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Abstract

Two-variable Jacobi polynomials, as a two-dimensional basis, are applied to solve a class
of temporal fractional partial differential equations. The fractional derivative operators are
in the Caputo sense. The operational matrices of the integration of integer and fractional
orders are presented. Using these matrices together with the Tau Jacobi method converts
the main problem into the corresponding system of algebraic equations. An error bound is
obtained in a two-dimensional Jacobi-weighted Sobolev space. Finally, the efficiency of the
proposed method is demonstrated by implementing the algorithm to several illustrative
examples. Results will be compared with those obtained from some existing methods.
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1. Introduction

Fractional partial differential equations (FPDESs) are used as modeling tools of various phe-
nomena in different branches of science. For example, diffusive processes associated with sub-
diffusion (fractional in time), super-diffusion (fractional in space), or both, advection-diffusion,
and convection-diffusion processes can be modeled by FPDEs [1-5]. The advantage of these
equations in compared to integer-order partial differential equations is the ability of natural
simulation of physical processes and dynamical systems more accurately [6]. For instance, some
phenomena in fluid and continuum mechanics [7], viscoplastic and viscoelastic flows [8], biology,
and acoustics [9], describing chemical and pollute transport in heterogeneous aquifers [10-12],
pricing mechanisms and heavy stochastic processes in finance [13], and describing convection
process of liquid in medium [14]. Therefore, it helps mathematicians and engineers in the better
understanding of the nature and behavior of physical phenomena. For this reason, FPDEs are
increasingly studied, but their analytic solving is difficult. Hence, mathematicians have been
attracted to solve this class of equations numerically. For example, in [14], the normalized and
rational Bernstein polynomials are applied to solve a kind of time-space fractional diffusive equa-
tion. The finite difference method is used to solve the fractional reaction-subdiffusion equation
in [15]. Authors in [16] propose a wavelet method to solve a class of fractional convection-
diffusion equation with variable coefficients. Chen and et al. use generalized fractional-order
Legendre functions to obtain numerical solutions of FPDEs with variable coefficients [17]. Ding
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introduces a general Pade approximation method for time-space fractional diffusive equations
in [18]. Also, Heydari and et al. apply the Legendre wavelet method for solving the time
fractional diffusion-wave equation [19]. In [20], a two-dimensional wavelets collocation method
uses to solve electromagnetic waves in dielectric media.

In this paper, an operational Tau method, based on two-variable Jacobi polynomials (TVJP-
s), is proposed to deal with a class of FPDEs which involves equations such as diffusion and
advection-diffusion equations. The derivative operators appeared in these equations are in the
Caputo sense. First, the TVJPs, on the domain Q = [0, 1] x [0, 1], are obtained as a generaliza-
tion of the classic one-variable Jacobi polynomials (OVJPs) on the interval Q¢ = [0, 1]. A given
continuous function u(z,t), defined on 2, can be approximated in terms of the two-variable
presented basis. In order to approximate the terms including the derivative operators in the
equation under study, the operational matrices of the integration of fractional and integer or-
ders are derived for the one-variable Jacobi basis, then the resultant matrices are applied to
construct the two-dimensional integral operational matrices for both two independent variables
xz and t. Applying these matrices together with the Tau method leads to reduce the given
equation to the corresponding system of the algebraic equations which is a Sylvester equation.
Solving the resulting system leads to determine the vector of unknown coefficients, therefore,
an approximate solution is obtained. Also, the convergence of the proposed approach is investi-
gated in a two-dimensional Jacobi-weighted Sobolev space and an error bound is computed for
an approximate solution. Finally, the suggested algorithm is implemented to several illustrative
examples.

The outline of the paper is as follows: Section 2 gives some elementary definitions and
concepts of the fractional calculus. In Section 3, the TVJPs are constructed with help of the
OV JPs. The integral operational matrices of fractional and integer orders are derived in Section
4, which are used to construct the operational matrices corresponding to the fractional partial
derivative operators. In Section 5, an error bound is given in a two-dimensional Sobolev space.
The applicability and efficiency of the proposed approach are demonstrated by implementing
the method on several illustrative examples in Section 6. Finally, a conclusion is presented in
Section 7.

2. Elementary Definitions of Fractional Calculus

The two most used fractional operators are the Caputo derivative and the Riemann-Liouville
integral operators.

Definition 2.1. If v € R and n = [v], the Caputo derivative operator is defined as,

1 t
Dvutzi/ t—s)" 7" u(s)ds, te,
(0 =g [ =9 e o
D%u(t) = u(t).
Definition 2.2. If v € R, the Riemann-Liouville integral operator is defined as,
1 [ "
JYu(t) = —/ (t—s)""u(s) ds, te€Qo,
L(v) J (2.2)
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These two operators satisfy the following properties.

1 J" J72u(t) = JVT2a(t),
2. JV()\l ul(t) + AQ UQ(t)) = )\1 J”ul(t) + )\2 JV'LLQ(t)7

1—‘(7 + 1) tqu'y
F'v+~y+1)
4. D” J u(t) = u(t),

3. J = , > -1,

5. J"D"u(t) = u(t) — mi: mtk

S [l =m,
k=0

3. Shifted Jacobi Polynomials

In this section, the shifted Jacobi polynomials, over the interval Qg = [0, 1], are introduced.
Then, the two-variable Jacobi polynomials are derived from the extension of them.
3.1. One-variable shifted Jacobi polynomials

These polynomials can be obtained from the following recursive relation,

P (1) =Aa, B,6) PP (1) + (2t = 1) Bl B,6) P2 (1)

2 2

~ E(a,8.4) PP, =12, (3.1)
where
L (20 +a+ B+ 1)(a® - B?)
A(O"B”)_2(¢+1)(z‘+a+ﬁ+1)(2z‘+a+ﬂ)’
. _(2i+a+ﬂ+2)(2i+a+ﬁ+1)
Bla8,7) = 2(i+ i+ta+p+1)
B, B.0) = (i+a)(i+ B)(2i + o+ B +2)

G+D)(i+a+p+1)2i+a+p)
The initial values are as,

a+ B+ 2 a—pf

PO =1, PP =

These polynomials are orthogonal related to the weight function w(®#)(t) = t3(1 — ), that is,

3

1
/ P, ) PP () w@D(t) dt = h¢P 65, i=0,1,2,---
0

where ) _
Bed _ Fe+a+1)IE+p+1) (3.2)
o @Qita+ B+ T +a+B+1) '

and d;; denotes the Kronecker function. The shifted Jacobi polynomials can also be obtained

from the following series,

Pl ) Z ()" +B+ DM+ kt+atBr1) et

T+ B+ +a+B+1) G-k kA i=0,1,2,--. (3.3)

k=0
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The representation (3.3) is used to achieve integral operational matrices. We will refer to it in
Sections 3 and 4. A square integrable function y(t) with respect to w(®#)(¢), in the interval
Qo = [0, 1], can be expanded in terms of the shifted Jacobi polynomials as follows.

