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Abstract. In the present paper, we prove the 1
2 -Hölder continuity of spectral measures

for the Ck Schrödinger operators. This result is based on the quantitative almost re-
ducibility and an estimate for the growth of the Schrödinger cocycles in [5].
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1 Introduction

In this paper, we consider the Schrödinger operators defined on `2(Z)

(HV,α,θu)n = un+1 + un−1 + V(θ + nα)un,

where V : Td → R is the potential, θ ∈ Td = (R/Z)d is the phase, and α ∈ Td is the
frequency.

These operators have been extensively and thoroughly studied for the deep connec-
tion with quasi-crystal and quantum Hall effects [11,18]. This paper concerns the regular-
ity of the spectral measure of the quasi-periodic Schrödinger operators. For the analytic
potential V ∈ Cω(Td, R), there is some significant progress [5, 21, 24]. However for the
smooth potential V ∈ Ck(Td, R), there is no similar result as far as we know, so we will
give a supplementary answer to this situation.

Let us review some results on the Hölder continuity of the integrated density of states
(IDS) and the individual spectral measures.

∗Corresponding author. Email addresses: sunm@ujs.edu.cn (M. Sun), 2889190407@qq.com (X. Wang)

http://www.global-sci.org/ata/ 33 c©2020 Global-Science Press



34 M. Sun and X. Y. Wang / Anal. Theory Appl., 36 (2020), pp. 33-51

1.1 Hölder continuity of IDS

Let ΣV,α,θ be the spectrum of HV,α,θ , then ΣV,α,θ ⊂ R since HV,α,θ is the bounded self-
adjoint operator in `2(Z). The spectrum is independent of θ if (α, 1) is rational indepen-
dent. For any f ∈ `2(Z), the spectral measure µ

f
V,α,θ of HV,α,θ can be defined as

〈(HV,α,θ − E)−1 f , f 〉 =
∫

R

1
E′ − E

dµ
f
V,α,θ(E′), ∀E ∈ C\ΣV,α. (1.1)

Let µV,α,θ = µ
e−1
V,α,θ + µe0

V,α,θ , where {ei}i∈Z is the cannonical basis of `2(Z). Let NV,α be the
IDS of HV,α,θ , it is well known that IDS is the average of the spectral measure µV,α,θ with
respect to θ, i.e.,

NV,α(E) =
∫

Td
µV,α,θ(−∞, E]dθ.

Hence the regularity of IDS is closely related to that of the spectral measure.
Recall that α ∈ Td is Diophantine if there exist γ > 0 and τ > d − 1 such that α ∈

DCd(γ, τ), where

DCd(γ, τ) =

{
α : inf

j∈Z
|〈n, α〉 − j| > γ

|n|τ , ∀n ∈ Zd\{0}
}

.

Let DCd = ∪γ>0,τ>d−1DCd(γ, τ). For α ∈ R\Q, let pn
qn

be the continued fraction approxi-
mants to α, then one can define

β(α) = lim sup
n→∞

ln qn+1

qn
.

Given the operator HV,α,θ , one can define the Lyapunov exponent L(α, SV
E ) (see Section

2.1) of the corresponding Schrödinger cocycle (α, SV
E (θ)), where E ∈ R and

SV
E (θ) =

(
E−V(θ) −1

1 0

)
.

Hadj Amor [16] proved the 1
2 -Hölder continuity of IDS if α ∈ DCd and V ∈ Cω(Td, R) is

small, and her approach is based on the almost reducibility scheme developed by Elias-
son [13]. Recall that the cocycle (α, A) is reducible if (α, A) can be conjugated to some
constant cocycles and the cocycle (α, A) is almost reducible if the closure of its conjugates
contains a constant. Avila and Jitomirskaya [4] proved the 1

2 -Hölder continuity of IDS
for α ∈ DC1 and the small analytic potential. Their result was non-perturbative, which
means that the smallness is independent of α. After that, Avila [2,3] generalized the result
for the small analytic potential with β(α) = 0 if there is δ > 0 such that L(α, SV

E+iε) = 0
for |ε| < δ. Note that Leguil-You-Zhao-Zhou [20] showed the same result as well by the
global theory of the one-frequency Schrödinger operators [1].
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The Hölder continuity of NV,α(E) is equivalent to the Hölder continuity of L(α, SV
E )

according to the famous Thouless formula [6], i.e.,

L(α, SV
E ) =

∫
ln |E− E′|dNV,α(E′).

Suppose that L(α, SV
E ) > 0. Goldstein and Schlag [14] proved the Hölder continuity of

L(α, SV
E ) if V ∈ Cω(T, R), and α ∈ SDC† by the avalanche principle and sharp large

deviation theorem. Later, You and Zhang [22] proved that for analytic potential, the
L(α, SV

E ) is Hölder continuous if α ∈ DC1 or some weaker Liovillean α by a refined large
deviation theorem.

For the special kinds of potentials, there are some other interesting results. If the
potential is a small perturbation of a trigonometric polynomial of degree d and α ∈ DC1,
Goldetein-Schlag [15] proved that IDS is ( 1

2d − ε)-Hölder continuous for any ε > 0 by
assuming L(α, SV

E ) > 0. In particular, if the potential V(x) = 2λ cos(x), we get the so
called almost Mathieu operators (AMO), i.e.,

(Hλ,α,θu)n = un+1 + un−1 + 2λ cos(θ + nα)un,

where λ ∈ R is the coupling constant. For the large coupling, Bourgain [7] proved that
Lyapunov exponent of AMO is ( 1

2 − ε)-Hölder continuous for any ε > 0. Avila [2] ob-
tained the exact 1

2 -Hölder continuity of IDS for AMO with |λ| < 1.

