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Abstract. The aim of this paper is to study the Cauchy problem for the viscoelastic
wave equation for structural δ-evolution models. By using the energy method in the
Fourier spaces, we obtain the decay estimates of the solution to considered problem.
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1 Introduction

Cavalcanti et al. [3] studied the equation

|ut|ρutt − ∆u− ∆utt −
∫ t

0
g(t− s)∆u(s)ds− γ∆ut = 0, (1.1)

with x ∈ Ω, t > 0, ρ > 0. They proved a global existence result for γ ≥ 0, and an
exponential decay for γ > 0. This last result has been extended to a situation, where a
source term is competing with the strong damping mechanism and the one induced by
the viscosity. For more details see [9]. The authors combined well known methods with
perturbation techniques to show that a solution with positive small energy exists globally
and decay to the rest state exponentially.

In any spaces dimension, the paper [13] treated the viscoelastic wave equation

utt − ∆u +
∫ t

0
g(t− s)∆u(s)ds = 0, x ∈ Rn, t > 0, (1.2)
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where g, being positive and nonincreasing, is the relaxation function which describes the
material in consideration and u0 = u(x, 0) and u1 = ut(x, 0) are given data. By using
the energy method in the Fourier spaces, the general decay estimates of the solution is
shown. In [17], the author considered the following equation

ρ(x)
(
|u′|q−2u′

)′ −M(‖∇xu‖2
2)∆xu +

∫ t

0
g(t− s)∆xu(s)ds = 0, x ∈ Rn, t > 0, (1.3)

where q, n ≥ 2 and M is a positive C1-function satisfying for

s ≥ 0, m0 > 0, m1 ≥ 0, γ ≥ 1, M(s) = m0 + m1sγ.

In order to compensate the lack of Poincaré’s inequality in Rn and for wider class of
relaxation functions, the author used the weighted spaces to establish a very general
decay rate of solutions of viscoelastic wave equations in Kirchhoff-type.

In [5], the author looked into a linear Cauchy viscoelastic equation with density. His
study included the exponential and polynomial rates, where he used the spaces weighted
by density to compensate for the lack of Poincaré’s inequality. The same problem treated
in [5], was considered in [7], where it id considered a Cauchy problem for a viscoelastic
wave equation. Under suitable conditions on the initial data and the relaxation function,
they prove a polynomial decay result of solutions. The used conditions on the relaxation
function g and its derivative g′ are different from the usual conditions.

Recently, in [8], the authors considered the weak-viscoelastic case in the following
problem,

u′′ − ∆u− ∆u′ + α(t)
∫ t

0
g(t− s)∆u(s, x)ds = 0, x ∈ Rn, t ∈ R+

∗ , (1.4)

where n ≥ 2. The energy decay results were established for weak-viscoelastic wave
equation in Rn, which depends on the behavior of both α and g. The main idea of the
proof was to construct an appropriate Lyapunov function of the system obtained after
taking the Fourier transform.

To extend previous results, we study the decay rate of the solution to the Cauchy
problem for structural damped δ-evolution with memory term in Fourier spaces

utt + (−∆)δu−
∫ t

0
g(t− s)(−∆)δu(s)ds = 0, x ∈ Rn, t > 0, (1.5)

with the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), and δ > 1. (1.6)

The model here considered are well known ones and refer to materials with memory as
they are termed in the wide literature which is concerned about their physical, mechan-
ical behavior and the many interesting analytical problems. The physical characteristic
property of such materials is that their behavior depends on time not only through the
present time but also through their past history.
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2 Preliminaries and assumptions and Asymptotic stability

We assume that the function g satisfies the following conditions:
A1: g : R+ −→ R+ is of class C1 satisfying,

g(0) > 0, 1−
∫ ∞

0
g(t)dt = k > 0, g′(t) ≤ 0, ∀t ∈ R+. (2.1)

A2: There exists a positive nonincreasing differentiable function α(t) satisfying

g′(t) + α(t)g(t) ≤ 0, ∀t ∈ R+, (2.2)

and
α(t) > 0, α′(t) ≤ 0, ∀t > 0. (2.3)

For any real (complex)-valued function h(t), we define

(g ∗ h)(t) =
∫ t

0
g(t− τ)h(τ)dτ,

(g ◦ h)(t) =
∫ t

0
g(t− τ)|h(t)− h(τ)|2dτ.