oo

y(t) =" ¢; PP (1), (3.4)

Jj=0
where the coefficients c; are given by,

1

Cj = —a,ﬁ
hj

1
/ y(t) PP () @Dty dt, =012,
0

Indeed, only the first (N + 1)—terms of the shifted Jacobi polynomials are applied to expand a
given continuous function. On the other hand, one has,

Z ¢; POt = @T(1) e =& (1), (3.5)

where the vectors € and ®(t) are given by,
¢=leo,er, e’ @) =RV, PP @), PEP )] (3.6)

The shifted Jacobi polynomials satisfy the following relations.

i) P = o (1), (3.72)
AP _ Tnti+atB+1) arisr .
(”’) dtl = F(TL+O¢+B+1) Pn 7 ()5 7’:0517"' . (37b)

3.2. Two-variable shifted Jacobi polynomials

Two-variable shifted Jacobi polynomials, P;f;”g ) (z,t), are defined on the domain © = [0, 1] x
[0, 1] as follows,

(a,8) _ (v, 8) (o,8) sy
‘Pi’j (Ji,t)—,Pl (JJ) Pj (t)u 7’7]_071727"'7 (‘Tut)EQ'

It is easily seen that these polynomials are orthogonal with weight function W(Q’B)(:v,t) =
w(@P) () w®P) (t) on Q, [21]. That is,

1 1
/ / Pi(,?ﬁ)(%t) P;S?Z’B)(I,t) WeB) (z,t) dr dt
0 0
1 1
_/0 Pi(a,ﬂ)(x)Plga,B) (I)w(a’ﬁ)(x) dr x / Pj(a,ﬂ)(t)Pl(a,,B)(t) w(@H) (t) dt

0

a,B pa,B S

_ ) TRy (6 5) = (kD)
0, 1#£k or j#IL

A two variables continuous function y(z,t), defined over €2, may be expanded by the TVJPs

ZZC PP (@, 1), (3.8)

1=0 j=0

as
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where the coefficients C;; are computed as follows,
= 1 e (.8) W (eB)
Cii = / / z,t) P07 (w,t P, t) da dt.
J h?’ﬁ h?’ﬁ ) A y(z,t) Jj (z,1) (2,1)

A finite presentation of y(z, t), base on the infinite series (3.8), can be presented as the following,

N M
y(a,t) = yvoar(z,t) =3 > Cy P97 (a,t) = 87 (a,1) C, (3.9)
i=0 j=0

where C' and ®(z,t) are the Jacobi coefficients and the TVJPs vectors, respectively,

C = [Coo, Co1, -+, Coar, Cro, Chny -+, Canay -+, Cno, On,y oo, O] (3.10a)
‘I’(:E,t) = [PO(%”Q) (Ia t)v P(E:){”Q) (Ia t)v T 7P0(7O]t\f) (Ia t)v Pl(%ﬁ) (Ia t)v Pl(:){”g) (Ia t)v R
Pl(,(ll\)/[B)(xvt)a e aPJ(VOj())B)(Ia t)v P](Vaiﬂ) (Ia t)v e aPJ(VOj}\g)(Ia t)]T (310b)

4. Jacobi Operational Matrices of Integration

In this section, first, the operational matrix of the integration of order v is derived. Then,
the operational matrices of the integration of fractional and integer orders, corresponding to
both two independent variables x and ¢, are constructed.

Lemma 4.1. Ifi € N and [ > i, then one has,

1

/#ﬁw@wwmﬁ

0

()R T+ B+ ) T(i+k+a+B8+ 1) T(1+k+B+1) T(a+1)
Tk+B8+ D) (ita+B+)T(+k+a+B+2) (i—k)lkl

k=0

See [21] for proof (Lemma 2.2).

Theorem 4.1. Let ®(t) be the Jacobi basis vector in Eq. (3.8) and v € R. The fractional
integral of order v of ®(t) can be expressed as,

J'o(t) ~PY &(1),

where J" is the Riemann-Liouville fractional integral operator of order v and P is the (M +
1) X (M 4 1) fractional operational matriz of the integration and is defined by,

6(0,0) 6(0,1) ... 6(0,M)
po) _ 0(1,0)  6(1,1) ... 6(1,M)
9(M,0) H(M,l) 9(M,M)

where

o(la.]):zw;_]ka i:O,l,"',M, jzla"'aMa (41)
k=0
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and wi;y, is given by, for 0 <i,j < M,

;o ()P TG 4B+ )T+ B8+ 1) Tli+k+a+B84+1) Dla+1)

Wik = hiT(i+a+B8+1)Dk+B8+1)T(i+a+B+1)T(k+v+1) (i—k)

zj: D T(j+l+a+B8+1)T(I+k+v+B8+1)

Frl+8+)T(l+k+v+a+B+2)UI(7—1)

=0

Proof. Applying fractional integral operator (2.2) to series (3.3) leads to

J PO (g) = Z ()" *T@+B+1)T(i+k+a+p+1) tH

Tk+B+1)T(i+a+8+1)T(k+v+1)(Gi—k)! (4.2)

k=0

t*+7 can be approximated in terms of the shifted Jacobi polynomials as the following,

N
S ey PP(0),
Jj=0

where )
1 o o
Phj = 7= / thtv Pj( ’ﬂ)(t) w @A) (t) dt.
i Jo

According to Lemma 4.1, relation (4.2) can be rewritten as
(&K ()R TG 4B+ D) T+ B+ 1) T(i+k+a+B8+1) T(a+1)

PRy
JZ:{ h; Pg+a+6+1) PE+B8+1)T(i+a+B+1) T(k+v+1) (i — k)

J i1 .
(1) TGl +1l+a+B8+)TI+k+v+B8+1)) s
XZ Fi+B8+1)T(+k+v+a+p+2)U(G—1) }Pj ®)

where 6(i, j) is given in (4.1). This leads to the desired result. O

Corollary 4.1. For v = 1 in Theorem 4.1, the operational matriz of the integration of the
integer order is achieved which is denoted by P throughout this paper.

Definition 4.1. The Kronecker product of the given matrices A = (a);; and B = (b)p is
defined as follows:

A®B)j=ay; B, i=1,--
( j = aij B,

Theorem 4.2. If M = N, P®") and ®(x,t) are the operational matriz of the integration and
the two-variable basis vector, introduced by Theorem 4.1 and Eq. (3.10), respectively, then the
operational matrices of the integration with respect to x and t are defined as follows,
JL®(3,1) ~ P ®(x, 1) = (PY) @ 1)®(a, 1), (4.3a)
T ®(w,1) ~ P ®(w,t) = (I @ PY)®(a,1), (4.3b)
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where PE;; and PE:)) are the (N +1)2 x (N + 1)? operational matrices of the integraion of the
fractional order corresponding to the variables x and t respectively, I is the (N +1) x (N + 1)
identity matriz, and the fractional integral operators J. and J} are as,

eﬁM%ﬂ=i%31f@—§V1M&ﬂd&

Jiy(z,t) = ﬁ/o (t — 1) ty(z, ) dr.