1.2 Hölder continuity of the spectral measure

In general, the spectral measure is less regular than IDS. In the β(α) = 0 regime, Avila
and Jitomirskaya [5] proved that if V ∈ Cω(T, R) is small enough and α ∈ DC1, then the
spectral measure µ

f
V,α,θ of one-frequency Schrödinger operators is 1

2 -Hölder continuous
for any f ∈ `1(Z) ∩ `2(Z). They also showed 1

2 -Hölder continuity of absolutely continu-
ous spectral measures for the one-frequency Schrödinger operators with V ∈ Cω(T, R).
In the β(α) > 0 regime, Liu and Yuan [21] extended the results in [5] to that for all
α ∈ R\Q with β(α) < ∞, whenever the analytic radius of V is sufficiently large.

What can we say about the regularity of the spectral measure of Schrödinger oper-
ators with finitely differentiable potential? Recall that Cai-Chavaudret-You-Zhou [10]
have shown that if α ∈ DCd and V ∈ Ck(Td, R) is small, then IDS of the Schrödinger
operator is 1

2 -Hölder continuous. Recently, Zhao [24] also generalized [5] and [21] to the
multi-frequency Schrödinger operators with V ∈ Cω(Td, R). This paper is motivated
by [10] and [24], as a supplementray answer, we obtain the 1

2 -Hölder continuity of the
spectral measure µ

f
V,α,θ for V ∈ Ck(Td, R).

†We say α satifies strong Diophantine condition if there exist some γ > 0, τ > 1 such that α ∈ SDC(γ, τ),
where

SDC(γ, τ) =

{
α ∈ Rd : inf

j∈Z
|〈n, α〉 − j| > γ

|n|(ln(1 + |n|))τ

}
,

and SDC = ∪γ>0,τ>1SDC(γ, τ).



36 M. Sun and X. Y. Wang / Anal. Theory Appl., 36 (2020), pp. 33-51

Theorem 1.1. Let α ∈ DCd(γ, τ), V ∈ Ck(Td, R) with k ≥ 5Dτ and D is a numerical
constant. There exists ε̃ = ε̃(γ, τ, k) such that if ‖V‖k ≤ ε̃, then for any f ∈ `2(Z) ∩ `1(Z),

µ
f
V,α,θ(J) ≤ D0|J|

1
2 ‖ f ‖2

`1 ,

for all intervals J and all θ, where D0 = D0(V, α) > 0.

Remark 1.1. Note that Theorem 1.1 is perturbative, i.e., the smallness ε̃ depends not only
on the potential V, but also on the frequency α. From a counterexample of Bourgain [8],
one can not expect non-perturbative results in multi-frequency case.

2 Preliminaries

For a bounded analytic function F defined on Sr = {θ : θ = (θ1, · · · , θd) ∈ Cd, |=θi| <
r, ∀i = 1, · · · , d}, let |F|r = supθ∈Sr

‖F(θ)‖ and denote by Cω
r (T

d, ∗) the set of these ∗-
value functions (∗ will usually denote R, sl(2, R) or SL(2, R)). We also denote the set
Ck(Td, ∗) to be the space of k times differentiable with continuous k-th derivatives func-
tions, endowed with the norm

‖F‖k := sup
k′≤k, θ∈Td

‖∂k′F(θ)‖.

In particular,
‖F‖0 := ‖F‖Td = sup

θ∈Td
‖F(θ)‖.

For θ ∈ R, we set ‖θ‖T = infj∈Z |θ − j|.

2.1 Uniform hyperbolicity

Given A ∈ Cω(Td, SL(2, C)) and α ∈ Rd rationally independent, one can define the
quasi-periodic (Q-P) cocycle (α, A):

(α, A) : Td ×C2 → Td ×C2;
(θ, v) 7→ (θ + α, A(θ) · v).

The iterations of (α, A) are of form (α, A)n = (nα, An), where

An(θ) :=

{
A(θ + (n− 1)α) · · · A(θ + α)A(θ), n ≥ 0,

A−1(θ + nα)A−1(θ + (n + 1)α) · · · A−1(θ − α), n < 0.

The Lyapunov exponent of the cocycle (α, A) is defined as

L(α, A) = lim
n→∞

1
n

∫
Td
‖An(θ)‖dθ.
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We say the cocycle (α, A) is uniformly hyperbolic if for every θ ∈ Td, there exists a
continuous splitting C2 = Es(θ)⊕ Eu(θ) such that for every n ≥ 0,

‖An(θ)v‖ ≤ Ce−cn‖v‖, v ∈ Es(θ),

‖An(θ)
−1v‖ ≤ Ce−cn‖v‖, v ∈ Eu(θ + nα),

for some constants C, c > 0. And the splitting is invariant by the dynamics:

A(θ)Es(θ) = Es(θ + α), ∀θ ∈ Td,

A(θ)Eu(θ) = Eu(θ + α), ∀θ ∈ Td.

2.2 Spectral measure and Wely’s m function

Typical examples of SL(2, R) cocycles are the Schrödinger cocycles (α, SV
E ):

A(θ) = SV
E (θ) =

(
E−V(θ) −1

1 0

)
, E ∈ R.

Those cocycles come from the eigenvalue equation of one dimensional quasi-periodic
Schrödinger operators on `2(Z):

(HV,α,θu)n = un+1 + un−1 + V(θ + nα)un = Eun,

and any formal solution u = (un)n∈Z of HV,α,θu = Eu satisfies(
un+1
un

)
= SV

E (θ + nα)

(
un

un−1

)
, ∀n ∈ Z.