For a later use, we have the following lemma, which is useful in obtaining our estimate
of solutions in the Fourier space.

Lemma 2.1 ([8]). For any f ∈ C1(R+) and any h ∈ H1(R+), we have

Re( f ∗ h)(t)h̄t(t) =−
1
2

f (t)|h(t)|2 + 1
2
( f ′ ◦ h)(t)

− 1
2

d
dt

{
( f ◦ h)(t)−

(∫ t

0
f (τ)dτ

)
|h(t)|2

}
, (2.4)

and ∣∣∣∣∣∣
t∫

0

f (t− s)(h(s)− h(t))ds

∣∣∣∣∣∣
2

≤
∫ t

0
| f (s)|ds

∫ t

0
| f |(t− s)|h(t)− h(s)|2ds. (2.5)

The following Lemma is very useful in the sequel.

Lemma 2.2 ([15]). Assume that β(t) > 0 for all t ≥ 0, l, p ≥ 2. Then we have∥∥∥∥|ξ|l exp
{
−c|ξ|2

∫ t

0
β(τ)dτ

}∥∥∥∥
Lp
≤ C

(
1 +

∫ t

0
β(τ)dτ

)− l
2−

N
2p

,

where C is a positive constant.
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Our aim is to obtain the decay estimates of the solution to the problem (1.5)-(1.6).
After Fourier transformation of (1.5)-(1.6), we get the following system ûtt + |ξ|2δ

(
û−

∫ t

0
g(t− s)û(s)ds

)
= 0, ξ ∈ Rn, t ≥ 0,

û(ξ, 0) = û0(x), ût(ξ, 0) = û1(x), ξ ∈ Rn.
(2.6)

The energy associated to (2.6) is given by

Ê(ξ, t) =
1
2

{
|ût|2 + |ξ|2δ|û|2

}
(ξ, t). (2.7)

Lemma 2.3. The modified energy associated to (2.6) is defined as follows.

Ê(ξ, t) =
1
2

{
|ût|2 +

(
1−

∫ t

0
g(s)ds

)
|ξ|2δ|û|2 + |ξ|2δ(g ◦ û)

}
(ξ, t), (2.8)

and the modified energy Ê(ξ, t) is non-increasing and satisfies for all t ≥ 0

dÊ(ξ, t)
dt

= |ξ|2δ(g′ ◦ û)(ξ, t)− |ξ|2δg(t)|û(ξ, t)|2 ≤ 0. (2.9)

Proof. Multiplying the equation in (2.6) by ¯̂ut and taking the real part, we get

1
2

d
dt

{
|ût(ξ, t)|2 + |ξ|2δ|û(ξ, t)|2

}
= Re

{
|ξ|2δ ¯̂ut

∫ t

0
g(s)û(ξ, t− s)ds

}
. (2.10)

Using Lemma 2.1, we easily see that

Re
{
|ξ|2δ ¯̂ut

∫ t

0
g(s)û(ξ, t− s)ds

}
=− 1

2
|ξ|2δg(t)|û(ξ, t)|2 + 1

2
|ξ|2δ(g′ ◦ û)(ξ, t)

− |ξ|2δ 1
2

d
dt

{
(g ◦ û)(ξ, t)−

(∫ t

0
g(τ)dτ

)
|û(ξ, t)|2

}
.

