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Abstract

Two-variable Jacobi polynomials, as a two-dimensional basis, are applied to solve a class

of temporal fractional partial differential equations. The fractional derivative operators are

in the Caputo sense. The operational matrices of the integration of integer and fractional

orders are presented. Using these matrices together with the Tau Jacobi method converts

the main problem into the corresponding system of algebraic equations. An error bound is

obtained in a two-dimensional Jacobi-weighted Sobolev space. Finally, the efficiency of the

proposed method is demonstrated by implementing the algorithm to several illustrative

examples. Results will be compared with those obtained from some existing methods.
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1. Introduction

Fractional partial differential equations (FPDEs) are used as modeling tools of various phe-

nomena in different branches of science. For example, diffusive processes associated with sub-

diffusion (fractional in time), super-diffusion (fractional in space), or both, advection-diffusion,

and convection-diffusion processes can be modeled by FPDEs [1–5]. The advantage of these

equations in compared to integer-order partial differential equations is the ability of natural

simulation of physical processes and dynamical systems more accurately [6]. For instance, some

phenomena in fluid and continuum mechanics [7], viscoplastic and viscoelastic flows [8], biology,

and acoustics [9], describing chemical and pollute transport in heterogeneous aquifers [10–12],

pricing mechanisms and heavy stochastic processes in finance [13], and describing convection

process of liquid in medium [14]. Therefore, it helps mathematicians and engineers in the better

understanding of the nature and behavior of physical phenomena. For this reason, FPDEs are

increasingly studied, but their analytic solving is difficult. Hence, mathematicians have been

attracted to solve this class of equations numerically. For example, in [14], the normalized and

rational Bernstein polynomials are applied to solve a kind of time-space fractional diffusive equa-

tion. The finite difference method is used to solve the fractional reaction-subdiffusion equation

in [15]. Authors in [16] propose a wavelet method to solve a class of fractional convection-

diffusion equation with variable coefficients. Chen and et al. use generalized fractional-order

Legendre functions to obtain numerical solutions of FPDEs with variable coefficients [17]. Ding
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introduces a general Pade approximation method for time-space fractional diffusive equations

in [18]. Also, Heydari and et al. apply the Legendre wavelet method for solving the time

fractional diffusion-wave equation [19]. In [20], a two-dimensional wavelets collocation method

uses to solve electromagnetic waves in dielectric media.

In this paper, an operational Tau method, based on two-variable Jacobi polynomials (TVJP-

s), is proposed to deal with a class of FPDEs which involves equations such as diffusion and

advection-diffusion equations. The derivative operators appeared in these equations are in the

Caputo sense. First, the TVJPs, on the domain Ω = [0, 1]× [0, 1], are obtained as a generaliza-

tion of the classic one-variable Jacobi polynomials (OVJPs) on the interval Ω0 = [0, 1]. A given

continuous function u(x, t), defined on Ω, can be approximated in terms of the two-variable

presented basis. In order to approximate the terms including the derivative operators in the

equation under study, the operational matrices of the integration of fractional and integer or-

ders are derived for the one-variable Jacobi basis, then the resultant matrices are applied to

construct the two-dimensional integral operational matrices for both two independent variables

x and t. Applying these matrices together with the Tau method leads to reduce the given

equation to the corresponding system of the algebraic equations which is a Sylvester equation.

Solving the resulting system leads to determine the vector of unknown coefficients, therefore,

an approximate solution is obtained. Also, the convergence of the proposed approach is investi-

gated in a two-dimensional Jacobi-weighted Sobolev space and an error bound is computed for

an approximate solution. Finally, the suggested algorithm is implemented to several illustrative

examples.

The outline of the paper is as follows: Section 2 gives some elementary definitions and

concepts of the fractional calculus. In Section 3, the TVJPs are constructed with help of the

OVJPs. The integral operational matrices of fractional and integer orders are derived in Section

4, which are used to construct the operational matrices corresponding to the fractional partial

derivative operators. In Section 5, an error bound is given in a two-dimensional Sobolev space.

The applicability and efficiency of the proposed approach are demonstrated by implementing

the method on several illustrative examples in Section 6. Finally, a conclusion is presented in

Section 7.

2. Elementary Definitions of Fractional Calculus

The two most used fractional operators are the Caputo derivative and the Riemann-Liouville

integral operators.

Definition 2.1. If γ ∈ R and n = ⌈γ⌉, the Caputo derivative operator is defined as,

Dγu(t) =
1

Γ(n− γ)

∫ t

0

(t− s)n−γ−1 u(s) ds, t ∈ Ω0,

D0u(t) = u(t).

(2.1)

Definition 2.2. If ν ∈ R, the Riemann-Liouville integral operator is defined as,

Jνu(t) =
1

Γ(ν)

∫ t

0

(t− s)ν−1u(s) ds, t ∈ Ω0,

J0u(t) = u(t).

(2.2)
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These two operators satisfy the following properties.

1. Jν1Jν2u(t) = Jν1+ν2u(t),

2. Jν(λ1 u1(t) + λ2 u2(t)) = λ1 Jνu1(t) + λ2 Jνu2(t),

3. Jνtγ =
Γ(γ + 1)

Γ(ν + γ + 1)
tν+γ , γ > −1,

4. DνJνu(t) = u(t),

5. JνDνu(t) = u(t)−
m−1
∑

k=0

u(k)(0+)

k!
tk, ⌈ν⌉ = m.

3. Shifted Jacobi Polynomials

In this section, the shifted Jacobi polynomials, over the interval Ω0 = [0, 1], are introduced.

Then, the two-variable Jacobi polynomials are derived from the extension of them.

3.1. One-variable shifted Jacobi polynomials

These polynomials can be obtained from the following recursive relation,

P
(α,β)
i+1 (t) =A(α, β, i) P

(α,β)
i (t) + (2t− 1) B(α, β, i) P

(α,β)
i (t)

− E(α, β, i) P
(α,β)
i−1 (t), i = 1, 2, · · · , (3.1)

where

A(α, β, i) =
(2i+ α+ β + 1)(α2 − β2)

2(i+ 1)(i+ α+ β + 1)(2i+ α+ β)
,

B(α, β, i) =
(2i+ α+ β + 2)(2i+ α+ β + 1)

2(i+ 1)(i+ α+ β + 1)
,

E(α, β, i) =
(i+ α)(i + β)(2i + α+ β + 2)

(i + 1)(i+ α+ β + 1)(2i+ α+ β)
.

The initial values are as,

P
(α,β)
0 (t) = 1, P

(α,β)
1 (t) =

α+ β + 2

2
(2t− 1) +

α− β

2
.

These polynomials are orthogonal related to the weight function w(α,β)(t) = tβ(1− t)α, that is,

∫ 1

0

P
(α,β)

i (t) P
(α,β)

j (t) w(α,β)(t) dt = hα,β
i δij , i = 0, 1, 2, · · · ,

where

hα,β
i =

Γ(i+ α+ 1)Γ(i+ β + 1)

(2i+ α+ β + 1) i! Γ(i + α+ β + 1)
, (3.2)

and δij denotes the Kronecker function. The shifted Jacobi polynomials can also be obtained

from the following series,

P
(α,β)
i (t) =

i
∑

k=0

(−1)i−kΓ(i+ β + 1)Γ(i+ k + α+ β + 1) tk

Γ(k + β + 1)Γ(i+ α+ β + 1) (i − k)! k!
, i = 0, 1, 2, · · · . (3.3)



882 A. BIAZAR AND K. SADRI

The representation (3.3) is used to achieve integral operational matrices. We will refer to it in

Sections 3 and 4. A square integrable function y(t) with respect to w(α,β)(t), in the interval

Ω0 = [0, 1], can be expanded in terms of the shifted Jacobi polynomials as follows.

y(t) =

∞
∑

j=0

cj P
(α,β)
j (t), (3.4)

where the coefficients cj are given by,

cj =
1

hα,β
j

∫ 1

0

y(t) P
(α,β)
j (t) w(α,β)(t) dt, j = 0, 1, 2, · · · .

Indeed, only the first (N +1)−terms of the shifted Jacobi polynomials are applied to expand a

given continuous function. On the other hand, one has,

yN (t) =

N
∑

j=0

cj P
(α,β)
j (t) = ΦT (t) c̃ = c̃T Φ(t), (3.5)

where the vectors c̃ and Φ(t) are given by,

c̃ = [c0, c1, · · · , cN ]T , Φ(t) = [P
(α,β)
0 (t), P

(α,β)
1 (t), · · · , P (α,β)

N (t)]T . (3.6)

The shifted Jacobi polynomials satisfy the following relations.