For any f ∈ `2(Z), one can define the spectral measure µ
f
V,α,θ corresponding to f as

in (1.1). Given E + iε with E ∈ R and ε > 0, there exists a non-zero solution u+ of
HV,α,θu+ = (E + iε)u+ being square-summable at +∞. The Wely’s m function is given

by m+ = − u+
1

u+
0

.
Let

M(E + iε) =
∫

R

1
E′ − (E + iε)

dµV,α,θ(E′).

From the definition of M(·), it deduces immediately that M(·) is a Herglotz function
defined on H = {z : =z > 0}, and

=M(E + iε) ≥ 1
2ε

µV,α,θ(E− ε, E + ε). (2.1)

Recall that in [12], by the usual action of SL(2, C), we denote

m+
β := R− β

2π
·m+ =

m+ cos β− sin β

m+ sin β + cos β
,

then we have the following lemma:
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Lemma 2.1 ([5]). Let ψ(m+) := supβ |m
+
β |, then ‖M‖0 ≤ ψ(m+).

The spectral properties of HV,α,θ and the dynamics of (α, SV
E ) are closely related by the

fact: E ∈ ΣV,α if and only if (α, SV
E ) is not uniformly hyperbolic [19].

2.3 Analytic approximation

Assume f ∈ Ck(Td, sl(2, R)), according to [23], there exists a sequence { f j}j≥1 with f j ∈
Cω

1
j
(Td, sl(2, R)) and a universal constant C′ > 0, such that

‖ f j − f ‖k → 0, j→ +∞, (2.2a)

| f j| 1
j
≤ C′‖ f ‖k, (2.2b)

| f j+1 − f j| 1
j+1
≤ C′(j)−k‖ f ‖k. (2.2c)

2.4 Space decomposition

Given A ∈ SL(2, R), α ∈ Rd and η > 0, one can obtain the decomposition Bk =

B
(nre)
k (η)⊕B

(re)
k (η), where

Bk =
{

f ∈ Ck(Td, sl(2, R)) : ‖ f ‖k < ∞
}

,

and B
(nre)
k (η) is the subspace of Bk such that for any Y ∈ B

(nre)
k (η),

A−1Y(θ + α)A ∈ B
(nre)
k (η), ‖A−1Y(θ + α)A−Y(θ)‖k > η‖Y‖k.

Lemma 2.2 ([10, 17]). Assume that A ∈ SL(2, R), α ∈ Rd, ε′ ≤ (4‖A‖)−4, and η ≥
13‖A‖2ε′

1
2 . For any g ∈ Bk with ‖g‖k ≤ ε′, there exist Y ∈ Bk and gre ∈ Bre

k (η) such
that

e−Y(θ+α)Aeg(θ)eY(θ) = Aegre(θ),

with ‖Y‖k ≤ ε′
1
2 , and ‖gre‖k ≤ 2ε′.

The continuous version (Cω linear systems) and discrete version (Cω cocyles) of
Lemma 2.2 are shown in [17] and [10] respectively. The proof of Lemma 2.2 only de-
pends on Bk being a Banach space, thus one can obtain the result by replacing analytic
norm with Ck norm in the Appendix of [10].

3 Dynamical estimates of Ck quasi-periodic cocycles

To deal with the almost reducibility of the Ck cocycles, the strategy used here is treating
the analytic cocycles firstly and turning the estimates of analytic cocycles into those of
finitely differentiable cocycles by analytic approximation.
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Consider the following Q-P SL(2, R) cocycle

(α, Ae f (θ)) : Td ×R2 → Td ×R2;

(θ, x) 7→ (θ + α, Ae f (θ) · x),

where α ∈ DCd(γ, τ), A ∈ SL(2, R) and f (θ) ∈ Cω
r (T

d, sl(2, R)) with r > 0. Assume
| f |r ≤ ε, we are going to show that the perturbation will tend to zero by KAM scheme.

Proposition 3.1 ([10, 20]). Let α ∈ DCd(γ, τ), γ, r > 0, τ > d− 1 and σ = 1
10 . Then for any

r+ ∈ (0, r), there exist c = c(γ, τ, d) and a numerical constant D such that if

ε ≤ c
‖A‖D (r− r+)Dτ, (3.1)

then there exist B(θ) ∈ Cω
r+(2Td, SL(2, R)), A+ ∈ SL(2, R) and f+(θ) ∈ Cω

r+(T
d, sl(2, R))

such that (α, Ae f (θ)) is conjugated to (α, A+e f+(θ)) by B(θ), i.e.,

B(θ + α)−1Ae f (θ)B(θ) = A+e f+(θ).

More precisely, let N = 2| ln ε|
r−r+ and {e2πiρ, e−2πiρ} be the two eigenvalues of A, we can distinguish

between two cases:
(A) (Non-resonant case). Assume that

‖2ρ− 〈n, α〉‖T ≥ εσ, ∀n ∈ Zd with 0 < |n| ≤ N,

then we have the etsimates:

| f+(θ)|r+ ≤ 4ε3−2σ, |B(θ)− Id|r+ ≤ ε
1
2 , ‖A+ − A‖ ≤ 2‖A‖ε.