Proof. See [21] (Theorem 3.4). O

Corollary 4.2. It is clear that the operational matrices of the integration of integer orders,

P(lx) and P(lt), in the two-variable case are obtained for v =1 in Theorem 4.2.

Now, consider the following fractional-time PDE,

Nu(x,t)  Ou(x,t)  Pu(w,t)
oty ox * Ox3
u(z,0) = g(x), u(0,t) = h1(t), ugx(0,t) = ha(t), uw(0,t) = hs(t).

= f(z,t), 0<~y<1, (z,t)€, (4.5)

In order to compute an approximate solution, un n(z,t), for Eq. (4.5) first consider the fol-
lowing approximation,
0*u(z,t)
ot oz

Integrating of approximation (4.6) from 0 to t leads to the following approximation,

~ @7 (z,1) C. (4.6)

OPu(z,t)

T 1"
0 =~ " (z,t) Pl C+g (). (4.7)

By the consecutive integrating of (4.7), the following approximations are obtained.

g%%Q%QW%UPbTPbT0+@%@—Jm»+@m,

aug;, D o §7(s,1) (Phy )2 Pl C+ (g (@) — g (0) + (ha(t) — " (0))z + ha(t),

u(z,t) = @7 (x,1) (PL)")* PL)" C+ (g(x) — 9(0) + g () + (ha(t) — g (0)z
()~ " O+ (). w8)

By the consecutive integrating of (4.7) from 0 to z, one has,

Pu(z,t)
ot 0x2
Pu(x,t) o v 1 Tye ! !

ot 2 (@,t) (Pl )° C+ hg(t)z + ho(),

du(z, t APy /
QDD o 97 (0,1) (Phy") €+ b+ hat)e + 1 1) (4.9)

> T (z,1) PLy" C+ hy(t),

For approximating the function 07u(z,t)/0t”, approximation (4.9) is utilized as follows:

u(z,t) 0" Ovu(a,t) T

ot Ot oty

~ o7 (1,1) (Pl ) C+ h;(t)x; + hy(t)x + hy (t). (4.10)
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Applying the Riemann-Liouville integral operator of the order (1 — ) to (4.10) yields the
following approximation,

u(z,t) 1— d"u(z,0)
5 = 2 (1) Pl nT (Phy ") O+ Gla,t) + e
where
1 t ’ I‘2 ’ ’
— _ A\ — =
O /0 (=) Goe,) dr, Gola,t) = W)+ y(t)ar + 15 1)

By using Eq. (4.10), an approximation for u(x,t) is obtained as

u(z,t) ~ &7 (z,1) P(lt)T (P(lx)T)3 C + (ha(t) — h3(0))% + (ha(t) — h2(0)x 4 (hi(t) — h1(0)) + g(z),

M u(x,0) T 1T 1 T3 d'hs(t) 2?2 d ha(t)  d7hi(t)
T‘(Q @OPy P VOt ==+~ =0
_ d'h3(0) 2? d"h2(0) N d"h1(0)
odtr 2 dt” v

The last line is because all components of the vector ®7 (z,t) are polynomials in terms of z, t.
Therefore, one has

u(x,t)

5 = @7 (1) pi-n" (P )? O+ Gla,t) + V(2),

(t)

where

dhs(0) ® | dha(0) A7 (0)

V) = =53 d v dt

By substituting the above approximations into Eq. (4.5), one obtains the following matrix
equation,

8" (e, ) P (PLT) 487 (w,0) (P Pl O+ @7 (a,t) Pl O 87 (0,0) F ~ 0,

where F' is a vector and its components are calculated as,

Fi= ha,@ / / f().It 11”3)( )W( )(I,t) dx dt,

with
’ ’ "

folw,t) = Gla,0) + V(@) + (g () = g (0)) + (hs(t) =g (0)z + ha(t) + ¢ (x) — f(x,1).

According to the Tau method, (N + 1)? linear algebraic equations are generated including the
unknown coefficients, Cy;, 4,5 =0,1,--- , N,

T
PEB D (PLy )P C+ (PP P C+PYT O (4.11)

System (4.11) is a Sylvester equation and by solving this equation, an approximate solution can
be computed by (4.8).
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5. Error Bound

An error bound for an integer derivative of an approximate solution is computed in a Jacobi-
weighted Sobolev space, then the resultant bound will be extended to fractional-order deriva-
tives.

First, suppose that Py = span{P S (z,t),i = 0,1,--- N, j = 0,1,--- ,M}. Let us
assume that uy a(z,t) € Py s be the best approximation of u(x,t) € L2([0,1] x [0,1]), on the
other hand,

||’U,(£L‘, t) - U’Nvm(x’ t)” = inf”(mvt)GPN,M”u(x? t) - U(‘Tv t)' |7

uNMxt ZZO” R(?B) )

1=0 5=0

Definition 5.1. The two-dimensional Sobolev space W™?2(Q), Q = [0,1] x [0,1], m € N, is
defined as,

where

ity
Ozt OtI
If o = (01,02) such that o; € T, i = 1,2, and |o| = 01 + 03, the norm of the space W™?({2)
is defined as,

2 3

W(aﬁ))

ololu
J— (o8
ol = (3 107wl ) = (3 py) S |soram .

lo|<m

Wm™2(Q) = {u(x,t) € L*(Q) ‘ €L?(N), 0<i+j< m}.

where ngﬁﬁ)(a;,t) = wletonfton) (p)ylato2b+o2) () Meanwhile, W™2(Q) can be denoted by
H™(Q) which is called a Hilbert space.

Definition 5.2 (Stirling’s formula). The following formula is applied to calculate approxi-
mate values of the Gamma function for large values of n,

P(n+1)= n"tre "/2r S(n),

where 1 1 139 571
S 14+ — - _ O(n=9).
(n) =1+ o0+ 58802 ~ 51sa0m% ~ 248832008 T O )

Theorem 5.1. Let 0 < [ < m < N + 1. Suppose that u € W™2(Q) and un pm(z,t) be the
Jacobi approzimation to u. A bound for the integer derivative of the orderl of the error function,

relative to x, can be computed as follows,

O (uw— un,m)
Hi < V3 Co(N(N +a+ ) = [ullwne), (5.1)

! H
Or W)
where Cy is a constant.