Substituting this last equality into (2.10), the identity (2.9) then follows.
On the other hand, using (A1) there exists a positive constant c1 > 0 such that, for all

t ≥ 0 and for all ξ ∈ Rn, we have

Ê(ξ, t) ≤ c1Ê(ξ, t). (2.11)

Thus, we complete the proof.

We will prove the following exponential stability result.
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Proposition 2.1. Let û(ξ, t) be the solution of (2.6). Then there exist two positive constants C,
β0 such that

Ê(ξ, t) ≤ Ê(ξ, 0) exp
{
− β0|ξ|2δ

1 + |ξ|2δ

∫ t

0
α(s)ds

}
, ∀t ≥ t0 > 0. (2.12)

To prove Proposition 2.1, the key point is to apply the multiplier techniques in Fourier
spaces in order to obtain useful estimates and prepare some functionals associated with
the nature of our problem to introduce an appropriate Lyapunov functional.

Proof. Multiplying (2.6) by ¯̂u and taking the real part, we get

d
dt

Re(ût ¯̂u) +
(

1−
∫ t

0
g(s)ds

)
|ξ|2δ|û|2 − |ût|2

+ |ξ|2δRe
{

¯̂u(t)
∫ t

0
g(t− s)(û(t)− û(s))ds

}
= 0.

Applying Young’s inequality, we obtain, for any ε1 > 0,

d
dt

Re(ût ¯̂u) +
(

1− ε1 −
∫ t

0
g(s)ds

)
|ξ|2δ|û|2 − |ût|2

≤ 1
4ε1
|ξ|2δ(1− k)(g ◦ û)(ξ, t). (2.13)

Next, the existence of the memory term forces us to make the first modification of the
energy by multiplying (2.6) by −

∫ t
0 g(t− s)( ¯̂u(t)− ¯̂u(s))ds and taking the real part, we

have that

− d
dt

Re
(

ût

∫ t

0
g(t− s)( ¯̂u(t)− ¯̂u(s))ds

)
+ Re

(
ût

∫ t

0
g′(t− s)( ¯̂u(t)− ¯̂u(st))ds

)
+ |ût|2

∫ t

0
g(s)ds− |ξ|2δRe

(
û(t)

∫ t

0
g(t− s)( ¯̂u(t)− ¯̂u(s))ds

)
+ |ξ|2δRe

{(
û
∫ t

0
g(t− s)ds

)(∫ t

0
g(t− s)( ¯̂u(t)− ¯̂u(s))ds

)}
− |ξ|2δ

∣∣∣∣∫ t

0
g(t− s)(û(t)− û(s))ds

∣∣∣∣2 = 0.

Young’s inequality gives, for any ε2 > 0,

− d
dt

Re
(

ût

∫ t

0
g(t− s)( ¯̂u(t)− ¯̂u(s))ds

)
+ |ût|2

∫ t

0
g(s)ds

≤ε2|ût|2 −
g(0)
4ε2

∫ t

0
g′(t− s)|û(t)− û(s)|2ds + ε2(2− k)|ξ|2δ|û|2

+

(
|ξ|2δ

{
(1− k)

4ε2
+ (1− k)2 +

1
4ε2

})
(g ◦ û)(t), ∀t ≥ 0. (2.14)



94 A. Beniani, Kh. Zennir and A. Benaissa / Anal. Theory Appl., 36 (2020), pp. 89-98

Then, for any t ≥ t0, the estimate (2.14) can be rewritten as follows

− d
dt

Re
(

ût

∫ t

0
g(t− s)( ¯̂u(t)− ¯̂u(s))ds

)
+

(∫ t0

0
g(s)ds− ε2

)
|ût|2

≤ε2(2− k)|ξ|2δ|û|2 − g(0)
4ε2

(g′ ◦ û)(t) + |ξ|2δ

{
(2− k)

4ε2
+ (1− k)2

}
(g ◦ û)(t). (2.15)

Now, we define the functional L(ξ, t) as follows.