(B) (Resonant case). If there exists n∗ ∈ Zd with 0 < |n∗| ≤ N such that

‖2ρ− 〈n∗, α〉‖T < εσ,

then we have the estimates:

|B(θ)|r+ ≤ C1|n∗|
τ
2 eπ|n∗|r+ , ‖B(θ)‖0 ≤ C1|n∗|

τ
2 , | f+(θ)|r+ � ε100, (3.2)

where C1 = 4‖A‖ 1
2 γ−

1
2 . Moreover, let A+ := eA′′ with A′′ ∈ sl(2, R), then ‖A′′‖ ≤ 16εσ.

3.1 Real quantitative estimates for Ck Q-P cocycles

We are going to deal with the almost reducibility of the Ck cocycles by analytic ap-
proximation. Let { f j}j≥1, f j ∈ Cω

1
j
(Td, sl(2, R)) be the analytic sequence approximating
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f ∈ Ck(Td, sl(2, R)). We first recall some notations given in [10]. D is a numerical con-
stant defined by Proposition 3.1, we denote

ε′0(h, h′) :=
c

(2‖A‖)D (h− h′)Dτ,

and define
εm :=

c

(2‖A‖)Dm
k
4

.

Then one can check that for any k ≥ 5Dτ and any m ≥ 10, m ∈ Z,

c

(2‖A‖)Dm
k
4
≤ ε′0

( 1
m

,
1

m2

)
.

Denote lj = M2j−1
, ∀j ∈ Z+, where M > max{10, (2‖A‖)D

c } is an integer.

Theorem 3.1. Let α ∈ DCd(γ, τ), A ∈ SL(2, R), σ = 1
10 , f (θ) ∈ Ck(Td, sl(2, R)) with

k ≥ 5Dτ. Let { f j}j≥1 be the analytic sequence approximating f (θ) defined in (2.2). There exists
ε̄ = ε̄(γ, τ, d, k, ‖A‖) such that if ‖ f ‖k ≤ ε̄, then the following holds:
(A) There exist Blj(θ) ∈ Cω

1
lj+1

(2Td, SL(2, R)), Alj ∈ SL(2, R) and f ′lj
(θ) ∈ Cω

1
lj+1

(Td, sl(2, R))

such that
Blj(θ + α)−1Ae flj

(θ)Blj(θ) = Alj e
f ′lj (θ),

with following estimates

‖Blj(θ)‖0 ≤ (lj| ln ε lj |)
τ(1+σ), | f ′lj

(θ)| 1
lj+1
≤ 1

2
ε

5
2
lj
,

|Blj(θ)| 1
lj+1
≤ (lj| ln ε lj |)

τ(1+σ)ε
−ξ
lj

,

where ξ ∈ ( 2π
M2−1 , 1

2 ) is a constant.
(B) Moreover, ‖Alj‖ ≤ 2‖A‖ and there exist some unitary matrices Uj ∈ SL(2, C) such that Alj

can be written as

Alj = Uj

(
e2πiρj cj

0 e−2πiρj

)
U−1

j with ρj ∈ iR∪R and cj ∈ C.

Then for any constant κ ∈ [1, σk
8τ ), there exists constant C = C(‖A‖) > 0 such that

‖Blj(θ)‖
κ
0 · |cj| ≤ C.

Proof. We will prove Theorem 3.1 by the induction process as in [9] and [10].
First Step. Suppose that

‖ f ‖k ≤
c

C′(2‖A‖)D M
k
4

,
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where C′ is a universal constant defined in (2.2). Thus we have

| fl1 | 1
l1
≤ ε l1 ≤ ε′0

( 1
l1

,
1
l2

)
.

By Proposition 3.1, one can find Bl1(θ) ∈ Cω
1
l2

(2Td, SL(2, R)), Al1 ∈ SL(2, R) and f ′l1(θ) ∈

Cω
1
l2

(Td, sl(2, R)) such that

Bl1(θ + α)−1Ae fl1
(θ)Bl1(θ) = Al1 e f ′l1 (θ).

More precisely, let Nl1 =
2| ln ε l1

|
1
l1
− 1

l2

and {e2πiρ, e−2πiρ} be two eigenvalues of A, we can

distunguish two cases:
(Non-resonant case). If the first step is obtained by non-resonant case:

‖2ρ− 〈n, α〉‖T ≥ εσ
l1 , ∀n ∈ Zd with 0 < |n| ≤ Nl1 ,

then we have the etsimates:

| f ′l1(θ)| 1
l2
≤ 4ε3−2σ

l1
, |Bl1(θ)| 1

l2
≤ 1 + ε

1
2
l1

, ‖Al1 − A‖ ≤ 2‖A‖ε l1 .

(Resonant case). If the first step is obtained by resonant case: there exists n∗l1 ∈ Zd with
0 < |n∗l1 | ≤ Nl1 such that ‖2ρ− 〈n∗l1 , α〉‖T < εσ

l1
, then

‖Bl1(θ)‖0 ≤ C2(γ, τ, ‖A‖)(l1| ln ε l1 |)
τ
2 ≤ (l1| ln ε l1 |)

τ(1+σ),

|Bl1(θ)| 1
l2
≤ (l1| ln ε l1 |)

τ(1+σ)ε
−2π
l2−1

l1
, | f ′l1(θ)| 1

l2
� ε100

l1 <
1
2

ε
5
2
l1

.

Moreover, let Al1 := eA′′l1 with A′′l1 ∈ sl(2, R) we have ‖A′′l1‖ ≤ 16εσ
l1

.