(i) P
(α,β)
i (0) = (−1)i

(

i+ β

i

)

, (3.7a)

(ii)
diP

(α,β)
n (t)

dti
=

Γ(n+ i + α+ β + 1)

Γ(n+ α+ β + 1)
P

(α+i,β+i)
n−i (t), i = 0, 1, · · · . (3.7b)

3.2. Two-variable shifted Jacobi polynomials

Two-variable shifted Jacobi polynomials, P
(α,β)
i,j (x, t), are defined on the domain Ω = [0, 1]×

[0, 1] as follows,

P
(α,β)
i,j (x, t) = P

(α,β)
i (x) P

(α,β)
j (t), i, j = 0, 1, 2, · · · , (x, t) ∈ Ω.

It is easily seen that these polynomials are orthogonal with weight function W (α,β)(x, t) =

w(α,β)(x) w(α,β)(t) on Ω, [21]. That is,

∫ 1

0

∫ 1

0

P
(α,β)
i,j (x, t) P

(α,β)
k,l (x, t) W (α,β)(x, t) dx dt

=

∫ 1

0

P
(α,β)
i (x)P

(α,β)
k (x)w(α,β)(x) dx×

∫ 1

0

P
(α,β)
j (t)P

(α,β)
l (t) w(α,β)(t) dt

=

{

hα,β
i hα,β

j , (i, j) = (k, l),

0, i 6= k or j 6= l.

A two variables continuous function y(x, t), defined over Ω, may be expanded by the TVJPs

as

y(x, t) =

∞
∑

i=0

∞
∑

j=0

Cij P
(α,β)
i,j (x, t), (3.8)
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where the coefficients Cij are computed as follows,

Cij =
1

hα,β
i hα,β

j

∫ 1

0

∫ 1

0

y(x, t) P
(α,β)
i,j (x, t) W (α,β)(x, t) dx dt.

A finite presentation of y(x, t), base on the infinite series (3.8), can be presented as the following,

y(x, t) ≃ yN,M (x, t) =

N
∑

i=0

M
∑

j=0

Cij P
(α,β)
i,j (x, t) = ΦT (x, t) C, (3.9)

where C and Φ(x, t) are the Jacobi coefficients and the TVJPs vectors, respectively,

C = [C00, C01, · · · , C0M , C10, C11, · · · , C1M , · · · , CN0, CN1, ..., CNM ]T , (3.10a)

Φ(x, t) = [P
(α,β)
0,0 (x, t), P

(α,β)
0,1 (x, t), · · · , P (α,β)

0,M (x, t), P
(α,β)
1,0 (x, t), P

(α,β)
1,1 (x, t), · · · ,

P
(α,β)
1,M (x, t), · · · , P (α,β)

N,0 (x, t), P
(α,β)
N,1 (x, t), · · · , P (α,β)

N,M (x, t)]T . (3.10b)

4. Jacobi Operational Matrices of Integration

In this section, first, the operational matrix of the integration of order ν is derived. Then,

the operational matrices of the integration of fractional and integer orders, corresponding to

both two independent variables x and t, are constructed.

Lemma 4.1. If i ∈ N and l ≥ i, then one has,

∫ 1

0

tl P
(α,β)
i (t) w(α,β)(t) dt

=

i
∑

k=0

(−1)i−k Γ(i+ β + 1) Γ(i+ k + α+ β + 1) Γ(l + k + β + 1) Γ(α+ 1)

Γ(k + β + 1) Γ(i + α+ β + 1) Γ(l + k + α+ β + 2) (i − k)! k!
.

See [21] for proof (Lemma 2.2).

Theorem 4.1. Let Φ(t) be the Jacobi basis vector in Eq. (3.8) and ν ∈ R. The fractional

integral of order ν of Φ(t) can be expressed as,

JνΦ(t) ≃ P(ν) Φ(t),

where Jν is the Riemann-Liouville fractional integral operator of order ν and P(ν) is the (M +

1)× (M + 1) fractional operational matrix of the integration and is defined by,

P(ν) =











θ(0, 0) θ(0, 1) . . . θ(0,M)

θ(1, 0) θ(1, 1) . . . θ(1,M)
...

...
. . .

...

θ(M, 0) θ(M, 1) . . . θ(M,M)











,

where

θ(i, j) =
i

∑

k=0

ω′
ijk, i = 0, 1, · · · ,M, j = 1, · · · ,M, (4.1)
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and ω′
ijk is given by, for 0 ≤ i, j ≤ M ,

ω′
ijk =

(−1)i−k Γ(j + β + 1) Γ(i+ β + 1) Γ(i+ k + α+ β + 1) Γ(α+ 1)

hj Γ(j + α+ β + 1) Γ(k + β + 1) Γ(i+ α+ β + 1) Γ(k + ν + 1) (i− k)!

×
j

∑

l=0

(−1)j−l Γ(j + l + α+ β + 1) Γ(l + k + ν + β + 1)

Γ(l + β + 1) Γ(l + k + ν + α+ β + 2) l!(j − l)!
.

Proof. Applying fractional integral operator (2.2) to series (3.3) leads to

JνP
(α,β)
i (t) =

i
∑

k=0

(−1)i−k Γ(i+ β + 1) Γ(i+ k + α+ β + 1) tk+ν

Γ(k + β + 1) Γ(i+ α+ β + 1) Γ(k + ν + 1) (i− k)!
. (4.2)

tk+ν can be approximated in terms of the shifted Jacobi polynomials as the following,

tk+ν ≃
N
∑

j=0

ρk,j P
(α,β)
j (t),

where

ρk,j =
1

hj

∫ 1

0

tk+ν P
(α,β)
j (t) w(α,β)(t) dt.

According to Lemma 4.1, relation (4.2) can be rewritten as

JνP
(α,β)
i (t) ≃

N
∑

j=0

{ i
∑

k=0

(−1)i−k Γ(j + β + 1) Γ(i+ β + 1) Γ(i+ k + α+ β + 1) Γ(α+ 1)

hj Γ(j + α+ β + 1) Γ(k + β + 1) Γ(i+ α+ β + 1) Γ(k + ν + 1) (i − k)!

×
j

∑

l=0

(−1)j−l Γ(j + l + α+ β + 1) Γ(l + k + ν + β + 1)

Γ(l + β + 1) Γ(l + k + ν + α+ β + 2) l!(j − l)!

}

P
(α,β)
j (t)

=

N
∑

j=0

θ(i, j) P
(α,β)
j (t),

where θ(i, j) is given in (4.1). This leads to the desired result. �

Corollary 4.1. For ν = 1 in Theorem 4.1, the operational matrix of the integration of the

integer order is achieved which is denoted by P throughout this paper.

Definition 4.1. The Kronecker product of the given matrices A = (a)ij and B = (b)kl is

defined as follows:

(A⊗ B)ij = aij B, i = 1, · · · ,m, j = 1, · · · , n.

Theorem 4.2. If M = N , P(ν) and Φ(x, t) are the operational matrix of the integration and

the two-variable basis vector, introduced by Theorem 4.1 and Eq. (3.10), respectively, then the

operational matrices of the integration with respect to x and t are defined as follows,

Jν
xΦ(x, t) ≃ P

(ν)
(x)Φ(x, t) = (P(ν) ⊗ I)Φ(x, t), (4.3a)

Jν
t Φ(x, t) ≃ P

(ν)
(t)Φ(x, t) = (I ⊗P(ν))Φ(x, t), (4.3b)
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where P
(ν)
(x) and P

(ν)
(t) are the (N + 1)2 × (N + 1)2 operational matrices of the integraion of the

fractional order corresponding to the variables x and t respectively, I is the (N + 1)× (N + 1)

identity matrix, and the fractional integral operators Jν
x and Jν

t are as,

Jν
xy(x, t) =

1

Γ(ν)

∫ x

0

(x− ξ)ν−1y(ξ, t) dξ,

Jν
t y(x, t) =

1

Γ(ν)

∫ t

0

(t− τ)ν−1y(x, τ) dτ.

(4.4)

Proof. See [21] (Theorem 3.4). �

Corollary 4.2. It is clear that the operational matrices of the integration of integer orders,

P1

(x) and P1

(t), in the two-variable case are obtained for ν = 1 in Theorem 4.2.

Now, consider the following fractional-time PDE,

∂γu(x, t)

∂tγ
+

∂u(x, t)

∂x
+

∂3u(x, t)

∂x3
= f(x, t), 0 < γ ≤ 1, (x, t) ∈ Ω,

u(x, 0) = g(x), u(0, t) = h1(t), ux(0, t) = h2(t), uxx(0, t) = h3(t).