Proof. Suppose that un a(z,t) be the Jacobi approximation of u(zx,t), which is obtained
from the proposed algorithm. We have,

u(@,t) — un,um(@,t) = Z Z Oy P (z) P (1)

i=N+1j=M+1

N 00
_|_Z Z Ol_jpi(aﬁ)() (aﬁ) Z ZOWP n@ )(t).

i=0 j=M+1 i=N+1 =0
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Based on the orthogonality of the TVJPs and the second relation in (3.7), we have,

aku 2 oo oo a,@ T
HW (ag)zzz ij d hi—k hj ) k <m,
W™
where
(i +k 1 N
d‘?"kﬁ — (i+k+a+8+ )7 ng vﬁ)(w7 t) = w @tk B+k) (z) w(a,,@)(t)'

Tii+a+pB+1)

So, we have,

< Z Z 02 daB htixj-ll,ﬂ-‘rlh?ﬁ

2
Hal(u — UN,M
i=N+1j=M+1

Ot me 8)

S SR eUT D S e e T e
i=l j=M+1 i=N+1 53=0

oo da75)2 ha+l,5+l

il 2 (g,8\2 patm,Bf+my o,
Z Z da ,B\2 haer ,B+m Cl] (d ) hifm hj
i=N+1j= M+1 ) —m

) ha+l B+l

2 aer B+my a8
+ Z Z da 6)2 ha-i-m ,B+m OZJ (d ) h h
i=l j= M+1

M dOt B) hOt-H”@-H

2 1 j0,6\2 1 a+m,f+my o,
+ Z Z daB 2 ha+m,,8+m O’L] (d ) hi—m hj
1=N+1 j= 0 —m

(d ; ) haJrl B+ %)

< sup { x } S S )2 et
< Tm, B+ tmm J
i>N+1 (djf,fj)2 h?_,;nﬁ " i=N+1j=M+1

(daﬁﬁ)2 ha+l,ﬁ+l

il i—1 2 a,ﬂ at+m,f+mya,B
+ 123)1(\/ { da,ﬁ 2 haer’ﬁer } Z Z C d hi*m hj
- = ( i,m) i—m i=l j=M+1

(dqzﬂ)2 hq-l-ll,ﬁ-i-l ﬁ 5 3
+ sup { e } S SR @) ey
_ B +m, B+ fmm J
i2N+1 (d?,m)z h(i):nT " i=N+1 j=0
, 1B+l : LB+l
<2 (A, T () I i
+m, B+ ; +m.p+ '
(@500 ) HREET () IR T

y (3.2) and (5.2), we can obtain,

(d?vﬁlz) h?\zﬂsz{l DN+ l4+a++2)(N-m+1)!

(d%flm)Q pggrmAm CD(N+m+a+B+2)(N—1+1)!"

Using Stirling’s formula, Definition 5.3, yields the following inequality,

PIN+l+a+B+2)(N-—m+1)!

l—m lm
T(N+tm+atp+2)(N —l+1)'—C(N+a+B) N

(5.2)
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A combination of the above estimates leads to the desired result in (5.1).

Corollary 5.1. According to Theorem 5.1, if 0 < k < m < M + 1, for any u € W™2(Q), a
bound for the integer derivative of the order k of the error function, relative to t, can similarly
be computed as follows,

Hak(u — 'UJN,M)

k—m
R <VB CLM(M +a+8) = |lullwn.z ), (5:3)
ot W)

where Cy is a constant and Wéa’ﬁ)(x,t) = w(@®P) (g)w o tkA+E) (),

Corollary 5.2. Suppose that u € W™2(Q) and uy n(z,t) be the Jacobi approzimation to
u(zx,t), then, using Theorem 5.1, an error bound for the approxzimate solution can be computed
as follows,

- uN,MH < V3 Co(N(F + at 8) % [lullwmacen, (5.4)
Wa.8)

where Cy is a constant and N = min{N, M }.
Theorem 5.2. Let u € W™2(Q). If n=[v], n <m < N +1, then,
‘ ‘\/g 71;771

Co(N(N +a+8)) = [|ul[wmeq)- (5.5)
Similarly, for the fractional-time derivative, the following inequality is achieved,

\/g n,77n
| MO +a+8) T allwnsqy  (55)
where n’ = [v] andn’ <m < N + 1.

8V(u — UN,M)
ox” wen — Ln—v+1)

8”(u - UN,M) <
otv wes — D —v+1)

Proof. By using the Riemann-Liouville integral operator, the Caputo derivative operator is
rewritten as follows,
87(’(1,—11,]\[11\/[) 8"(u—uN1M)
oz oz '
By using the inequality || f * g|l, < ||f]l1 ||g9]lp that the star symbol denotes the convolution of
two given functions f and g, one has,

_ gn—y
=J,

" (u—una) |

0" (u — un, M) ? — ||
oz wles ¥ ox™ Wi
o 1 2 1 * 8" (u — UN,M)
S \I'(n—7) gity—n Oz Wi
1 2 8” (u — UN,M) 2

: (F<n1—~y>>2

_(Bn+B—vy,a+1) 2 0" (u — un,m)
N I'(n—7) ox" wies)

where B(m,n) is the Beta function. Using Theorem 5.1 leads to the desired result. O

1+v—n n ’ ’ o
T ox Wi

L1(Q)
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Lemma 5.1. For any two functions f,g € L?(Q2),Q = [0,1] x [0, 1], one has

1
90220 < 3 (11 + ol )

where (.,.)r2(q) and ||.||12(q) indicate the inner product and the norm in the space L*(2),
respectively (Interestedreadersarere ferredto[22]).

Now, consider the following FPDE with the constant coefficients.

OMu(z,t) n 0" u(z,t)

e 55 +u(z,t) = f(x,t), (5.7)

such that n = [v], ' = [v]. Suppose that un a(z,t) be the approximate solution obtained
from the proposed algorithm. Therefore, un ps(x,t) will be the solution of the following equa-
tion,

6V’U,N7M(£L',t) 6V’U,N7M(£L',t)

ax’y 8tl/ +UN)M($,t) = f(‘r7t)+HN,M(x7t)7 (5.8)
Neny(z,t)  enm(z,t) B
aaj')' 8tl/ +eN7M(fL',t) - _HN7M(.'L',t), (59)

87€N7M($, t)

e cen,m(z,t)) 12 ) (5.10)

(=Hn,m(7,t),en,m(2,t)) 12(0) = (

ayeN,M(xvt)

< ot aeNyM(Iat)>L2(Q) + <6N7M(x7t)aeNyM(Iat)>L2(Q)
L (H‘W@N,M(:v,t) ? Ha”eN,M(Iat) ’ + 4|len,nr(z, t)|]7 )
<s\||—a=7— —, N,M(Z, 2(Q) |-
2 oz L2(Q) ot L2(Q) 1@

Noting that ||y||rz2(0) < [[yllwm2(a), one has

N2 (2, )|y

.
< 3CEB*(n+B—v,a+1)
- I?(n—79)

3CiB (n+pB—v,a+1)
Ir2(n’ —v)

a’yeN,M(:Ev t) 2

ox”

8V€N1M(ZE, t)
atv

H2

+ H +3||6N)M($,t)||‘2/v7n,2(9)

Wm2(Q) Wm2(Q)

(N(N + o+ B)"™

(M(M +a+ )" ™
+9 C§(N(N+a+ﬁ))_m)||u||§vm,2(m. (5.11)

Since u(x,t) is a bounded function, ||Hx, a|lwm2) — 0 as N,M — oo. By referring to Eq.