Induction Step: Assume that in (lj)-th step with j ≤ n, we already have that

Blj(θ + α)−1Ae flj
(θ)Blj(θ) = Alj e

f ′lj (θ)

with the following estimates

|Blj(θ)| 1
lj+1
≤ (lj| ln ε lj |)

τ(σ+1)ε
−ξ
lj

, ‖Alj‖ ≤ 2‖A‖, (3.3a)

‖Blj‖0 ≤ (lj| ln ε lj |)
τ(σ+1), | f ′lj

(θ)| 1
lj+1
≤ 1

2
ε

5
2
lj
. (3.3b)

Moreover, if the (lj)-th step is obtained by the resontant case, we have

Alj = e
A′′lj , ‖A′′lj

‖ ≤ 8εσ
lj
, ‖Alj‖ ≤ 1 + 16εσ

lj
. (3.4)
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If the (lj)-th step is obtained by the non-resontant case, we have

‖Alj − Alj−1‖ ≤ 2‖Alj−1‖ε lj , |Blj | 1
lj+1
≤ (1 + ε

1
2
lj
)|Blj−1 | 1

lj
. (3.5)

Now let j = n + 1 and focus on the cocycle (α, Ae fln+1
(θ)), it follows that

Bln(θ + α)−1Ae fln+1 Bln(θ) = Aln e f ′ln + Bln(θ + α)−1(Ae fln+1 − Ae fln )Bln(θ).

If we rewrite

Aln e f ′ln + Bln(θ + α)−1(Ae fln+1 − Ae fln )Bln(θ) = Aln e fln (θ),

by (3.3) and ξ ∈ ( 2π
M2−1 , 1

2 ), we have

| fln(θ)| 1
ln+1
≤| f ′ln | 1

ln+1
+ ‖A−1

ln ‖ · |Bln(θ + α)−1(Ae fln+1 − Ae fln )Bln | 1
ln+1

≤1
2

ε
5
2
ln
+ 2‖A‖2 × (ln| ln ε ln |)2τ(σ+1)ε

−2ξ
ln
× c

(2‖A‖)Dlk−1
n

≤1
2

ε ln+1 +
1
2
× c

(2‖A‖)Dl
k
2
n

≤ ε ln+1 .

Apply Proposition 3.1 to the cocycle (α, Aln e fln (θ)), one can obtain B̃ln(θ) ∈
Cω

1
ln+2

(2Td, SL(2, R)), Aln+1 ∈ SL(2, R) and f ′ln+1
(θ) ∈ Cω

1
ln+2

(Td, sl(2, R)) such that

B̃ln(θ + α)−1Aln e fln (θ)B̃ln(θ) = Aln+1 e f ′ln+1
(θ).

Let Bln+1 := B̃ln Bln ∈ Cω
1

ln+2

(2Td, SL(2, R)), and note that whether or not the (ln+1)-th step

is in the resonant case, the following estimate holds:

| f ′ln+1
(θ)| 1

ln+2
<

1
2

ε
5
2
ln+1

. (3.6)

We are going to analyze the structure of Aln+1 and estimate the norm of the conjuga-

tion Bln+1 in (ln+1)-th step. Let Aln+1 := eA′′ln+1 , and if ‖A′′ln+1
‖ is sufficiently small, one can

always find some unitary matrices U ∈ SL(2, C) such that

U−1Aln+1U =

(
e2πiρn+1 cn+1

0 e−2πiρn+1

)
with the estimate |cn+1| ≤ 2‖A′′ln+1

‖. Let us focus on the cocycle (α, Aln e fln (θ)) and we
need to distinguish between two cases.
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(Resonant case). If the (ln+1)-th step is obtained by resonant case, i.e., there exists n∗ln+1
∈

Zd such that

‖2ρln − 〈n∗ln+1
, α〉‖T < εσ

ln+1
, 0 < |n∗ln+1

| ≤ Nln+1 :=
2 ln |ε ln+1 |

1
ln+1
− 1

ln+2

,

where {e2πiρn , e−2πiρn} are two eigenvalues of Aln . Then by Proposition 3.1,

|B̃ln | 1
ln+2
≤ C3(γ, τ)(ln+1| ln ε ln+1 |)

τ
2 × ε

− 2π
ln+1−1

ln+1
. (3.7)

We also have
‖B̃ln(θ)‖0 ≤ C3(ln+1| ln ε ln+1 |)

τ
2 .

Hence,

|Bln+1 | 1
ln+2
≤ C3(ln+1| ln ε ln+1 |)

τ
2 × ε

− 2π
ln+1−1

ln+1
× (ln| ln ε ln |)τ(σ+1)ε

−ξ
ln

≤ (ln+1| ln ε ln+1 |)
τ(σ+1)ε

−ξ
ln+1

, (3.8a)

‖Bln+1‖0 ≤ (ln+1| ln ε ln+1 |)
τ(σ+1). (3.8b)

Moreover one can get that ‖A′′ln+1
‖ ≤ 16εσ

ln+1
, which gives |cn+1| ≤ 2‖A′′ln+1

‖ ≤ 32εσ
ln+1

.
Combine with (3.8a), for any κ ∈ [1, σk

8τ ), we have

‖Bln+1‖
κ
0 · |cn+1| ≤ 32| ln ε ln+1 |

kσ
4 · ε

σ(1−σ)
2

ln+1
< ∞. (3.9)

(Non-resonant case). If the (ln+1)-th step is obtained by non-resonant case, we track back
to the nearest resontant step, says the (lm)-step. If such m does not exist, we deduce that
each step is in non-resonant case, thus

‖An+1 − A‖ ≤ ‖Al1 − A‖+
n

∑
i=1
‖Ali+1 − Ali‖ ≤ 8‖A‖ε l1 ,

and |cn+1| ≤ ‖Aln+1‖ ≤ 2‖A‖. Since Bln+1 is close to identity by construction, it folllows
that