L(ξ, t) =
g0

2
Re(ût ¯̂u)− Re

(
ût

∫ t

0
g(t− s)( ¯̂u(t)− ¯̂u(s))ds

)
, (2.16)

where g0 =
∫ t0

0 g(s)ds. Taking the derivative of L(ξ, t) with respect to t and exploiting
the estimates (2.13) and (2.15), we arrive to

d
dt
L(ξ, t) +

g0

2
(k− ε1 − ε2(2− k)|ξ|2δ|û|2 +

{ g0

2
− ε2

}
|ût|2

≤− c2(g′ ◦ û)(t) + c3|ξ|2δ(g ◦ û)(t), ∀t ≥ 0, (2.17)

where c2 and c3 are two positive constants depending on ε1 and ε2. In the last estimate
we have used the fact that 1−

∫ t
0 g(s)ds ≥ k and g0 =

∫ t0
0 g(s)ds ≤

∫ t
0 g(s)ds for any

t ≥ t0.
Now, we choose ε1 < k in (2.17) and ε2 small enough such that ε2 < min

(
g0
2 , l−ε1

2−k

)
.

Then there exist positive constants λi, (i = 1, 2, 3) positive constants such that

d
dt
L(ξ, t) + λ1|ξ|2δ|û|2 + λ2|ût|2 + λ3|ξ|2δ(g ◦ û)(t)

≤− c2(g′ ◦ û)(t) + (c3 + λ3)|ξ|2δ(g ◦ û)(t), ∀t ≥ 0. (2.18)

Define the Lyapunov functional F(ξ, t) as follows.

F(ξ, t) := η
(

1 + |ξ|2δ
)
E(ξ, t) + |ξ|2δL(ξ, t), (2.19)

for a large positive constant η that has to be chosen later. It is straightforward to see that
for η large enough, we can find two positive constants β1 and β2 such that

β1

(
1 + |ξ|2δ

)
E(ξ, t) ≤ F(ξ, t) ≤ β2

(
1 + |ξ|2δ

)
E(ξ, t), ∀t ≥ 0. (2.20)

On the other hand, taking the derivative of F(ξ, t) with respect to t and using (2.9) and
(2.18), we have

d
dt
F(ξ, t) + λ1|ξ|4δ|û|2 + λ2|ξ|2δ|ût|2 + λ3|ξ|4δ(g ◦ û)(t)

≤(η − c2)|ξ|2δ(g′ ◦ û)(t) + (c3 + λ3)|ξ|4δ(g ◦ û)(t), ∀t ≥ 0. (2.21)
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At this point, we choose η large enough such that (2.20) holds and η − c2 > 0. Conse-
quently (2.21) yields

d
dt
F(ξ, t) + λ0|ξ|2δÊ(ξ, t) ≤ c4|ξ|4δ(g ◦ û)(t), ∀t ≥ t0, (2.22)

for some λ0, c4 > 0.
Multiplying (2.22) by α(t) and making use of (2.2), we get

α(t)
d
dt
F(ξ, t) + λ0α(t)|ξ|2δÊ(ξ, t)

≤c4α(t)|ξ|4δ(g ◦ û)(t)

≤c4|ξ|4δ(−g′ ◦ û)(t), ∀t ≥ t0.

Exploiting (2.9), we have

α(t)
d
dt
F(ξ, t) + λ0α(t)|ξ|2δÊ(ξ, t) ≤ −c4|ξ|2δ d

dt
Ê(ξ, t), ∀t ≥ t0. (2.23)

This gives

d
dt

{
α(t)F(ξ, t) + c4|ξ|2δÊ(ξ, t)

}
− α′(t)F(ξ, t) + λ0α(t)|ξ|2δÊ(ξ, t) ≤ 0, ∀t ≥ t0. (2.24)

Recalling that α′(t) ≤ 0 and setting

K(ξ, t) := α(t)F(ξ, t) + c4|ξ|2δÊ(ξ, t), (2.25)

we get
d
dt
K(ξ, t) + λ0α(t)|ξ|2δÊ(ξ, t) ≤ 0, ∀t ≥ t0. (2.26)