Two-Variable Jacobi Polynomials for Solving Fractional PDEs 891

(5.10), a bound can be obtained for the error of the method in a similar way,

6V€N7M(£B, t)

p sen.m(2,t)) L2 (o)

(—enm(,t),en v (2, 1)) L2(0) = (

aVeN,M('rv t)

< ot 7€N,M(Iat)>L2(Q) + <HN7M(I5t)veN,M(xvt»Lz(Q)
2 2
<1(’ 876N,M(x,t) H(?VGN)M(,T,t)
2 oz L2(Q) ot L2(Q)

T 3llen (. ) oy + 1 ar( t>||%2<m>.

Similarly, one obtains

ey a(z,t) 2

2 N 8 en iz, t)
oxY

otv

1
e nr(z, Olfms ) < 5 <‘
wm2(Q) wm2(Q)

T 3llen a6 By + 1y ae (o t>||%vm,z<m)

S%(3 OO2B2(n+ﬂ_FYaO‘_Fl)(N(N_'_a_'_B))nfm

[?(n—7)
3C(B?*(n+p—v,a+1) ' —m
0 ) (M(M+a+p5))

- o 1
+9 CHVT 4+ 6™ Yl + 311z Ol

Based on Corollary 5.2, Theorem 5.2, and the bound in the inequality (5.1) can be concluded
llen,a|lwm2 () — 0 when N, M tend to infinity.

Now, consider the following fractional time-space PDE with the variable coefficients.

0" u(z,t)

O"u(zx,t) n b(xvt)Ty, + f(z,1), (5.12)

B Mu(z,t)
B d(z,t)———+

oxY

such that r = [n]. If un p(z,t) is the Jacobi approximation to u(z,t), then it is a solution for
the following equation

3"uN7M (ZE, t)
otn

8’YUN1M(I, t)
oz

8V'UJN,M(:Ev t)

=d(z,t) + b(z,t) o + f(z,t) + Hy p(z,t).  (5.13)

Subtracting Eq. (5.13) from Eq. (5.12) leads to the following error equation,

8’YeN1M(a:, t)
oz

8V€N1M(ZE, t) . 8776N7M(:E,t)

HN7M($, t) = d(:v, t) ot oL

+ b(z, 1) (5.14)

Suppose that ||d(z,t)|[r2() = M1 and ||b(x,t)||12(q) = Ma. Using the Cauchy-Schwartz in-
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equality |[fgllr2() < |Ifll2@)llgllL2() for Eq. (5.13) leads to the following inequality:

a7 ,t
<HN’M(:E7 t)7 eN,M(xv t)>L2(Q) = <d(:17, t)M7 eN,M(fa t)>L2(Q)

oxY
8V€N7M z,t 8"61\771\4 z,t
+ (bl ) LMD 1) 000y — (ZEMED o, )00
ot otn
1 ( 5 un ||? 2 enar ||’ denar ||’ 2
<5 Al z2@ - +bllz2) || =5 - + 3llen,mllz2(a
2 O 9 L2(Q) @I ot L2(Q) Ml 2o @
1 o0 un o || enar || Oen o || 2
§§<M1 9z + M2 pr Brm + 3llen,mllz2(q) |-
L2(Q) L2(Q) L2(Q)

Therefore, the following inequality can be achieved

[ H (2, 8)] [fymez )

2 2

8'YUN1M
oz

8”6N1M
ot

8776N7M
otn

<M} + M3

+ 2| |6N,M||%/Vm,2(9).
w™2(Q)

2
Wm2(Q) ' Wm2(Q)

Pursuing the same above argument, it can be concluded that ||Hy ar|lwm.20) — 0 as N, M
— 00. By using the Riemann-Liouville integral operator, Eq. (5.14) can be rewritten as follows,

1 t o
en m(@,t) = ) / (t— S)T_W-Hd(aj,s) M ds
0

L(r — "

1 /t B en y(z,s)
4+ t—s) T p(x, s) ——22 7 (s

1 t
) /0 (t—s)" " Hy p(z,s) ds

.
- _r tm s d(x, ) e m(@;t) en,m(z,1)
L(r—mn) x

1 _ 8V€N M(IE t) 1 —
—— " e b(a, ¢ : L Tt H t).
et M T Ty )

(envm(,t),en,m(T,1)) 12(0)

a7 t

_ 1 s d(a, 1) en,m (@, 1)
x

1 _ aUGN M(IE t)

=t () AN
+ 1—\(7‘ _ 77) < * (‘r7 ) fL'V

ven,m(7,1)) 12 (0)
)L2(9)

- m@rinﬂ * Hy p(x,t), en v (2,t)) 12 ()
1 2

< =1 (||tr_"+l||%1(Q)||d||%2(9)

’ 87€N7M($, t)

xY

L2(Q)
BVGN)M(,T, t) 2

T2 Bl 20 >

L2(Q)

AT o [ aa (2, 6] 20 + 3||6N,M($vt)||%2(ﬂ))'
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Therefore,

llen,m| |%/va2(£2)

SB2(r+6—77+2,oé+1) (Mf
L(r—mn)

1wt By + 3||eN,M||%Vm,z<Q>),

2 2

8”eN7M
IU

8VeN7M
xY

+ M3

Wm2(Q) Wm2(Q)

where B(m,n) is the Beta function. When N and M tend to infinity, the right-hand side of
the above inequality also tends to zero. Therefore, en ar(z,t) — 0.

6. Illustrative Examples

In this section, the proposed numerical method is carried out for several time- and time-space
fractional equations. All the test are done in Maple 13. The obtained results are compared
to those obtained from some existing methods such as Haar wavelet, Variational iteration, and
finite difference methods. Meanwhile, for all of the examples will be set N = M.

Example 6.1. As the first example, consider the following fourth-order fractional diffusion-
wave equation ([23, 24]):

" u(x,t) n 0*u(z,t) _ exp(a) <F(V +4)

otV Ot 5 t3+tu+3+t>, O0<z,t<1, 1<v<2, (6.1)

with the initial and boundary conditions, respectively,

u(z,0) =0, w(x,0)=-exp(z),

6.2
w(0,t) = uz(0,t) = Uzz(0,1) = Uzge(0,¢) = 3 4t (6.2)

The exact solution is u(z,t) = exp(z)(t*™ +t). Pursuing the procedure described in the
previous section and substituting the appropriate approximations in Eq. (6.1), the following
equation is obtained.

1 T4

@WmﬂPgﬂ (PLy ) C+ @7 (z,t) (Ph)")? C~ @T(a,1) F, (6.3)

where

r 4 2

—(+3)+ 2tz + 1) ~ <I>T(x,t) F.