‖Bln+1‖0 ≤ |Bln+1 | 1
ln+1
≤ 2. (3.10)

We deduce that
‖Bln+1‖

κ
0 · |cn+1| ≤ 2κ+1‖A‖ < ∞. (3.11)

If such m < n + 1 exists, let Alm = eA′′lm , then by (3.3) and (3.4), we have

‖A′′lm‖ ≤ 16εσ
lm , ‖Alm‖ ≤ 1 + 32εσ

lm , |Blm | 1
lm+1
≤ (lm| ln ε lm |)τ(σ+1)ε

−ξ
lm

.
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Since each step is in non-resonant case from (lm)-th step to (ln+1)-th step, it deduces that

‖Aln+1 − Alm‖ ≤ 8‖A‖ε lm+1 , ‖Aln+1‖ ≤ 2‖A‖. (3.12)

Moreover, (3.12) also implies

|cn+1| ≤ 2‖A′′ln+1
‖ ≤ 64εσ

lm . (3.13)

Note that each conjugation is close to identity from (lm)-step to (ln+1)-step by construc-
tion in (3.5), thus one can get that

‖Bln+1‖0 ≤ |Bln+1 | 1
ln+1
≤ 2‖Blm‖ 1

lm+1
≤ (ln+1| ln ε ln+1 |)

τ(σ+1)ε
−ξ
ln+1

. (3.14)

Combine (3.13) with (3.14), it follows that

‖Bln+1‖
κ
0 · |cn+1| ≤ 2κ+6| ln ε lm |

kσ
4 · ε

σ(1−σ)
2

lm
< ∞. (3.15)

This completes the proof of (A) by (3.6), (3.8a), (3.10) and (3.14). It also finishes the proof
for (B) by (3.9), (3.11) and (3.15).

Remark 3.1. Theorem 3.1 has been proved in [10] essentially, however for the techni-
cal reason, we replace the estimate ‖Blj‖0 ≤ ε

− σ
4

lj
in Proposition 3.2 of [10] by ‖Blj‖0 ≤

(lj| ln ε lj |)τ(σ+1), so that one can get ‖Blj‖κ
0 · |cj| < ∞.

3.2 Complex almost triangularization for Ck Q-P cocycles

In Theorem 3.1, one can see that the conjugation Blj : 2Td → SL(2, R) is real, which
results in Alj being real. In fact, we can choose the complex conjugation Blj : 2Td →
SL(2, C) to make Alj complex almost triangularization provided that the cocycle is not
uniformly hyperbolic.

Theorem 3.2. Suppose that all the conditions in Theorem 3.1 hold. Further assume that
(α, Ae f (θ)) is not uniformly hyperbolic. There exists ε∗ = ε∗(γ, τ, d, k, ‖A‖) such that if
‖ f ‖k ≤ ε∗, then there exist Ãlj ∈ SL(2, C), F̃lj ∈ Ck0(Td, SL(2, C)) with

k0 =
[ k

20

]
and Φlj(θ) ∈ Cω

1
lj+1

(2Td, SL(2, C)),

such that
Φlj(θ + α)−1Ae f (θ)Φlj(θ) = Ãlj + F̃lj(θ),

where

Ãlj =

(
e2πiρj cj

0 e−2πiρj

)
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with ρj ∈ R and cj ∈ C, also with estimates

‖F̃lj(θ)‖0 ≤ 2ε
1
4
lj
, ‖Φlj(θ)‖0 ≤ (lj| ln ε lj |)

τ(σ+1), ‖Φlj(θ)‖
κ
0 · |cj| ≤ C, (3.16)

where C is a constant defined in Theorem 3.1 and κ ∈ [1, σk
8τ ).

Proof. Recall that in Theorem 3.1, we already have

Blj(θ + α)−1Ae flj
(θ)Blj(θ) = Alj e

f ′lj (θ), ∀j ∈ Z.

Denote
Alj + F̃lj = Alj e

f ′lj (θ) + Blj(θ + α)−1(Ae f − Ae flj
(θ)
)Blj(θ),

then
Blj(θ + α)−1Ae flj

(θ)Blj(θ) = Alj + F̃lj(θ).

By the estimates of (A) in Theorem 3.1, we have

‖F̃lj‖0 ≤2‖Alj f ′lj
(θ)‖0 + 2‖Blj(θ + α)−1A( f (θ)− flj(θ))Blj(θ)‖0

≤2‖A‖ε
5
2
lj
+ 2‖A‖(lj| ln ε lj |)

2τ(σ+1) × c
(2‖A‖)Dlk−1

j

≤(2‖A‖)−1ε2
lj
,

where the second step uses the fact

∑
i≥j
‖ fli+1 − fli‖ ≤

c
(2‖A‖)Dlk−1

j

by (2.2).
Assume that {e2πiρj , e−2πiρj} are two eigenvalues of Alj , then there exist unitary U ∈

SL(2, C), such that

U−1AljU =

(
e2πiρj cj

0 e−2πiρj

)
with |cj| ≤ ‖Alj‖ ≤ 2‖A‖, where ρj ∈ iR ∪R and cj ∈ C. In the following, we need

to rule out that iρj ∈ R\{0}. Suppose that λj = iρj ∈ R\{0}. If 2π|ρj| > ε
1
4
lj
, let P :=

diag{‖2A‖ 1
2 ε
− 1

2
lj

, ‖2A‖− 1
2 ε

1
2
lj
}, then we have

P−1U−1(Alj + F̃lj)UP =

(
e2πλj 0

0 e−2πλj

)
+ F(θ)

with ‖F‖0 ≤ 2ε lj . We rewrite(
e2πλj 0

0 e−2πλj

)
+ F(θ) =

(
e2πλj 0

0 e−2πλj

)
e f̃ (θ) (3.17)
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with ‖ f̃ (θ)‖0 ≤ 4‖A‖ε lj .
By Lemma 2.2 and Corollary 3.1 of [17], one can conjugate (3.17) to(

e2πλj 0
0 e−2πλj

)(
e f̃ re(θ) 0

0 e− f̃ re(θ)

