom in the GMsFEM,
we could expect a large amount of speedup. One might argue that when we include the
run-time of the offline stage, we cannot expect an impressive speedup compared to the
decreased degree of freedom. However, note that the performance analysis shown in
Table 1 is performed by using a wave modeling with a single source. As the multiscale
basis functions are independent of the source-receiver geometry, we can apply the same
basis functions for simulating the waves with multiple shots. In that case, we can expect
a greater amount of speedup by employing the GMsFEM.

Fig. 8 shows the seismic traces which are recorded at the point highlighted with green
triangles in Fig. 7(b). As those seismic traces record the displacement as a function of time
in different orientations (x-, y-, z-directions), we can infer the earth structure by analyz-
ing the seismograms. To put it differently, we can make an indirect measurement of the
change of the target reservoir between the source and receivers by observing the differ-
ence (Figs. 9 and 10) of the seismic signals at different time steps of the flow simulation.

In the GMsFEM modeling, we applied two different types of multiscale basis func-
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Table 1: Comparison of computing performance of the GMsFEM with different number of interior and boundary
basis functions. tonline means the run-time taken for calculating the actual wave simulation though the time-
marching. It took to f f line=1092 s to compute the multiscale basis functions. Error is measured by calculating
the relative L2 error.

Method Ni Nb DOFs tonline (s) Error

SEM - - 17.280×106 2391.33 -

GMsFEM 10 30 1.3824×105 271.11 1.5381

GMsFEM 10 40 1.7280×105 422.42 0.4165

GMsFEM 10 50 2.0736×105 566.36 0.0118

GMsFEM 20 30 1.7280×105 423.61 1.5299

GMsFEM 20 40 2.0736×105 565.87 0.4164

GMsFEM 20 50 2.4192×105 699.25 0.0092
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Figure 8: Comparison of the GMsFEM and SEM (20 Hz source frequency). Each panel shows ux component
which is calculated from: (a) SEM, (b) GMsFEM (Nb=50, Ni=10), (c) GMsFEM (Nb=40, Ni=10), and (d)
GMsFEM (Nb=30, Ni =10).
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Figure 9: Time-lapse seismic with different frequencies: 10 Hz (a, c, e) and 20 Hz (b, d, f) – blue line (Day 1)
and red line (Day 700). Upper, middle, and lower panel present x-, y-, and z-displacement, respectively.

tions: interior and boundary basis functions. In this case, we fixed the number of interior
boundary basis functions to 10, and varied the boundary basis functions from 30 to 50.
The size of coarse mesh is as follows: dX=50 m, dY=50 m, dZ=10 m, so one coarse el-
ement includes 125 [5×5×5] fine elements. We presented the reference solution which is
acquired by using the SEM in Fig. 8(a) in red color. Then, we superposed the reference so-
lution to the wave solutions which are obtained from the GMsFEM with various number
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Figure 10: Time-lapse seismic with different frequencies: 10 Hz (a, c, e) and 20 Hz (b, d, f). The upper,
middle, and lower panel present the difference of x-, y-, and z-displacement, respectively.

of basis functions (Nb=30, 40, 50 and Ni=10). Observing the run-time displayed in Table
1 and the seismic traces in Fig. 8, there is a trade-off between the computational speed
and the accuracy of solutions. In this case, the wave solution (Fig. 8(b)) with 50 basis
functions shows good match with the reference solutions, while the other GMsFEM so-
lutions, which use insufficient basis functions, could not compute the detailed variation
of the wave solutions. Gao et al. [37] and Chung et al. [21] showed the effect of differ-
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ent combinations of basis functions. They also demonstrated that a smaller number of
basis functions may be enough to model the waves with long wavelength. In GMsFEM,
as we apply smaller number of basis functions, it provides the solutions more rapidly.
However, inappropriate basis functions cannot calculate the correct solution of the high
frequency waves. In this case, therefore, we consider 50 boundary and 10 interior ba-
sis functions as a good set to obtain the solution with desired level of accuracy in coarse
scale simulation. Again, note that while we compute the accurate wave solutions through
coarse scale wave modeling, we do not apply any upscaling technique.

Next, we performed the wave simulation using GMsFEM (Nb = 50, Ni = 10) on each
property model: before and after injecting water, producing hydrocarbon (mostly gas). In
Fig. 9, we compared two different source frequencies (10 Hz and 20 Hz) to observe the in-
fluence of wavelength to detect fluid changes within the reservoir layers. Left (Figs. 9(a),
9(c), 9(e)) and right (Figs. 9(b), 9(d), 9(f)) panels present the waves from 10 Hz and 20 Hz
source frequency, respectively. Blue traces are obtained from the wave modeling with ini-
tial properties, while red traces are calculated by using the property models after injecting
water (or producing gas). For analysis of the seismogram, We first focus on the different
displacement components. In both frequencies, we cannot observe tangible differences
between before and after the production event in uy. In contrast, x- and z-component
of the displacement shows obvious changes in time-lapse seismic signals. In the 10 Hz
case, P and S waves are in destructive interference due to the long wavelength; how-
ever, we can distinguish those signals in 20 Hz example. To make a clearer comparison,
we displayed the difference in two seismic traces (before and after water injection) in
Fig. 10. Given the variation of the time-lapse seismic, we can infer the fluid change of the
reservoir. For example, seismic wave from the initial model (Day 1) colored in blue line,
which pore volume filled with gas, shows larger amplitude (higher impedance contrast)
and longer travel time (slower velocity) compared to the seismograms that are computed
from the model after two years of production (Day 700) which is displayed in red line in
Fig. 9. In other words, the seismic waves (red line) that are generated after injecting water
show smaller amplitude variation and earlier arrival time. According to this analysis, the
pore volumes in the region, which has smaller amplitude and reduced travel-time, might
be filled with the injected water.

5 Conclusions

Time-lapse seismic monitoring in a domain with finely layered reservoirs is a compu-
tationally intensive procedure due to the high contrast in size of cells discretizing the
reservoir and the rest of the domain. In this work, we used permeability and porosity
datasets from the SPE-10 model and empirical formulas to build the velocity and density
model containing a reservoir. We then applied the GMsFEM with a special coarse grid
for the solution of the elastic wave equation in that model and showed that the results
are accurate through the comparison with the results produced by the SPEC FEM code.
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Through our test examples, we demonstrated that the GMsFEM can simulate the waves
incorporating fine scale heterogeneity without applying model homogenization or up-
scaling. Observing the time-lapse seismic data, the displacement of y-component might
include the key information of the region where the fluid substitution occurs. We expect
that more information about the spatial distribution of the fluid change can be inferred
by extending the seismic survey.
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