(4.5)

In order to compute an approximate solution, uN,N(x, t), for Eq. (4.5) first consider the fol-

lowing approximation,
∂4u(x, t)

∂t ∂x3
∼= ΦT (x, t) C. (4.6)

Integrating of approximation (4.6) from 0 to t leads to the following approximation,

∂3u(x, t)

∂x3
∼= ΦT (x, t) P1

(t)

T
C + g

′′′

(x). (4.7)

By the consecutive integrating of (4.7), the following approximations are obtained.

∂2u(x, t)

∂x2
∼= ΦT (x, t) P1

(x)

T
P1

(t)

T
C + (g

′′

(x) − g
′′

(0)) + h3(t),

∂u(x, t)

∂x
∼= ΦT (x, t) (P1

(x)

T
)2 P1

(t)

T
C + (g

′

(x)− g
′

(0)) + (h3(t)− g
′′

(0))x+ h2(t),

u(x, t) ∼= ΦT (x, t) (P1

(x)

T
)3 P1

(t)

T
C + (g(x) − g(0)) + g

′

(x) + (h2(t)− g
′

(0))x

+ (h3(t)− g
′′

(0))
x2

2
+ h1(t). (4.8)

By the consecutive integrating of (4.7) from 0 to x, one has,

∂3u(x, t)

∂t ∂x2
∼= ΦT (x, t) P1

(x)

T
C + h

′

3(t),

∂2u(x, t)

∂t ∂x
∼= ΦT (x, t) (P1

(x)

T
)2 C + h

′

3(t)x+ h
′

2(t),

∂u(x, t)

∂t
∼= ΦT (x, t) (P1

(x)

T
)3 C + h

′

3(t)
x2

2
+ h

′

2(t)x + h
′

1(t). (4.9)

For approximating the function ∂γu(x, t)/∂tγ , approximation (4.9) is utilized as follows:

∂u(x, t)

∂t
=

∂1−γ ∂γu(x, t)

∂t1−γ ∂tγ
∼= ΦT (x, t) (P1

(x)

T
)3 C + h

′

3(t)
x2

2
+ h

′

2(t)x+ h
′

1(t). (4.10)
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Applying the Riemann-Liouville integral operator of the order (1 − γ) to (4.10) yields the

following approximation,

∂γu(x, t)

∂tγ
≃ ΦT (x, t) P

(1−γ)
(t)

T
(P1

(x)

T
)3 C +G(x, t) +

∂γu(x, 0)

∂tγ
,

where

G(x, t) =
1

Γ(1− γ)

∫ t

0

(t− τ)−γ G0(x, τ) dτ, G0(x, t) = h
′

3(t)
x2

2
+ h

′

2(t)x+ h
′

1(t).

By using Eq. (4.10), an approximation for u(x, t) is obtained as

u(x, t) ≃ Φ
T (x, t) P1

(t)
T
(P1

(x)
T
)3 C + (h3(t)− h3(0))

x2

2
+ (h2(t)− h2(0))x+ (h1(t)− h1(0)) + g(x),

∂γu(x, 0)

∂tγ
≃

(

Φ
T (x, t) P1

(t)
T
(P1

(x)
T
)3 C +

dγh3(t)

dtγ
x2

2
+

dγh2(t)

dtγ
x+

dγh1(t)

dtγ

)
∣

∣

∣

∣

t=0

=
dγh3(0)

dtγ
x2

2
+

dγh2(0)

dtγ
x+

dγh1(0)

dtγ
.

The last line is because all components of the vector ΦT (x, t) are polynomials in terms of x, t.

Therefore, one has

∂γu(x, t)

∂tγ
≃ ΦT (x, t) P

(1−γ)
(t)

T
(P1

(x)

T
)3 C +G(x, t) + V (x),

where

V (x) =
dγh3(0)

dtγ
x2

2
+

dγh2(0)

dtγ
x+

dγh1(0)

dtγ
.

By substituting the above approximations into Eq. (4.5), one obtains the following matrix

equation,

ΦT (x, t) P
(1−γ)
(t)

T
(P1

(x)

T
)3 C+ΦT (x, t) (P1

(x)

T
)2 P1

(t)

T
C+ΦT (x, t) P1

(t)

T
C−ΦT (x, t) F ≈ 0,

where F is a vector and its components are calculated as,

Fi =
1

(hα,β
i )2

∫ 1

0

∫ 1

0

f0(x, t) P
(α,β)
i,i (x, t) W (α,β)(x, t) dx dt,

with

f0(x, t) = G(x, t) + V (x) + (g
′

(x)− g
′

(0)) + (h3(t)− g
′′

(0))x+ h2(t) + g
′′′

(x) − f(x, t).

According to the Tau method, (N + 1)2 linear algebraic equations are generated including the

unknown coefficients, Cij , i, j = 0, 1, · · · , N ,

P
(1−γ)
(t)

T
(P1

(x)

T
)3 C + (P1

(x)

T
)2 P1

(t)

T
C +P1

(t)

T
C ≈ F. (4.11)

System (4.11) is a Sylvester equation and by solving this equation, an approximate solution can

be computed by (4.8).
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5. Error Bound

An error bound for an integer derivative of an approximate solution is computed in a Jacobi-

weighted Sobolev space, then the resultant bound will be extended to fractional-order deriva-

tives.

First, suppose that PN,M = span{P (α,β)
i,j (x, t), i = 0, 1, · · · , N, j = 0, 1, · · · ,M}. Let us

assume that uN,M(x, t) ∈ PN,M be the best approximation of u(x, t) ∈ L2([0, 1]× [0, 1]), on the

other hand,

||u(x, t)− uN,m(x, t)|| = infv(x,t)∈PN,M
||u(x, t)− v(x, t)||,

where

uN,M(x, t) =

N
∑

i=0

M
∑

j=0

Cij P
(α,β)
i,j (x, t).

Definition 5.1. The two-dimensional Sobolev space Wm,2(Ω), Ω = [0, 1] × [0, 1], m ∈ N, is

defined as,

Wm,2(Ω) =

{

u(x, t) ∈ L2(Ω)

∣

∣

∣

∣

∂i+ju

∂xi ∂tj
∈ L2(Ω), 0 ≤ i+ j ≤ m

}

.

If σ = (σ1, σ2) such that σi ∈ Z
+, i = 1, 2, and |σ| = σ1 + σ2, the norm of the space Wm,2(Ω)

is defined as,

||u||m,W (α,β) =

(

∑

|σ|≤m

||Dσu||2
W

(α,β)

|σ|

)
1
2

=

(

∑

|σ|≤m

∣

∣

∣

∣

∣

∣

∣

∣

∂|σ|u

∂xσ1 ∂tσ2

∣

∣

∣

∣

∣

∣

∣

∣

2

W
(α,β)

|σ|

)
1
2

,

where W
(α,β)
|σ| (x, t) = w(α+σ1,β+σ1)(x)w(α+σ2,β+σ2)(t). Meanwhile, Wm,2(Ω) can be denoted by

Hm(Ω) which is called a Hilbert space.

Definition 5.2 (Stirling’s formula). The following formula is applied to calculate approxi-

mate values of the Gamma function for large values of n,

Γ(n+ 1) = nn+ 1
2 e−n

√
2π S(n),

where

S(n) = 1 +
1

12n
+

1

288n2
− 139

51840n3
− 571

2488320n4
+O(n−5).

Theorem 5.1. Let 0 ≤ l ≤ m < N + 1. Suppose that u ∈ Wm,2(Ω) and uN,M(x, t) be the

Jacobi approximation to u. A bound for the integer derivative of the order l of the error function,

relative to x, can be computed as follows,
∣

∣

∣

∣

∣

∣

∣

∣

∂l(u− uN,M)

∂xl

∣

∣

∣

∣

∣

∣

∣

∣

W
(α,β)
l

≤
√
3 C0(N(N + α+ β))

l−m
2 ||u||Wm,2(Ω), (5.1)

where C0 is a constant.