)
=

(
e2πλj e f̃ re(θ) 0

0 e−2πλj e− f̃ re(θ)

)
with ‖ f̃ re(θ)‖0 ≤ 8‖A‖ε lj , thus (α, Ae f (θ)) is uniformly hyperbolic, which contradicts to
the assumption. Hence we only need to consider

2π|ρj| ≤ ε
1
4
lj
.

In this case, we put ρj into the perturbation so that the new perturbation satisfies

‖F̃lj‖0 ≤ 2ε
1
4
lj

and Alj =

(
1 cj
0 1

)
.

Denote
Φlj(θ) = Blj(θ)U ∈ Cω

1
lj+1

(2Td, SL(2, C)),

we always have

Φlj(θ + α)−1Ae f (θ)Φlj(θ) =

(
e2πiρj cj

0 e−2πiρj

)
+ F̃lj(θ)

with ρj ∈ R, cj ∈ C and ‖F̃lj‖0 ≤ 2ε
1
4
lj
. Since U is unitary, by Theorem 3.1(A), (3.16)

holds.

4 Sharp Hölder continuity of the spectral measure

Consider the following discrete Ck Q-P Schrödinger operators:

(HV,α,θu)n = un+1 + un−1 + V(θ + nα)un, ∀n ∈ Z, (4.1)

where α ∈ DCd(γ, τ) and V ∈ Ck(Td, R). Let µV,α,θ be the spectral measure of HV,α,θ .
Based on the dynamical estimates of corresponding Schrödinger cocycles, we are able to
show the 1

2 -Hölder continuity of µV,α,θ .
Let A(θ) := SV

E (θ) and for any n ≥ 1, we define

Pn(θ) =
n

∑
s=1

A∗2s−1(θ + α)A2s−1(θ + α),

where As(θ) = A(θ + (s− 1)α) · · · A(θ + α)A(θ). Pn is an increasing family of positive
self-adjoint operators. ‖Pn‖ is unbounded since trPn ≥ 2n. Moreover, det Pn is also
unbounded. For simplicity, we will use the notation a ≈ b which denotes that there exist
some constants C > 0 such that C−1a ≤ b ≤ Ca and also use the notation a . b which
denotes a ≤ Cb for some constants C > 0.
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Theorem 4.1. Let α ∈ DCd(γ, τ), V ∈ Ck(Td, R) with k ≥ 5Dτ and D is a numerical
constant. There exists ε̃ = ε̃(γ, τ, k) such that if ‖V‖k ≤ ε̃, then for any f ∈ `2(Z) ∩ `1(Z),

µ
f
V,α,θ(J) ≤ D0‖ f ‖2

`1 · |J|
1
2 ,

for all intervals J and all θ, where D0 = D0(V, α) > 0.

Proof. Since the spectral measure µV,α,θ vanishes on R\ΣV,α, we only need to consider the
case E ∈ ΣV,α.

Rewrite the Schrödinger cocycle (α, SV
E ) as (α, AEe f (θ)), where

AE =

(
E −1
1 0

)
, f (θ) = ln(Id + A−1

E F(θ)), F(θ) =
(
−V(θ + nα) 0

0 0

)
.

By the assumption on ‖V‖k and Theorem 3.2, for κ ∈ [1, σk
8τ ), there exist Φlj ∈

Ck(2Td, SL(2, C)) with ‖Φlj‖0 ≤ (lj| ln ε lj |)τ(σ+1) and βi ∈ Ck0(Td, R), i = 1, 2, 3, 4 with
k0 = [ k

20 ] such that

Φlj(θ + α)−1SV
E (θ)Φlj(θ) = Tlj +

(
β1(θ) β2(θ)
β3(θ) β4(θ)

)
,

where

Tlj =

(
e2πiρj cj

0 e−2πiρj

)
with ρj ∈ R and cj ∈ C, also with estimates

‖Φlj‖
κ
0 · |cj| ≤ C, ‖βi‖0 ≤ 2ε

1
4
lj
, i = 1, 2, 3, 4. (4.2)

For simplicity of notations, in the following Φlj , Tlj , ρj are written as Φ, T, ρ respectively.
Let T̃(θ) = Φ(θ + α)−1SV

E (θ)Φ(θ), then we have

‖T̃ − T‖0 ≤ 2ε
1
4
lj
. (4.3)

We need to compare the dynamics between (α, SV
E ) and (α, T). For this purpose, let X =

∑n
j=1 T∗2j−1T2j−1 and X̃(θ) = ∑n

j=1 T̃∗2j−1(θ)T̃2j−1(θ). The following estimates on ‖X‖0 and
‖X−1‖−1

0 are crucial.

Lemma 4.1 (Lemma 4.3 of [5]). Let

K(θ) =
(

e2πiρ t(θ)
0 e−2πiρ

)
,

where t(θ) = t̂(r)e2πirθ . Let G = ∑n
j=1 K∗2j−1K2j−1, then

‖G‖0 ≈ n(1 + |t̂(r)|2 min{n2, ‖2ρ− 〈r, α〉‖−2
T }),

‖G−1‖−1
0 ≈ n.
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Lemma 4.2 (Lemma 4.4 of [5]). Let G and t̂(r) be as above. Define G̃ = ∑n
j=1 K̃∗2j−1K̃2j−1.