On the other hand, since α(t) is bounded, we deduce that

K(ξ, t) ∼
(

1 + |ξ|2δ
)
Ê(ξ, t). (2.27)

These last two estimates lead to

d
dt
K(ξ, t) + β0

|ξ|2δ

1 + |ξ|2δ
α(t)K(ξ, t) ≤ 0, ∀t ≥ t0, (2.28)

for some β0 > 0. Integrating (2.28) with respect to t yields

K(ξ, t) ≤ K(ξ, t0) exp
{
− β0|ξ|2δ

1 + |ξ|2δ

∫ t

t0

α(t)ds
}

. (2.29)
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Thus, using (2.27), we obtain

Ê(ξ, t) ≤CÊ(ξ, t0) exp
{
− β0|ξ|2δ

1 + |ξ|2δ

∫ t

t0

α(t)ds
}

≤CÊ(ξ, 0) exp
{
− β0|ξ|2δ

1 + |ξ|2δ

∫ t

0
α(t)ds

}
. (2.30)

Finally, the estimate (2.12) holds by combining (2.11) and (2.30). This finishes the proof
of Proposition 2.1.

Thus our main result reads as follows:

Theorem 2.1. Let σ be a nonnegative integer. Assume that U0 = (u1, u′0)
T ∈ Hσ(Rn) ∩

L1(Rn). Then the solution U = (ut, ux)T of the problem (1.5) satisfies, for all t ≥ 0, the following
decay estimates

‖∂k
xU(t)‖L2 ≤ C

(
1 +

∫ t

0
α(s)ds

)− δk
2 −

N
4

‖U0‖L1 + Ce−c
∫ t

0 α(s)ds‖∂k
xU0‖L2 , (2.31)

where C and c are two positive constants and k ≤ σ.

Proof. Applying the Plancherel theorem and observing that |Û(ξ, t)|2 and Ê(ξ, t) are equiv-
alent, and making use of (2.12), we obtain

‖∂k
xU(t)‖2

2 =
∫

Rn
|ξ|2k|Û(ξ, t)|2dξ

≤C
∫

Rn
|ξ|2ke

− β0 |ξ|2δ

1+|ξ|2δ

∫ t
0 α(s)ds|Û(ξ, 0)|2dξ

=C
∫
|ξ|≤1
|ξ|2ke

− β0 |ξ|2δ

1+|ξ|2δ

∫ t
0 α(s)ds|Û(ξ, 0)|2dξ

+ C
∫
|ξ|≥1
|ξ|2ke

− β0 |ξ|2δ

1+|ξ|2δ

∫ t
0 α(s)ds|Û(ξ, 0)|2dξ

=:I1 + I2. (2.32)

Looking carefully to the form of ρ(ξ) = |ξ|2δ

1+|ξ|2δ , we see that ρ(ξ) ≥ 1
2 |ξ|2δ for |ξ| ≤ 1 and

ρ(ξ) ≥ 1
2 for |ξ| ≥ 1.

Consequently, we infer that

I1 ≤C‖Û0‖2
L∞

∫
|ξ|≤1
|ξ|2ke−

1
2 |ξ|2δ

∫ t
0 α(s)dsdξ

≤C
(

1 +
∫ t

0
α(τ)dτ

)−kδ− n
2

‖U0‖2
L1 , (2.33)
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where we have used Lemma 2.2
On the other hand,

I2 ≤ Ce−
1
2

∫ t
0 α(s)ds

∫
|ξ|≥1
|ξ|2k|Û0(ξ)|2dξ ≤ Ce−

1
2

∫ t
0 α(s)ds‖∂k

xU0‖2
L2 . (2.34)

Collecting (2.33) and (2.34), then the estimate (2.31) holds. This completes the proof of
Theorem 2.1.
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