Proof. Suppose that uN,M(x, t) be the Jacobi approximation of u(x, t), which is obtained

from the proposed algorithm. We have,

u(x, t)− uN,M(x, t) =
∞
∑

i=N+1

∞
∑

j=M+1

CijP
(α,β)
i (x) P

(α,β)
j (t)

+

N
∑

i=0

∞
∑

j=M+1

CijP
(α,β)
i (x) P

(α,β)
j (t) +

∞
∑

i=N+1

M
∑

j=0

CijP
(α,β)
i (x) P

(α,β)
j (t).
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Based on the orthogonality of the TVJPs and the second relation in (3.7), we have,

∣

∣

∣

∣

∣

∣

∣

∣

∂ku

∂xk

∣

∣

∣

∣

∣

∣

∣

∣

2

W
(α,β)
k

=

∞
∑

i=k

∞
∑

j=0

C2
ij (dα,βi,k )2 hα+k,β+k

i−k hα,β
j , k < m,

where

dα,βi,k =
Γ(i+ k + α+ β + 1)

Γ(i+ α+ β + 1)
, W

(α,β)
k (x, t) = w(α+k,β+k)(x) w(α,β)(t). (5.2)

So, we have,

∣

∣

∣

∣

∣

∣

∣

∣

∂l(u− uN,M )

∂xl

∣

∣

∣

∣

∣

∣

∣

∣

2

W
(α,β)
l

≤
∞
∑

i=N+1

∞
∑

j=M+1

C2
ij(d

α,β
i,l )2 hα+l,β+l

i−l hα,β
j

+

N
∑

i=l

∞
∑

j=M+1

C2
ij(d

α,β
i,l )2 hα+l,β+l

i−l hα,β
j +

∞
∑

i=N+1

M
∑

j=0

C2
ij(d

α,β
i,l )2 hα+l,β+l

i−l hα,β
j

=

∞
∑

i=N+1

∞
∑

j=M+1

(dα,βi,l )2 hα+l,β+l
i−l

(dα,βi,m)2 hα+m,β+m
i−m

C2
ij(d

α,β
i,m)2 hα+m,β+m

i−m hα,β
j

+

N
∑

i=l

∞
∑

j=M+1

(dα,βi,l )2 hα+l,β+l
i−l

(dα,βi,m)2 hα+m,β+m
i−m

C2
ij(d

α,β
i,m)2 hα+m,β+m

i−m hα,β
j

+

∞
∑

i=N+1

M
∑

j=0

(dα,βi,l )2 hα+l,β+l
i−l

(dα,βi,m)2 hα+m,β+m
i−m

C2
ij(d

α,β
i,m)2 hα+m,β+m

i−m hα,β
j

≤ sup
i≥N+1

{

(dα,βi,l )2 hα+l,β+l
i−l

(dα,βi,m)2 hα+m,β+m
i−m

} ∞
∑

i=N+1

∞
∑

j=M+1

C2
ij(d

α,β
i,m)2 hα+m,β+m

i−m hα,β
j

+ max
l≤i≤N

{

(dα,βi,l )2 hα+l,β+l
i−l

(dα,βi,m)2 hα+m,β+m
i−m

} N
∑

i=l

∞
∑

j=M+1

C2
ij(d

α,β
i,m)2 hα+m,β+m

i−m hα,β
j

+ sup
i≥N+1

{

(dα,βi,l )2 hα+l,β+l
i−l

(dα,βi,m)2 hα+m,β+m
i−m

} ∞
∑

i=N+1

M
∑

j=0

C2
ij(d

α,β
i,m)2 hα+m,β+m

i−m hα,β
j

≤
{

2 (dα,βN+1,l)
2 hα+l,β+l

N−l+1

(dα,βN+1,m)2 hα+m,β+m
N−m+1

+
(dα,βN,l )

2 hα+l,β+l
N−l

(dα,βN,m)2 hα+m,β+m
N−m

}∣

∣

∣

∣

∣

∣

∣

∣

∂mu

∂xm

∣

∣

∣

∣

∣

∣

∣

∣

2

W
(α,β)
m

.

By (3.2) and (5.2), we can obtain,

(dα,βN+1,l)
2 hα+l,β+l

N−l+1

(dα,βN+1,m)2 hα+m,β+m
N−m+1

=
Γ(N + l + α+ β + 2)(N −m+ 1)!

Γ(N +m+ α+ β + 2)(N − l + 1)!
.

Using Stirling’s formula, Definition 5.3, yields the following inequality,

Γ(N + l + α+ β + 2)(N −m+ 1)!

Γ(N +m+ α+ β + 2)(N − l + 1)!
≤ C′(N + α+ β)l−mN l−m.
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A combination of the above estimates leads to the desired result in (5.1).

Corollary 5.1. According to Theorem 5.1, if 0 ≤ k ≤ m < M + 1, for any u ∈ Wm,2(Ω), a

bound for the integer derivative of the order k of the error function, relative to t, can similarly

be computed as follows,

∣

∣

∣

∣

∣

∣

∣

∣

∂k(u − uN,M)

∂tk

∣

∣

∣

∣

∣

∣

∣

∣

W
(α,β)
k

≤
√
3 C1(M(M + α+ β))

k−m
2 ||u||Wm,2(Ω), (5.3)

where C1 is a constant and W
(α,β)
k (x, t) = w(α,β)(x)w(α+k,β+k)(t).

Corollary 5.2. Suppose that u ∈ Wm,2(Ω) and uN,M(x, t) be the Jacobi approximation to

u(x, t), then, using Theorem 5.1, an error bound for the approximate solution can be computed

as follows,
∣

∣

∣

∣

∣

∣

∣

∣

u− uN,M

∣

∣

∣

∣

∣

∣

∣

∣

W (α,β)

≤
√
3 C2(Ñ(Ñ + α+ β))−

m
2 ||u||Wm,2(Ω), (5.4)

where C2 is a constant and Ñ = min{N,M}.

Theorem 5.2. Let u ∈ Wm,2(Ω). If n = ⌈γ⌉, n < m < N + 1, then,

∣

∣

∣

∣

∣

∣

∣

∣

∂γ(u− uN,M)

∂xγ

∣

∣

∣

∣

∣

∣

∣

∣

W
(α,β)
n

≤
√
3

Γ(n− γ + 1)
C0(N(N + α+ β))

n−m
2 ||u||Wm,2(Ω). (5.5)

Similarly, for the fractional-time derivative, the following inequality is achieved,

∣

∣

∣

∣

∣

∣

∣

∣

∂ν(u− uN,M)

∂tν

∣

∣

∣

∣

∣

∣

∣

∣

W
(α,β)

n′

≤
√
3

Γ(n′ − ν + 1)
C1(M(M + α+ β))

n′−m
2 ||u||Wm,2(Ω), (5.6)

where n′ = ⌈ν⌉ and n′ < m < N + 1.

Proof. By using the Riemann-Liouville integral operator, the Caputo derivative operator is

rewritten as follows,
∂γ(u− uN,M)

∂xγ
= Jn−γ

x

∂n(u− uN,M)

∂xn
.

By using the inequality ||f ∗ g||p ≤ ||f ||1 ||g||p that the star symbol denotes the convolution of

two given functions f and g, one has,

∣

∣

∣

∣

∣

∣

∣

∣

∂γ(u − uN,M)

∂xγ

∣

∣

∣

∣

∣

∣

∣

∣

2

W
(α,β)
n

=

∣

∣

∣

∣

∣

∣

∣

∣

Jn−γ
x

∂n(u − uN,M)

∂xn

∣

∣

∣

∣

∣

∣

∣

∣

2

W
(α,β)
n

=

(

1

Γ(n− γ)

)2∣
∣

∣

∣

∣

∣

∣

∣

1

x1+γ−n
∗ ∂n(u− uN,M )

∂xn

∣

∣

∣

∣

∣

∣

∣

∣

2

W
(α,β)
n

≤
(

1

Γ(n− γ)

)2∣
∣

∣

∣

∣

∣

∣

∣

1

x1+γ−n

∣

∣

∣

∣

∣

∣

∣

∣

2

L1(Ω)

∣

∣

∣

∣

∣

∣

∣

∣

∂n(u− uN,M)

∂xn

∣

∣

∣

∣

∣

∣

∣

∣

2

W
(α,β)
n

=

(

B(n+ β − γ, α+ 1)

Γ(n− γ)

)2∣
∣

∣

∣

∣

∣

∣

∣

∂n(u− uN,M )

∂xn

∣

∣

∣

∣

∣

∣

∣

∣

2

W
(α,β)
n

,

where B(m,n) is the Beta function. Using Theorem 5.1 leads to the desired result. �
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Lemma 5.1. For any two functions f, g ∈ L2(Ω),Ω = [0, 1]× [0, 1], one has

〈f, g〉L2(Ω) ≤
1

2

(

||f ||2L2(Ω) + ||g||2L2(Ω)

)

,

where 〈., .〉L2(Ω) and ||.||L2(Ω) indicate the inner product and the norm in the space L2(Ω),

respectively (Interestedreadersarereferredto[22]).

Now, consider the following FPDE with the constant coefficients.