Then there exists D1 > 0 such that if

‖K̃− K‖0 ≤ D1n−2(1 + 2n|t̂(r)|)−2,

we have ‖G̃− G‖0 ≤ 1.

Apply Lemma 4.1, one can get that

‖X‖0 ≈ n(1 + |cj|2 min{n2, ‖2ρ‖−2
T }), ‖X−1‖−1

0 ≈ n. (4.4)

Let n+ be maximal such that ‖X̃ − X‖0 ≤ 1 for 1 ≤ n < n+. So by Lemma 4.2 and
(4.3), one can get that

2ε
1
4
lj
≥ D1(n+)−2(1 + 2n+|cj|)−2 & (n+)−4.

It follows that
n+ & ε

1
16
lj

. (4.5)

Since ‖X̃‖0 ≤ ‖X‖+ 1 and ‖X̃−1‖ ≥ ‖X−1‖0 − 1 for 1 ≤ n < n+, also we notice that

‖P‖n ≤ ‖Φ(θ)‖4
0 · ‖X̃(θ + α)‖0,

‖P−1
n ‖0 ≥ ‖Φ(θ)‖−4

0 · ‖X̃(θ + α)−1‖−1
0 .

(4.4) implies

‖Pn‖0 ≤ D2n(1 + |cj|2n2)‖Φ‖4
0,

‖P−1
n ‖−1

0 ≥ D3n‖Φ‖−4
0 .

Hence by direct calculation,

‖Pn‖0

‖P−1
n ‖−3

0

≤ D4|cj|2 · ‖Φ‖16
0 + D4

1
n2 ‖Φ‖

16
0 .

From Theorem 3.2, we know that ‖Φ‖8
0 · |cj| < ∞ and ‖Φ‖0 ≤ ε

− σ
30

lj
, then

‖Pn‖0 . ‖P−1
n ‖−3

0 , ∀n ∈ (n−, n+),

where
n− := ε

− 8σ
30

lj
. (4.6)

Denote the interval Ij := [D5l
k

150
j , D6l

k
64
j ], j ∈ Z+, then by (4.5) and (4.6), for any n ∈ Ij, we

have n− < n < n+. Since Ij ∩ Ij+1 6= ∅, ∀j ∈ Z+, thus ∪j≥1 Ij cover all the n tending to
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infinity. Hence ‖Pn‖0 . ‖P−1
n ‖−3

0 for any n ≥ D5l
k

150
1 . On the other hand, the number of n

satisfying n < D5l
k

150
1 is finite, then

sup

n<D5l
k

150
1

‖Pn‖0

‖P−1
n ‖−3

0

< ∞.

Thus
‖Pn‖ . ‖P−1

n ‖−3, ∀n ∈ Z+. (4.7)

Lemma 4.3 (Lemma 4.2 of [5]). Let εn = 1
2
√

det Pn
, then

D−1
6 <

ψ(m+(E + iεn))

2εn‖Pn‖0
< D6,

where D6 > 0 is a constant and ψ(m+) is defined in Lemma 2.1.

For any bounded potential and any solution u satisfying (4.1), we have

‖u‖L+1 . ‖u‖L, where ‖u‖L =
( L

∑
j=1
|uj|2

) 1
2
.

In particular, for the solution uβ with uβ
0 cos β + uβ

1 sin β = 0 and |uβ
0 |2 + |u

β
1 |2 = 1, we

have
det Pn = inf

β
‖uβ‖2

L‖uβ+π/2‖2
L. (4.8)

By (4.7) and Pn : Td → gl(2, R), we have

‖Pn‖0 = det Pn‖P−1
n ‖0 . ε−2

n ‖Pn‖−
1
3 ,

where εn is defined in Lemma 4.3. Thus ‖Pn‖0 . ε
− 3

2
n . According to Lemma 4.3, we

deduce that
ψ(m+(E + iεn)) . εn‖Pn‖0 . ε

− 1
2

n .

Since limn→∞ εn = 0, and we also have εn . εn+1 by (4.8), we only need to consider the
case of fixing εn = ε. Combine (2.1) with Lemma 2.1, we have

µV,α,θ(E− ε, E + ε) ≤ 2ε=M(E + iε) . ε
1
2 .

Since µV,α,θ = 0 on R\ΣV,α, then there exists D0 = D0(V, α) > 0 such that

µV,α,θ(J) ≤ D0|J|
1
2 , ∀J ⊂ R.
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Let σ : `2(Z) → `2(Z) be the shift f (i + 1) = σ f (i). Then σHV,α,θσ−1 = HV,α,θ+α. Thus
µ

σ f
θ+α = µ

f
θ and µek

θ = µe0
θ+kα ≤ µθ+kα. Let E(J) be the spectral projection of HV,α,θ on J,

then

µ
f
V,α,θ(J) =〈E(J) f , f 〉 = ‖E(J)∑

k
f (k)ek‖2 ≤

(
∑

k
| f (k)| · ‖E(J)ek‖

)2

=
(

∑
k
| f (k)|µek

V,α,θ(J)
1
2

)2
≤
(

∑
k
| f (k)|µV,α,θ+kα(J)

1
2

)2

≤D0‖ f ‖2
`1 · |J|

1
2 .

Thus, we complete the proof.
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