The left-hand side of the above approximation is obtained from initial and boundary conditions
(6.1). Using the Tau method for Eq. (6.3) leads to the following system.

wgw (Phy ) O+ (P )P C—Fro. (6.4)

Eq. (6.1) is solved in [23] by means of a spectral Tau method, which introduces approximations
to another form. Authors set N = M = 9 in [23]. By choosing N = M = 9 and considering
various values of the parameters o and 3, approximate solutions are computed. The maximum
absolute errors of the resultant solutions are seen in Table 6.1 for the values of ¥ = 1.5 and
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Table 6.1: Example 6.1: Maximum errors for N = M =9, v = 1.5, and different values of o and 3.

(a, B) Error (a, B) Error (a, B) Error

(0,0) 15617 x 1078  (1,1) 4.3487 x 1073 (2,2) 2.3774x10°°

(1,2) 10356 x 1077 (2,1) 26729 x 107%  (0,1) 6.0150 x 1078

(1,0)  6.1472 x 107%  (1,3) 2.0409 x 10™°  (3,2) 6.7800 x 1077

Table 6.2: Example 6.1: Errors at t =1 with N = M =9, a = 8 = 0, and different values of v.

x; v=12 v=13 v=15 v=1.7 v=138
0.1 25215 x 10713 1.4662 x 10713 1.5636 x 10713  3.5438 x 10713  4.8383 x 10713
0.2 85130 x 10712 1.0232x 107!  1.0061 x 107 6.8115 x 107'2  4.6960 x 1072
0.3 4.0776 x 107 4.9694 x 107! 4.8882 x 107! 3.2125 x 10~ 2.1175 x 107 *
0.4 1.3233x107'° 1.6139 x 107! 1.5934 x 107'° 1.0556 x 107  7.0075 x 10~ **
0.5 3.3350 x 10710 4.0734 x 1071%  4.0524 x 1070 27268 x 1071°  1.8342 x 1071°
0.6 7.1266 x 1071° 87443 x 1071% 88138 x 1071° 6.0642 x 1071°  4.1440 x 107 1°
0.7 1.3732x107°  1.6958 x 1072  1.7439 x 107°  1.2413 x 107°  8.6882 x 10~1°
0.8 24582 x107° 3.0636 x 1072  3.2391 x 1072 24095 x 1072  1.7362 x 10~°
0.9 4.1703x107° 52620 x 1072  5.7630 x 107 45120 x 107°  3.3538 x 10~°

N = M = 9. The data show that the approximate solutions are in good agreement with

the exact solution.

In Fig. 6.1, the plots of the exact and approximate solutions and the

absolute error function are depicted in parts of (a)-(c) for N = M =9, a = 3, 8 = 2, and
v = 1.5. The absolute errors for the values of v = 1.2,1.3,1.5,1.7,1.8, « = 3 = 0, at the
points z; = 0.14,4 = 1,---,9, and ¢ = 1 are listed in Table 6.2. In Table 6.3, the values of
the absolute errors are seen for N = M = 4,6, « = =0, and v = 1.2,1.3,1.5,1.7,1.8. The
resultant errors are compared to those obtained from Refs. [23] and [24]. As it is observed the
achieved results are more accurate than those reported by [23, 24]. Also, the plots of the exact
and the approximate solutions are seen in Fig. 6.2 at t = 0.5 for N =M =9, a =3, 8 = 2,

and v = 1.5 The figures demonstrate good agreement between the numerical solution with the
exact solution.

(a)

Exact solution

(b)

Approximate solution for N=M=9 and a=3, =2

(©)

Absolute error function

Fig. 6.1. Example 6.1: (a) Exact solution, (b) Approximate solution for N = M =9, a = 3, 8 = 2,
and v = 1.5, (c¢) Absoulet error function.

Example 6.2. Consider the following linear time-fractional equation ([23]):

0" u(z,t)

u(z,t) O*u(x,t)

2t27l/

otv

ox dr2

re2e-v)

+ 2z — 2,

O<a,t<1, 0<v<1, (6.5)
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with the initial and boundary conditions,
u(z,0) =22, w(0,t) =3, wu,(0,t) =0.

The exact solution is u(x,t) = 22 + t2. Pursuing the procedure described in the previous
section and substituting the appropriate approximations in Eq. (6.5), the following equation is
obtained.

T
o7 (z,t) P (PL))? C+@T(2,1) PL)" PL)" C—@T(2,1) P C~ @ (x,t) F, (6.6)

where
2t27u 2t27u

r2—v) TIL(B-v)
Using the Tau method for Eq. (43) leads to the following system.

~ ®T(z,t) F.

VA
P Lo+ Pl PLT C-PLT oF &0, (6.7)

Table 6.3: Example 6.2: Maximum errors with N = M = 4,6, = 8 = 0, and different values of v.

Jacobi operational method
N=M v=12 v=13 v=15 v=17 vr=138
4 7.6270 x 107> 9.0340 x 107°> 1.2603 x 10~%  1.7205 x 10~* 1.9892 x 10~*
6 4.3855 x 1077 5.7996 x 1077  6.7874 x 10~7  5.3830 x 1077  3.9252 x 10~
Method in Ref. [23]
N=M v=12 v=13 v=15 v=17 vr=138
4 1.15 x 1073 1.80 x 1073 3.55 x 1073 5.97 x 1073 741 x 1073
6 1.48 x 1075 1.48 x 1075 2.41 x 1075 1.87 x 107° 1.36 x 107°
Method in Ref. [24]
T v=12 v=13 v=15 v=17 vr=138
1/5 1.20 x 1073 7.21 x 1073 1.72 x 1072 1.16 x 10~* 5.73 x 1072
1/10 3.03 x 107* 2.25 x 1073 6.21 x 1073 2.94 x 1074 2.57 x 1072

T T T T
0 1 2 3

x
Exact solution 0 _ Approximate solution at /=0.5

Fig. 6.2. Example 6.1: Exact and approximate solutions for N = M =9, a =3, § =2, v = 1.5, and
t =0.5.

where is a Sylvester equation. Eq. (6.7) is solved in [23] by means of a Tau Jacobi method,
which applied shifted fractional-order Jacobi orthogonal functions. By choosing N = M = 4
and considering various values of the parameters o and 3, approximate solutions are computed.
The maximum absolute errors of the resultant solutions are seen in Table 6.4 for the values
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0.5 and N = M =
agreement with the exact solution. The absolute errors of the approximate solution obtained
fora = =05 N=M =4, and v = 0.5 are computed at the points z; = 0.13,1 <7 < 9,
and t = 0.1,0.5,1 and are listed in Table 6.5. The data of Table 6.5 are compared to the
results reported by [23].
with the exact solutions and the results of the proposed method are more accurate than the
results obtained from the methods in [23].
error functions are depicted in Fig. 6.3.

of v = 4. The data show that the approximate solutions are in good

It is observed that the numerical solutions are in good agreement

The plots of the approximate solutions and their

Table 6.4: Example 6.2: Maximum errors for N = M = 4, v = 0.5, and different values of o and (.