∂γu(x, t)

∂xγ
+

∂νu(x, t)

∂tν
+ u(x, t) = f(x, t), (5.7)

such that n = ⌈γ⌉, n′ = ⌈ν⌉. Suppose that uN,M(x, t) be the approximate solution obtained

from the proposed algorithm. Therefore, uN,M(x, t) will be the solution of the following equa-

tion,

∂γuN,M(x, t)

∂xγ
+

∂νuN,M(x, t)

∂tν
+ uN,M(x, t) = f(x, t) +HN,M (x, t), (5.8)

∂γeN,M(x, t)

∂xγ
+

∂νeN,M (x, t)

∂tν
+ eN,M(x, t) = −HN,M(x, t), (5.9)

〈−HN,M(x, t), eN,M (x, t)〉L2(Ω) = 〈∂
γeN,M(x, t)

∂xγ
, eN,M(x, t)〉L2(Ω) (5.10)

+ 〈∂
νeN,M (x, t)

∂tν
, eN,M (x, t)〉L2(Ω) + 〈eN,M(x, t), eN,M (x, t)〉L2(Ω)

≤1

2

(
∣

∣

∣

∣

∣

∣

∣

∣

∂γeN,M(x, t)

∂xγ

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(Ω)

+

∣

∣

∣

∣

∣

∣

∣

∣

∂νeN,M (x, t)

∂tν

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(Ω)

+ 4||eN,M(x, t)||2L2(Ω)

)

.

Noting that ||y||L2(Ω) ≤ ||y||Wm,2(Ω), one has

||HN,M (x, t)||2Wm,2(Ω)

≤
∣

∣

∣

∣

∣

∣

∣

∣

∂γeN,M(x, t)

∂xγ

∣

∣

∣

∣

∣

∣

∣

∣

2

Wm,2(Ω)

+

∣

∣

∣

∣

∣

∣

∣

∣

∂νeN,M (x, t)

∂tν

∣

∣

∣

∣

∣

∣

∣

∣

2

Wm,2(Ω)

+ 3||eN,M(x, t)||2Wm,2(Ω)

≤
(

3 C2
0B

2(n+ β − γ, α+ 1)

Γ2(n− γ)
(N(N + α+ β))n−m

+
3 C2

1B
2(n+ β − ν, α+ 1)

Γ2(n′ − ν)
(M(M + α+ β))n

′−m

+ 9 C2
2 (Ñ(Ñ + α+ β))−m

)

||u||2Wm,2(Ω). (5.11)

Since u(x, t) is a bounded function, ||HN,M ||Wm,2(Ω) → 0 as N,M → ∞. By referring to Eq.
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(5.10), a bound can be obtained for the error of the method in a similar way,

〈−eN,M(x, t), eN,M (x, t)〉L2(Ω) = 〈∂
γeN,M(x, t)

∂xγ
, eN,M(x, t)〉L2(Ω)

+ 〈∂
νeN,M(x, t)

∂tν
, eN,M(x, t)〉L2(Ω) + 〈HN,M (x, t), eN,M (x, t)〉L2(Ω)

≤1

2

(∣

∣

∣

∣

∣

∣

∣

∣

∂γeN,M(x, t)

∂xγ

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(Ω)

+

∣

∣

∣

∣

∣

∣

∣

∣

∂νeN,M(x, t)

∂tν

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(Ω)

+ 3||eN,M(x, t)||2L2(Ω) + ||HN,M (x, t)||2L2(Ω)

)

.

Similarly, one obtains

||eN,M(x, t)||2Wm,2(Ω) ≤
1

2

(∣

∣

∣

∣

∣

∣

∣

∣

∂γeN,M(x, t)

∂xγ

∣

∣

∣

∣

∣

∣

∣

∣

2

Wm,2(Ω)

+

∣

∣

∣

∣

∣

∣

∣

∣

∂νeN,M(x, t)

∂tν

∣

∣

∣

∣

∣

∣

∣

∣

2

Wm,2(Ω)

+ 3||eN,M(x, t)||2Wm,2(Ω) + ||HN,M (x, t)||2Wm,2(Ω)

)

≤1

2

(

3 C2
0B

2(n+ β − γ, α+ 1)

Γ2(n− γ)
(N(N + α+ β))n−m

+
3 C2

1B
2(n+ β − ν, α+ 1)

Γ2(n′ − ν)
(M(M + α+ β))n

′−m

+ 9 C2
2 (Ñ(Ñ + α+ β))−m

)

||u||2Wm,2(Ω) +
1

2
||HN,M(x, t)||2Wm,2(Ω).

Based on Corollary 5.2, Theorem 5.2, and the bound in the inequality (5.1) can be concluded

||eN,M ||Wm,2(Ω) → 0 when N,M tend to infinity.

Now, consider the following fractional time-space PDE with the variable coefficients.

∂ηu(x, t)

∂tη
= d(x, t)

∂γu(x, t)

∂xγ
+ b(x, t)

∂νu(x, t)

∂tν
+ f(x, t), (5.12)

such that r = ⌈η⌉. If uN,M(x, t) is the Jacobi approximation to u(x, t), then it is a solution for

the following equation

∂ηuN,M(x, t)

∂tη
= d(x, t)

∂γuN,M(x, t)

∂xγ
+ b(x, t)

∂νuN,M(x, t)

∂tν
+ f(x, t) +HN,M(x, t). (5.13)

Subtracting Eq. (5.13) from Eq. (5.12) leads to the following error equation,

HN,M (x, t) = d(x, t)
∂γeN,M(x, t)

∂xγ
+ b(x, t)

∂νeN,M(x, t)

∂tν
− ∂ηeN,M(x, t)

∂tη
. (5.14)

Suppose that ||d(x, t)||L2(Ω) = M1 and ||b(x, t)||L2(Ω) = M2. Using the Cauchy-Schwartz in-
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equality ||fg||L2(Ω) ≤ ||f ||L2(Ω)||g||L2(Ω) for Eq. (5.13) leads to the following inequality:

〈HN,M (x, t), eN,M (x, t)〉L2(Ω) = 〈d(x, t)
∂γuN,M (x, t)

∂xγ
, eN,M (x, t)〉L2(Ω)

+ 〈b(x, t)
∂νeN,M (x, t)

∂tν
, eN,M (x, t)〉L2(Ω) − 〈

∂ηeN,M (x, t)

∂tη
, eN,M (x, t)〉L2(Ω)

≤
1

2

(

||d||2L2(Ω)

∣

∣

∣

∣

∣

∣

∣

∣

∂γuN,M

∂xγ

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(Ω)

+ ||b||2L2(Ω)

∣

∣

∣

∣

∣

∣

∣

∣

∂νeN,M

∂tν

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(Ω)

+

∣

∣

∣

∣

∣

∣

∣

∣

∂ηeN,M

∂tη

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(Ω)

+ 3||eN,M ||2L2(Ω)

)

≤
1

2

(

M2
1

∣

∣

∣

∣

∣

∣

∣

∣

∂γuN,M

∂xγ

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(Ω)

+M2

∣

∣

∣

∣

∣

∣

∣

∣

∂νeN,M

∂tν

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(Ω)

+

∣

∣

∣

∣

∣

∣

∣

∣

∂ηeN,M

∂tη

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(Ω)

+ 3||eN,M ||2L2(Ω)

)

.

Therefore, the following inequality can be achieved

||HN,M(x, t)||2Wm,2(Ω)

≤M2
1

∣

∣

∣

∣

∣

∣

∣

∣

∂γuN,M

∂xγ

∣

∣

∣

∣

∣

∣

∣

∣

2

wm,2(Ω)

+M2
2

∣

∣

∣

∣

∣

∣

∣

∣

∂νeN,M

∂tν

∣

∣

∣

∣

∣

∣

∣

∣

2

Wm,2(Ω)

+

∣

∣

∣

∣

∣

∣

∣

∣

∂ηeN,M

∂tη

∣

∣

∣

∣

∣

∣

∣

∣

2

Wm,2(Ω)

+ 2||eN,M ||2Wm,2(Ω).

Pursuing the same above argument, it can be concluded that ||HN,M ||Wm,2(Ω) → 0 as N,M

→ ∞. By using the Riemann-Liouville integral operator, Eq. (5.14) can be rewritten as follows,

eN,M (x, t) =
1

Γ(r − η)

∫ t

0

(t− s)r−η+1d(x, s)
∂γeN,M(x, s)

xγ
ds

+
1

Γ(r − η)

∫ t

0

(t− s)r−η+1b(x, s)
∂νeN,M(x, s)

xν
ds

− 1

Γ(r − η)

∫ t

0

(t− s)r−η+1HN,M(x, s) ds

=
1

Γ(r − η)
tr−η+1 ∗ d(x, t) ∂γeN,M(x, t)

xγ

+
1

Γ(r − η)
tr−η+1 ∗ b(x, t) ∂νeN,M (x, t)

xν
− 1

Γ(r − η)
tr−η+1 ∗HN,M (x, t).

〈eN,M (x, t), eN,M (x, t)〉L2(Ω)

=
1

Γ(r − η)
〈tr−η+1 ∗ d(x, t) ∂γeN,M(x, t)

xγ
, eN,M(x, t)〉L2(Ω)

+
1

Γ(r − η)
〈tr−η+1 ∗ b(x, t) ∂νeN,M(x, t)

xν
〉L2(Ω)

− 1

Γ(r − η)
〈tr−η+1 ∗HN,M (x, t), eN,M (x, t)〉L2(Ω)

≤ 1

2Γ(r − η)

(

||tr−η+1||2L1(Ω)||d||2L2(Ω)

∣

∣

∣

∣

∣

∣

∣

∣

∂γeN,M(x, t)

xγ

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(Ω)

+ ||tr−η+1||2L1(Ω)||b||2L2(Ω)

∣

∣

∣

∣

∣

∣

∣

∣

∂νeN,M(x, t)

xν

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(Ω)

+ ||tr−η+1||2L1(Ω)||HN,M(x, t)||2L2(Ω) + 3||eN,M(x, t)||2L2(Ω)

)

.
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Therefore,

||eN,M ||2Wm,2(Ω)

≤B2(r + β − η + 2, α+ 1)

Γ(r − η)

(

M2
1

∣

∣

∣

∣

∣

∣

∣

∣

∂γeN,M

xγ

∣

∣

∣

∣

∣

∣

∣

∣

2

Wm,2(Ω)

+M2
2

∣

∣

∣

∣

∣

∣

∣

∣

∂νeN,M

xν

∣

∣

∣

∣

∣

∣

∣

∣

2

Wm,2(Ω)

+ ||HN,M ||2Wm,2(Ω) + 3||eN,M ||2Wm,2(Ω)

)

,

where B(m,n) is the Beta function. When N and M tend to infinity, the right-hand side of

the above inequality also tends to zero. Therefore, eN,M (x, t) → 0.

6. Illustrative Examples

In this section, the proposed numerical method is carried out for several time- and time-space

fractional equations. All the test are done in Maple 13. The obtained results are compared

to those obtained from some existing methods such as Haar wavelet, Variational iteration, and

finite difference methods. Meanwhile, for all of the examples will be set N = M .

Example 6.1. As the first example, consider the following fourth-order fractional diffusion-

wave equation ([23, 24]):

∂νu(x, t)

∂tν
+

∂4u(x, t)

∂x4
= exp(x)

(

Γ(ν + 4)

6
t3 + tν+3 + t

)

, 0 < x, t ≤ 1, 1 < ν ≤ 2, (6.1)

with the initial and boundary conditions, respectively,

u(x, 0) = 0, ut(x, 0) = exp(x),

u(0, t) = ux(0, t) = uxx(0, t) = uxxx(0, t) = tν+3 + t.
(6.2)

The exact solution is u(x, t) = exp(x)(tν+3 + t). Pursuing the procedure described in the

previous section and substituting the appropriate approximations in Eq. (6.1), the following

equation is obtained.

ΦT (x, t) P
(2−ν)
(t)

T
(P1

(x)

T
)4 C +ΦT (x, t) (P1

(t)

T
)2 C ≈ ΦT (x, t) F, (6.3)

where
(

Γ(ν + 4)

6
t3 + tν+3 + t

)

ex − (ν + 3)tν+2

(

x3

3!
+

x2

2!
+ x+ 1

)

− ex

− (ν + 3)(ν + 2)tν+1(x+ 1) ≃ ΦT (x, t) F.

The left-hand side of the above approximation is obtained from initial and boundary conditions

(6.1). Using the Tau method for Eq. (6.3) leads to the following system.

P
(2−ν)
(t)

T

(P1

(x)

T
)4 C + (P1

(t)

T
)2 C − F ≈ 0. (6.4)

Eq. (6.1) is solved in [23] by means of a spectral Tau method, which introduces approximations

to another form. Authors set N = M = 9 in [23]. By choosing N = M = 9 and considering

various values of the parameters α and β, approximate solutions are computed. The maximum

absolute errors of the resultant solutions are seen in Table 6.1 for the values of ν = 1.5 and
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Table 6.1: Example 6.1: Maximum errors for N = M = 9, ν = 1.5, and different values of α and β.

(α, β) Error (α, β) Error (α, β) Error

(0, 0) 1.5617 × 10−8 (1, 1) 4.3487 × 10−8 (2, 2) 2.3774 × 10−6

(1, 2) 1.0356 × 10−7 (2, 1) 2.6729 × 10−8 (0, 1) 6.0150 × 10−8

(1, 0) 6.1472 × 10−8 (1, 3) 2.0409 × 10−5 (3, 2) 6.7800 × 10−7

Table 6.2: Example 6.1: Errors at t = 1 with N = M = 9, α = β = 0, and different values of ν.

xi ν = 1.2 ν = 1.3 ν = 1.5 ν = 1.7 ν = 1.8

0.1 2.5215 × 10−13 1.4662 × 10−13 1.5636 × 10−13 3.5438 × 10−13 4.8383 × 10−13

0.2 8.5130 × 10−12 1.0232 × 10−11 1.0061 × 10−11 6.8115 × 10−12 4.6960 × 10−12

0.3 4.0776 × 10−11 4.9694 × 10−11 4.8882 × 10−11 3.2125 × 10−11 2.1175 × 10−11

0.4 1.3233 × 10−10 1.6139 × 10−11 1.5934 × 10−10 1.0556 × 10−10 7.0075 × 10−11

0.5 3.3350 × 10−10 4.0734 × 10−10 4.0524 × 10−10 2.7268 × 10−10 1.8342 × 10−10

0.6 7.1266 × 10−10 8.7443 × 10−10 8.8138 × 10−10 6.0642 × 10−10 4.1440 × 10−10

0.7 1.3732 × 10−9 1.6958 × 10−9 1.7439 × 10−9 1.2413 × 10−9 8.6882 × 10−10

0.8 2.4582 × 10−9 3.0636 × 10−9 3.2391 × 10−9 2.4095 × 10−9 1.7362 × 10−9

0.9 4.1703 × 10−9 5.2620 × 10−9 5.7630 × 10−9 4.5120 × 10−9 3.3538 × 10−9

N = M = 9. The data show that the approximate solutions are in good agreement with

the exact solution. In Fig. 6.1, the plots of the exact and approximate solutions and the

absolute error function are depicted in parts of (a)-(c) for N = M = 9, α = 3, β = 2, and

ν = 1.5. The absolute errors for the values of ν = 1.2, 1.3, 1.5, 1.7, 1.8, α = β = 0, at the

points xi = 0.1i, i = 1, · · · , 9, and t = 1 are listed in Table 6.2. In Table 6.3, the values of

the absolute errors are seen for N = M = 4, 6, α = β = 0, and ν = 1.2, 1.3, 1.5, 1.7, 1.8. The

resultant errors are compared to those obtained from Refs. [23] and [24]. As it is observed the

achieved results are more accurate than those reported by [23, 24]. Also, the plots of the exact

and the approximate solutions are seen in Fig. 6.2 at t = 0.5 for N = M = 9, α = 3, β = 2,

and ν = 1.5 The figures demonstrate good agreement between the numerical solution with the

exact solution.

Fig. 6.1. Example 6.1: (a) Exact solution, (b) Approximate solution for N = M = 9, α = 3, β = 2,

and ν = 1.5, (c) Absoulet error function.

Example 6.2. Consider the following linear time-fractional equation ([23]):

∂νu(x, t)

∂tν
+

∂u(x, t)

∂x
− ∂2u(x, t)

∂x2
=

2t2−ν

Γ(2− ν)
+ 2x− 2, 0 < x, t ≤ 1, 0 < ν ≤ 1, (6.5)



Two-Variable Jacobi Polynomials for Solving Fractional PDEs 895

with the initial and boundary conditions,

u(x, 0) = x2, u(0, t) = t2, ux(0, t) = 0.

The exact solution is u(x, t) = x2 + t2. Pursuing the procedure described in the previous

section and substituting the appropriate approximations in Eq. (6.5), the following equation is

obtained.

ΦT (x, t) P
(1−ν)
(t)

T
(P1

(x)

T
)2 C+ΦT (x, t) P1

(x)

T
P1

(t)

T
C−ΦT (x, t) P1

(t)

T
C ≈ ΦT (x, t) F, (6.6)

where
2t2−ν

Γ(2− ν)
− 2t2−ν

Γ(3− ν)
≃ ΦT (x, t) F.