(o, B) Error (o, B) Error (o, B) Error
(0,0) 7.7483 x 10717 (1,1) 2.2082 x 10717 (2,2) 24223 x 10716
(0.5,0.5) 1.2673 x 107 (=0.5,0.5) 2.3023 x 1077 (0.5,—-0.5)  2.5065 x 1078
(=1/3,-1/3) 89134 x 107*°  (1/4,1/3) 5.1893 x 107*° (1/4,-1/3) 6.8270 x 10™*°
Table 6.5: Example 6.2: Errors at t = 0.1,0.5,1 with N =M =4, a = =0.5, v = 0.5.
Proposed method Method in [23]
zi t=0.1 t=0.5 t=1 t=0.1 t=0.5 t=1
0.1 930x1072° 1.00x107*° 1.00x107* 208 x 107" 1.04x107*¢ 1.60x 1071¢
0.2 155x107'% 1.80x107'° 3.00x107'° 319x107'% 1.94x107*¢ 1.94x107°¢
0.3 1.99x107' 210x107'° 3.00x107'° 513x107'% 361x107*¢ 9.16x 1071¢
04 250x107' 260x107"° 4.00x107'° 833x107'% 597x107*¢ 1.73x10°*°
05 310x107'° 320x107'° 500x107'° 1.05x107'° 6.94x107*¢ 264 x107*°
0.6 4.20x107' 410x107'° 7.00x107'° 117x107*® 6.94x107*¢ 3.37x10°*°
0.7 560x107* 550x107Y* 1.00x107® 1.21 x107* 6.80x 1076 3.66 x 1071°
0.8 740x107Y 740x107'° 140x107'® 126x107* 777 x10716 3.18x1071°
09 950x107'° 9.00x107'° 1.80x107'® 930x107*® 7.01x107* 203x10°*°

Example 6.3. Consider the following linear time-space fractional convection-diffusion equa-

tion.

0" u(z,t)

n u(z,t)

I'(2.8) 0"u(z,t)

otv

ox

2 oxY

u(z,t)

= f(xvt)a

where 0 < v <1 and 1 < v < 2.The initial and boundary conditions are

and the exact solution is u(x,t) = 2?(1 — z)t?. Substituting the suitable approximations in the

u(z,0) = u(0,t) = uz(0,t) =0,

Eq. (6.8) leads to the following equation.

7 (z,1) PE:) 2 (P )? C+ 87 (x,1) P(x) P, C
I'(2.8) _
— 87 (1) P, " P, C~&T(x,t) F. (6.9)
Using the Tau method for Eq. (46) leads to the following system.
(1-»T ['(2:8) 52-mT
P (L) Cc+PL PLT O ——PE " P To-F~o. (6.10)

By choosing N = M = 4 and considering various values of the parameters a and 3, approximate
solutions are computed. The maximum absolute errors of the resultant solutions are seen in

0<z,t<1,

(6.8)
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(@) )

v=04 Error function forv=0.4

(@

v=08 Error function forv = 0.8

Fig. 6.3. Example 6.2: (a) Approximate solution for v = 0.4, (b) Error function, (¢) Approximate
solution for v = 0.8, (d) Error function for N =M =4, o = § =0.5.

Table 6.6 for the values of v = 0.5, v = 1.5, and N = M = 4. The data show that the
approximate solutions are in good agreement with the exact solution. The absolute errors of
the approximate solution obtained for « = § =1, N = M = 4, and various values of v and ~
are computed at the points x; = 0.14,1 <4 < 9, and ¢t = 0.2 and are listed in Table 6.7. The

plots of the approximate solution and the error function are depicted in parts (a)-(d) of Fig.
6.4 for « =1/5 and = —1/4.

Table 6.6: Example 6.3: Maximum errors for N = M = 4, v = 0.5, v = 1.5, and different values of «
and (.

(o, B) Error (o, B) Error (o, B) Error

(0,0) 6.7682 x 107 1° (1,1) 1.1157 x 107 (2,2) 3.4359 x 1014
(0.5,0.5) 3.8231 x 107*¢  (—-0.5,0.5) 84200 x 1076  (0.5,—0.5)  1.8660 x 10~ *7
(1/3,1/3) 6.3632 x 107 (=1/3,1/3) 1.2548 x 107%%  (—1/4,-1/3) 1.3944 x 107'¢

Example 6.4. Consider the linear inhomogeneous fractional KdV equation [25].

O u(x,t)  Ou(x,t)  Pu(x,t) 2127V
= < < . .
5t o + 903 NEE) cos(t), O<uz,t<1l O<v<l (6.11)

The initial and boundary conditions are
u(z,0) =0, u(0,t) =0, uy(0,t) =0, u.(0,t) =0,

and the exact solution is u(z,t) = t? cos(x). Substituting the suitable approximations in the
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Table 6.7: Example 6.3: Absolute errors at t = 0.2 with N = M =4, o« = 8 = 1, and various values of

A. BIAZAR AND K. SADRI

v and 7.
(v,7) (v, 7) (v,7)

x; (0.1,1.1) (0.8,1.8) (0.2.1.7)

0.1 5.8159 x 10°'® 86733 x 107'®  7.4638 x 10~ *®
0.2 85252 x 107 14166 x 1077 1.1295 x 10~'7
0.3 15173 x107'® 1.7868 x 10717  1.5506 x 10717
0.4 7.3162x107¥ 21556 x 10717  2.1133 x 10~Y7
0.5 8.0745 x 107 25375 x 10717 2.9036 x 10~'7
0.6 4.8050 x 1071 2.7836 x 1077  3.9893 x 10~ 7
0.7 6.1202 x 107  2.5819 x 10717  5.4207 x 10~Y7
0.8 7.2428 x 107  1.4570 x 10717  7.2301 x 10~Y7
0.9 6.9161 x 1071 1.2294 x 107'7  9.4318 x 10~ 7

()

Approximate solution for v=0.5 and y=1. Error function

(©)

(@

9.x 10718
8.x1071%
7.x10°1%
6.x1071%
5.x1071%
4.x107184
3.x107"%
2.x10°1%
1.x 107184

T T T T T
0.2 0.4 0.6 0.8 1

x
Error function atz=0.5

o

? T T T T i
0 0.2 0.4 0.6 0.8 1

x
Exact solution © Numerical solution at 1= 0.5

Fig. 6.4. Example 6.3: (a) Approximate solution, (b) Absolute error function, (¢) Approximate solution
at t = 0.5, (d) Absolute error function for N =M =4, a =1/5, § = —1/4, v = 0.5, and v = 1.5.

Eq. (6.11) leads to the following equation.

1-»T T

(t)

)} C+ @7 (x,t) (Phy )P PLy" C+ 8T (x,0) P C

(6.12)

&7 (2,t) P
~®7 (z,t) F.