Using the Tau method for Eq. (43) leads to the following system.

P
(1−ν)
(t)

T

(P1

(x)

T
)2 C +P1

(x)

T
P1

(t)

T
C −P1

(t)

T
CF ≈ 0, (6.7)

Table 6.3: Example 6.2: Maximum errors with N = M = 4, 6, α = β = 0, and different values of ν.

Jacobi operational method

N = M ν = 1.2 ν = 1.3 ν = 1.5 ν = 1.7 ν = 1.8

4 7.6270 × 10−5 9.0340 × 10−5 1.2603 × 10−4 1.7205 × 10−4 1.9892 × 10−4

6 4.3855 × 10−7 5.7996 × 10−7 6.7874 × 10−7 5.3830 × 10−7 3.9252 × 10−7

Method in Ref. [23]

N = M ν = 1.2 ν = 1.3 ν = 1.5 ν = 1.7 ν = 1.8

4 1.15 × 10−3 1.80 × 10−3 3.55× 10−3 5.97× 10−3 7.41 × 10−3

6 1.48 × 10−5 1.48 × 10−5 2.41× 10−5 1.87× 10−5 1.36 × 10−5

Method in Ref. [24]

τ ν = 1.2 ν = 1.3 ν = 1.5 ν = 1.7 ν = 1.8

1/5 1.20 × 10−3 7.21 × 10−3 1.72× 10−2 1.16× 10−4 5.73 × 10−2

1/10 3.03 × 10−4 2.25 × 10−3 6.21× 10−3 2.94× 10−4 2.57 × 10−2

Fig. 6.2. Example 6.1: Exact and approximate solutions for N = M = 9, α = 3, β = 2, ν = 1.5, and

t = 0.5.

where is a Sylvester equation. Eq. (6.7) is solved in [23] by means of a Tau Jacobi method,

which applied shifted fractional-order Jacobi orthogonal functions. By choosing N = M = 4

and considering various values of the parameters α and β, approximate solutions are computed.

The maximum absolute errors of the resultant solutions are seen in Table 6.4 for the values
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of ν = 0.5 and N = M = 4. The data show that the approximate solutions are in good

agreement with the exact solution. The absolute errors of the approximate solution obtained

for α = β = 0.5, N = M = 4, and ν = 0.5 are computed at the points xi = 0.1i, 1 ≤ i ≤ 9,

and t = 0.1, 0.5, 1 and are listed in Table 6.5. The data of Table 6.5 are compared to the

results reported by [23]. It is observed that the numerical solutions are in good agreement

with the exact solutions and the results of the proposed method are more accurate than the

results obtained from the methods in [23]. The plots of the approximate solutions and their

error functions are depicted in Fig. 6.3.

Table 6.4: Example 6.2: Maximum errors for N = M = 4, ν = 0.5, and different values of α and β.

(α, β) Error (α, β) Error (α, β) Error

(0, 0) 7.7483 × 10−17 (1, 1) 2.2082 × 10−17 (2, 2) 2.4223 × 10−16

(0.5, 0.5) 1.2673 × 10−18 (−0.5, 0.5) 2.3023 × 10−17 (0.5,−0.5) 2.5065 × 10−18

(−1/3,−1/3) 8.9134 × 10−19 (1/4, 1/3) 5.1893 × 10−19 (1/4,−1/3) 6.8270 × 10−19

Table 6.5: Example 6.2: Errors at t = 0.1, 0.5, 1 with N = M = 4, α = β = 0.5, ν = 0.5.

Proposed method Method in [23]

xi t = 0.1 t = 0.5 t = 1 t = 0.1 t = 0.5 t = 1

0.1 9.30× 10−20 1.00× 10−19 1.00 × 10−19 2.08 × 10−17 1.04 × 10−16 1.60× 10−16

0.2 1.55× 10−19 1.80× 10−19 3.00 × 10−19 3.19 × 10−16 1.94 × 10−16 1.94× 10−16

0.3 1.99× 10−19 2.10× 10−19 3.00 × 10−19 5.13 × 10−16 3.61 × 10−16 9.16× 10−16

0.4 2.50× 10−19 2.60× 10−19 4.00 × 10−19 8.33 × 10−16 5.97 × 10−16 1.73× 10−15

0.5 3.10× 10−19 3.20× 10−19 5.00 × 10−19 1.05 × 10−15 6.94 × 10−16 2.64× 10−15

0.6 4.20× 10−19 4.10× 10−19 7.00 × 10−19 1.17 × 10−15 6.94 × 10−16 3.37× 10−15

0.7 5.60× 10−19 5.50× 10−19 1.00 × 10−18 1.21 × 10−15 6.80 × 10−16 3.66× 10−15

0.8 7.40× 10−19 7.40× 10−19 1.40 × 10−18 1.26 × 10−15 7.77 × 10−16 3.18× 10−15

0.9 9.50× 10−19 9.00× 10−19 1.80 × 10−18 9.30 × 10−15 7.01 × 10−16 2.03× 10−15

Example 6.3. Consider the following linear time-space fractional convection-diffusion equa-

tion.
∂νu(x, t)

∂tν
+

∂u(x, t)

∂x
− Γ(2.8)

2

∂γu(x, t)

∂xγ
+ u(x, t) = f(x, t), 0 < x, t ≤ 1, (6.8)

where 0 < ν ≤ 1 and 1 < γ ≤ 2.The initial and boundary conditions are

u(x, 0) = u(0, t) = ux(0, t) = 0,

and the exact solution is u(x, t) = x2(1− x)t2. Substituting the suitable approximations in the

Eq. (6.8) leads to the following equation.

ΦT (x, t) P
(1−ν)
(t)

T
(P1

(x)

T
)2 C +ΦT (x, t) P1

(x)

T
P1

(t)

T
C

− Γ(2.8)

2
ΦT (x, t) P

(2−γ)
(x)

T
P1

(t)

T
C ≈ ΦT (x, t) F. (6.9)

Using the Tau method for Eq. (46) leads to the following system.

P
(1−ν)
(t)

T
(P1

(x)

T
)2 C +P1

(x)

T
P1

(t)

T
C − Γ(2.8)

2
P

(2−γ)
(x)

T
P1

(t)

T
C − F ≈ 0. (6.10)

By choosingN = M = 4 and considering various values of the parameters α and β, approximate

solutions are computed. The maximum absolute errors of the resultant solutions are seen in



Two-Variable Jacobi Polynomials for Solving Fractional PDEs 897

Fig. 6.3. Example 6.2: (a) Approximate solution for ν = 0.4, (b) Error function, (c) Approximate

solution for ν = 0.8, (d) Error function for N = M = 4, α = β = 0.5.

Table 6.6 for the values of ν = 0.5, γ = 1.5, and N = M = 4. The data show that the

approximate solutions are in good agreement with the exact solution. The absolute errors of

the approximate solution obtained for α = β = 1, N = M = 4, and various values of ν and γ

are computed at the points xi = 0.1i, 1 ≤ i ≤ 9, and t = 0.2 and are listed in Table 6.7. The

plots of the approximate solution and the error function are depicted in parts (a)-(d) of Fig.

6.4 for α = 1/5 and β = −1/4.

Table 6.6: Example 6.3: Maximum errors for N = M = 4, ν = 0.5, γ = 1.5, and different values of α

and β .

(α, β) Error (α, β) Error (α, β) Error

(0, 0) 6.7682 × 10−15 (1, 1) 1.1157 × 10−14 (2, 2) 3.4359 × 10−14

(0.5, 0.5) 3.8231 × 10−16 (−0.5, 0.5) 8.4200 × 10−16 (0.5,−0.5) 1.8660 × 10−17

(1/3, 1/3) 6.3632 × 10−16 (−1/3, 1/3) 1.2548 × 10−15 (−1/4,−1/3) 1.3944 × 10−16

Example 6.4. Consider the linear inhomogeneous fractional KdV equation [25].

∂νu(x, t)

∂tν
+

∂u(x, t)

∂x
+

∂3u(x, t)

∂x3
=

2t2−ν

Γ(3− ν)
cos(t), 0 < x, t ≤ 1, 0 < ν ≤ 1. (6.11)

The initial and boundary conditions are

u(x, 0) = 0, u(0, t) = 0, ux(0, t) = 0, uxx(0, t) = 0,

and the exact solution is u(x, t) = t2 cos(x). Substituting the suitable approximations in the
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Table 6.7: Example 6.3: Absolute errors at t = 0.2 with N = M = 4, α = β = 1, and various values of

ν and γ.

(ν, γ) (ν, γ) (ν, γ)

xi (0.1, 1.1) (0.8, 1.8) (0.2.1.7)

0.1 5.8159 × 10−18 8.6733 × 10−18 7.4638 × 10−18

0.2 8.5252 × 10−18 1.4166 × 10−17 1.1295 × 10−17

0.3 1.5173 × 10−18 1.7868 × 10−17 1.5506 × 10−17

0.4 7.3162 × 10−18 2.1556 × 10−17 2.1133 × 10−17

0.5 8.0745 × 10−18 2.5375 × 10−17 2.9036 × 10−17

0.6 4.8050 × 10−19 2.7836 × 10−17 3.9893 × 10−17

0.7 6.1202 × 10−19 2.5819 × 10−17 5.4207 × 10−17

0.8 7.2428 × 10−19 1.4570 × 10−17 7.2301 × 10−17

0.9 6.9161 × 10−19 1.2294 × 10−17 9.4318 × 10−17

Fig. 6.4. Example 6.3: (a) Approximate solution, (b) Absolute error function, (c) Approximate solution

at t = 0.5, (d) Absolute error function for N = M = 4, α = 1/5, β = −1/4, ν = 0.5, and γ = 1.5.

Eq. (6.11) leads to the following equation.

ΦT (x, t) P
(1−ν)
(t)

T
(P1

(x)

T
)3 C +ΦT (x, t) (P1

(x)

T
)2 P1

(t)

T
C +ΦT (x, t) P1

(t)

T
C

≈ΦT (x, t) F. (6.12)

Using the Tau method for Eq. (6.12) leads to the following Sylvester system.

P
(1−ν)
(t)

T
(P1

(x)

T
)3 C + (P1

(x)

T
)2 P1

(t)

T
C +P1

(t)

T
C − F ≈ 0.

By choosing N = M = 7 and considering various values of the parameters α and β, ap-
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proximate solutions are computed. The maximum absolute errors of the resultant solutions are

seen in Table 6.8 for the value of ν = 0.5. The data show that the approximate solutions are

in good agreement with the exact solution. Also, the maximum absolute errors are computed

for different values of N and M (N = M). It is observed in Table 6.9 when N (M) increases

the absolute error decreases. Decreasing the absolute error is also observed in Fig. 6.5 as well.

The absolute errors of the approximate solution obtained for α = 1/2, β = −1/2, N = M = 7,

and various values of ν are computed at the points xi = ti = 0.2i, i = 1, ..., 4 and are listed in

Table 6.10. The errors at the equally spaced points are almost constant while the values of ν

are changing.

Table 6.8: Example 6.4: Maximum errors for N = M = 7, ν = 0.5, and different values of α and β.

(α, β) Error (α, β) Error

(0, 0) 1.6771 × 10−9 (1, 1) 4.3165 × 10−9

(2, 2) 7.7293 × 10−9 (0.5, 0.5) 5.6746 × 10−9

(−0.5, 0.5) 5.5008 × 10−9 (0.5,−0.5) 5.6746 × 10−9

Table 6.9: Example 6.4: Maximum errors for different values of N,M , ν = 0.5, and α = β = 1.

N = M 3 4 5 6 7

Error 8.1617 × 10−4 3.14 × 10−5 2.7392 × 10−6 6.7861 × 10−8 4.13165 × 10−9

Table 6.10: Example 6.4: Errors for N = M = 7, α = 1/2, β = −1/2, and varous values of ν.

xi = ti ν = 0.2 ν = 0.4 ν = 0.6 ν = 0.8

0.2 7.2315 × 10−13 7.2333 × 10−13 7.2361 × 10−13 7.2403 × 10−13

0.4 4.3590 × 10−11 4.3588 × 10−11 4.3585 × 10−11 4.3583 × 10−11

0.6 1.5524 × 10−10 1.5525 × 10−10 1.5526 × 10−10 1.5528 × 10−10

0.8 4.8155 × 10−10 4.8153 × 10−10 4.8149 × 10−10 4.8146 × 10−10

Fig. 6.5. Example 6.4: Maximum absolute errors for α = β = 1, ν = 0.5, and N = M = 3 : 1 : 7.
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Example 6.5. Consider the time-space fractional differential equation [26].

∂γu(x, t)

∂xγ
+

∂νu(x, t)

∂tν
=

2x2−γ(t2 + 1)

Γ(3− γ)
+

2(x2 + 1)t2−ν

Γ(3− ν)
, 0 < x, t ≤ 1, 0 < ν, γ ≤ 1, (6.13)

such that u(x, 0) = x2 + 1, u(0, t) = t2 + 1, and the exact solution is u(x, t) = (x2 + 1)(t2 + 1).

Substituting the suitable approximations in the Eq. (6.13), the following equation is obtained.

ΦT (x, t) P
(1−ν)
(t)

T
P1

(x)

T
C +ΦT (x, t) P

(1−γ)
(x)

T
P1

(t)

T
C ≈ ΦT (x, t) F. (6.14)

Using the Tau method for Eq. (6.14) leads to the following Sylvester system.

P
(1−ν)
(t)

T
P1

(x)

T
C +P

(1−γ)
(x)

T
P1

(t)

T
C − F ≈ 0. (6.15)

Table 6.11: Example 6.5: Maximum errors for N=M=4, ν = 1/3, γ = 1/2, and different values of α

and β.

(α, β) Error (α, β) Error

(0, 0) 2.5000 × 10−19 (1, 1) 3.0000 × 10−19

(2, 2) 3.0000 × 10−19 (0.5, 0.5) 4.0000 × 10−19

(−0.5, 0.5) 4.1000 × 10−19 (0.5,−0.5) 5.2000 × 10−19

(−1/4,−1/4) 9.3500 × 10−18 (1/3, 1/2) 1.2140 × 10−17

Table 6.12: Example 6.5: Errors for N = M = 4, α = −1/2, β = 1, ν = 1/3, and γ = 1/2.

Jacobi method Method in [26]

(x, t) M = N = 4 M = N = 5 m = 8

(0, 0) 0.0000 0.0000 5.415112 × 10−6

(1/8, 1/8) 0.0000 0.0000 2.774770 × 10−5

(2/8, 2/8) 1.0000 × 10−19 1.0000 × 10−19 5.600267 × 10−5

(3/8, 3/8) 0.0000 1.0000 × 10−19 4.902546 × 10−5

(4/8, 4/8) 0.0000 0.0000 7.292534 × 10−5

(5/8, 5/8) 1.0000 × 10−19 1.0000 × 10−19 3.242363 × 10−5

(6/8, 6/8) 1.0000 × 10−19 1.0000 × 10−19 6.928689 × 10−5

(7/8, 7/8) 0.0000 1.0000 × 10−19 7.414284 × 10−5

By choosing N = M = 4, 25 algebraic equations are generated by Eq. (6.15). Determining

various values of the parameters α and β leads to approximate solutions. The maximum

absolute errors of the resultant solutions are seen in Table 6.11 for the values of ν = 1/3

and γ = 1/2. The data show that the approximate solutions are in good agreement with

the exact solution. The absolute errors of the approximate solution obtained for α = −1/2,

β = 1, N = M = 4, and the values of ν = 1/3 and γ = 1/2 are computed at the points

xi = ti = i/8, 0 ≤ i ≤ 7 and are listed in Table 6.12. Eq. (6.13) is solved in [26] by means of

the Haar wavelet method. The last column of Table 6.12 displays the results reported by [26].

It is seen that the proposed method provides more precise solutions in comparison with those

obtained from the Haar wavelet method. The plots of the exact and approximate solutions are

depicted in Fig. 6.6 at t = 0.25.
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Fig. 6.6. Example 6.5: Exact and approximate solutions for α = −1/2, β = 1, ν = 2/3, γ = 3/4, and

N = M = 4.

7. Conclusion

The concern of this paper was the solution of a class of fractional partial differential e-

quations. It was done by presenting a scheme which was a combination of the Tau spectral

method and the Jacobi polynomials based on the operational matrices. First, the operational

matrices of the integration of the fractional and integer orders derived for the one-dimensional

shifted Jacobi polynomials, then the obtained matrices were generalized to the two-dimensional

case. The introduced approximations were different from those presented in [23]. The proposed

method applied to solve several time- and time-space fractional partial differential equations

to demonstrate the efficiency of the approach. The results was compared to those reported in

[23-26]. As observed from Tables 6.3, 6.5, and 6.12, the obtained results from the suggested

algorithm possess more accurate than those obtained from spectral Tau, Variational iteration,

and Haar wavelet and methods, [23, 25, 26]. The authors intend to apply the proposed method

to fractional integro-partial differential equations in their future works.
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