1
(Pl

Using the Tau method for Eq. (6.12) leads to the following Sylvester system.

1-nT T T T
PG (P O+ (P, )? P,

By choosing N = M = 7 and considering various values of the parameters o and (3, ap-

C+PL C-F~o.
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proximate solutions are computed. The maximum absolute errors of the resultant solutions are
seen in Table 6.8 for the value of v = 0.5. The data show that the approximate solutions are
in good agreement with the exact solution. Also, the maximum absolute errors are computed
for different values of N and M (N = M). It is observed in Table 6.9 when N (M) increases
the absolute error decreases. Decreasing the absolute error is also observed in Fig. 6.5 as well.
The absolute errors of the approximate solution obtained for a =1/2, 8 =—-1/2, N =M =7,
and various values of v are computed at the points x; = ¢; = 0.24,4 = 1, ..., 4 and are listed in

Table 6.10. The errors at the equally spaced points are almost constant while the values of v
are changing.

Table 6.8: Example 6.4: Maximum errors for N = M = 7, v = 0.5, and different values of o and (.

(a, B) Error (a, B) Error

(0,0) 1.6771 x 107° (1,1) 4.3165 x 1077

(2,2) 7.7293 x 107°  (0.5,0.5)  5.6746 x 107°
(—0.5,0.5) 5.5008 x 107 (0.5, —0.5) 5.6746 x 107°

Table 6.9: Example 6.4: Maximum errors for different values of N, M, v = 0.5, and o« = g = 1.

N=M 3 4 5 6 7
8.1617 x 107* 3.14x 107> 2.7392 x 10°° 6.7861 x 10~®  4.13165 x 10~°

Error

Table 6.10: Example 6.4: Errors for N =M =7, a =1/2, § = —1/2, and varous values of v.

x; = t; v=20.2 v=04 v =0.6 v=20.38
0.2 7.2315 x 1071 72333 x 10713 7.2361 x 1073 7.2403 x 10713
0.4 4.3590 x 107 4.3588 x 10711 4.3585 x 1071} 4.3583 x 107!
0.6 1.5524 x 10719 1.5525 x 107 1.5526 x 1071% 1.5528 x 1071°
0.8 4.8155 x 10719 4.8153 x 1071°  4.8149 x 107  4.8146 x 10~ 1°

Fig. 6.5. Example 6.4: Maximum absolute errors fora = =1, v =05, and N=M =3:1:7.

0.0008+
0.0007
0.0006
0.0005+
0.0004+
0.00034
0.0002+

0.00014

4 5

6

|_a=p=1, v=40.5, and35N=M57|
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Example 6.5. Consider the time-space fractional differential equation [26].

Nu(x,t)  u(z,t) 222772 +1) 222+ 1)t2V
= , O0<z,t<1, O<rv,v<1, (6.13
o T o TB—7)  TB-» v vyl (6.13)
such that u(z,0) = 2% + 1,u(0,t) = t? + 1, and the exact solution is u(z,t) = (2 + 1)(t? + 1).
Substituting the suitable approximations in the Eq. (6.13), the following equation is obtained.

T T
L P Cr @@ty P PLT O 8T (2,t) F. (6.14)

T (

(t)
Using the Tau method for Eq. (6.14) leads to the following Sylvester system.

T T
P PLT P PLT C-F o (6.15)

Table 6.11: Example 6.5: Maximum errors for N=M=4, v = 1/3, v = 1/2, and different values of «
and .

(o, B) Error (o, B) Error
(0,0) 2.5000 x 10~ (1,1) 3.0000 x 10~%°
(2,2) 3.0000 x 107 (0.5,0.5)  4.0000 x 10~*°

(=0.5,0.5)  4.1000 x 107 (0.5, —0.5)  5.2000 x 10™*°
(—1/4,—-1/4) 9.3500 x 107'%  (1/3,1/2) 1.2140 x 10=*7

Table 6.12: Example 6.5: Errors for N =M =4, a=-1/2, 8 =1,v=1/3, and v = 1/2.

Jacobi method Method in [26]

(z,t) M=N=4 M=N=5 m=8
(0,0) 0.0000 0.0000 5.415112 x 107°
(1/8,1/8) 0.0000 0.0000 2774770 x 107°
(2/8,2/8) 1.0000 x 107  1.0000 x 10~  5.600267 x 10~°
(3/8,3/8) 0.0000 1.0000 x 107 4.902546 x 10~°
(4/8,4/8) 0.0000 0.0000 7.292534 x 107°
(5/8,5/8) 1.0000 x 10™*°  1.0000 x 107'°  3.242363 x 10~°
(6/8,6/8) 1.0000 x 1072  1.0000 x 107  6.928689 x 10~°
(7/8,7/8) 0.0000 1.0000 x 1071  7.414284 x 107°

By choosing N = M = 4, 25 algebraic equations are generated by Eq. (6.15). Determining
various values of the parameters a and ( leads to approximate solutions. The maximum
absolute errors of the resultant solutions are seen in Table 6.11 for the values of v = 1/3
and v = 1/2. The data show that the approximate solutions are in good agreement with
the exact solution. The absolute errors of the approximate solution obtained for a« = —1/2,
B =1, N =M = 4, and the values of v = 1/3 and v = 1/2 are computed at the points
x; =t; =1/8,0 < i <7 and are listed in Table 6.12. Eq. (6.13) is solved in [26] by means of
the Haar wavelet method. The last column of Table 6.12 displays the results reported by [26].
It is seen that the proposed method provides more precise solutions in comparison with those
obtained from the Haar wavelet method. The plots of the exact and approximate solutions are
depicted in Fig. 6.6 at t = 0.25.



Two-Variable Jacobi Polynomials for Solving Fractional PDEs 901

2.0

| O  Approximate solution at ¢ = 0.25 Exact solution |

Fig. 6.6. Example 6.5: Exact and approximate solutions for o« = —1/2, 8 =1, v = 2/3, v = 3/4, and
N=M=4.

7. Conclusion

The concern of this paper was the solution of a class of fractional partial differential e-
quations. It was done by presenting a scheme which was a combination of the Tau spectral
method and the Jacobi polynomials based on the operational matrices. First, the operational
matrices of the integration of the fractional and integer orders derived for the one-dimensional
shifted Jacobi polynomials, then the obtained matrices were generalized to the two-dimensional
case. The introduced approximations were different from those presented in [23]. The proposed
method applied to solve several time- and time-space fractional partial differential equations
to demonstrate the efficiency of the approach. The results was compared to those reported in
[23-26]. As observed from Tables 6.3, 6.5, and 6.12, the obtained results from the suggested
algorithm possess more accurate than those obtained from spectral Tau, Variational iteration,
and Haar wavelet and methods, [23, 25, 26]. The authors intend to apply the proposed method
to fractional integro-partial differential equations in their future works.
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