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Abstract. In this paper, we study the numerical solution of the Stokes system in
deformed axisymmetric geometries. In the azimuthal direction the discretization
is carried out by using truncated Fourier series, thus reducing the dimension of
the problem. The resulting two-dimensional problems are discretized using the
spectral element method which is based on the variational formulation in primitive
variables. The meridian domain is subdivided into elements, in each of which the
solution is approximated by truncated polynomial series. The results of numerical
experiments for several geometries are presented.
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1 Introduction

In many problems of fluid mechanics one encounters flows in domains with axisym-
metric geometries. Typical examples of such flows are the blood flow in vessels, hy-
drological problems (flow in pipelines), etc (see, e.g., [1] for more examples). As is
well-documented [9], in axisymmetric geometries the solutions of the governing par-
tial differential equations (PDEs) admit a Fourier expansion with respect to the an-
gular (azimuthal) variable. The Fourier coefficients in this expansion are solutions
of an infinite system of two-dimensional problems in the meridian domain. Such an
expansion allows for a reduction of the dimension of the problem. In [2, 3] this idea
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was developed to derive an efficient strategy for solving the Stokes and Navier-Stokes
equations with a finite element based discretization.

The extension of these ideas to spectral methods is non-trivial because of the com-
plex nature of the meridian domains which, in this case, is a greater constraint in com-
parison to the finite element approach. In general, even after the decomposition of the
meridian domain into simpler spectral elements, one has to deal with trapezoidal and
curved sub-domains. In [15], it is shown that the spectral accuracy of spectral meth-
ods in such domains is preserved by applying the idea of over-integration. The aim
of this paper is to combine this idea with a spectral element discretization to problems
in deformed axisymmetric geometries, i.e., axisymmetric domains containing trape-
zoidal or curved parts. In particular, we study and develop a numerical procedure for
solving the Stokes equations in deformed axisymmetric domains. This is achieved by
the reduction of the dimension of the problem, where the full three-dimensional prob-
lem is replaced by an infinite system of two-dimensional problems, which, in turn,
is approximated by a finite system of such problems. Each two-dimensional prob-
lem is solved with the spectral element method. We consider several geometries the
discretization of which by spectral methods is non-trivial.

In particular, let Ω be a bounded connected domain in R3, which is invariant under
rotation around the z-axis. Also, assume that ∂Ω is the boundary of Ω. We consider
the Stokes problem for an incompressible fluid

−∆u + grad p = f , in Ω,
div u = 0, in Ω,
u = g, on ∂Ω,

(1.1)

where u is the velocity and p is the pressure of the fluid. In Problem (1.1), the external
force f and g are given functions. We will further assume the usual flux condition∫

∂Ω
g · n dτ = 0, (1.2)

where n denotes the outward normal unit vector to ∂Ω.
The paper is organized as follows. In Section 2 we introduce the Fourier expansion

of Problem (1.1) and the functional (weighted) spaces necessary for the correct mathe-
matical setting of the problem. We subsequently, provide the variational formulation
for two-dimensional problems corresponding to the various Fourier modes. Section 3
is devoted to the spectral element discretization. In Section 4, we present the numeri-
cal procedure for the solution of the discrete problem. Finally, in Section 5 we present
the results of several numerical experiments.

2 Variational formulation

2.1 Fourier expansion

Let (x, y, z) denote a set of Cartesian coordinates in R3 such that Ω is invariant under
rotation around the z-axis. The polar coordinates (r, ϑ, z), where r ≥ 0 and −π ≤ ϑ ≤
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π, are defined as usual by

x = r cos ϑ, y = r sin ϑ and z = z,

and the domain Ω is generated by the rotation of the meridian domain ω around the
z-axis, that is

Ω =
{
(r, ϑ, z); (r, z) ∈ ω and − π ≤ ϑ < π

}
. (2.1)

We will assume that ω is bounded, simply connected and has a Lipschitz-continuous
boundary ∂ω consisting of two parts, namely γ0, which is the intersection of ∂ω with
the axis r = 0, and γ which is ∂Ω\γ0, that is

γ0 ∩ γ = ∅.

We further assume that γ0 is the union of a finite number of straight segments and γ
is the union of straight and possibly curved segments.

Following [9, Chapter X], the data f and g have the Fourier expansions

f (r, ϑ, z) =
1√
2π

∑
k∈Z

f k(r, z) eikϑ, g(r, ϑ, z) =
1√
2π

∑
k∈Z

gk(r, z) eikϑ. (2.2)

The vector fields
f = ( fr, fϑ, fz) and g = (gr, gϑ, gz),

are said to be axisymmetric if all their Fourier coefficients in (2.2) are zero except the
one of order k = 0. Similarly, the solution (u, p) can be written as

u(r, ϑ, z) =
1√
2π

∑
k∈Z

uk(r, z) eikϑ, p(r, ϑ, z) =
1√
2π

∑
k∈Z

pk(r, z) eikϑ. (2.3)

We thus have that (u, p) is a solution of Problem (1.1) if and only if each (uk, pk), k ∈ Z
is a solution of the two-dimensional problem [9, Chapter IX.1]

−∂2
r uk

r −
1
r

∂ruk
r − ∂2

zuk
r +

1 + k2

r2 uk
r +

2ik
r

uk
ϑ + ∂r pk = f k

r , in ω,

−∂2
r uk

ϑ −
1
r

∂ruk
ϑ − ∂2

zuk
ϑ +

1 + k2

r2 uk
ϑ −

2ik
r

uk
r +

ik
r

pk = f k
ϑ , in ω,

−∂2
r uk

z −
1
r

∂ruk
z − ∂2

zuk
z +

k2

r2 uk
z + ∂z pk = f k

z , in ω,

∂ruk
r +

1
r

uk
r +

ik
r

uk
ϑ + ∂zuk

z = 0, in ω,

(ur, uϑ, uz) = (gr, gϑ, gz), on γ.

(2.4)

We will further assume that ∫
γ

g0 · n dτ = 0. (2.5)

Moreover, if the data ( f , g) are axisymmetric, so is the solution (u, p), in the sense that
(ur, uϑ, uz) and p are independent of ϑ.
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In order to write the variational formulation of Problem (2.4), we introduce the
weighted spaces

L2
±1(ω) =

{
v : ω ← C, measurable;

∫
ω
|v(r, z)|2r±1 dr dz < +∞

}
, (2.6)

equipped with the norms

∥v∥L2
±1(ω) =

( ∫
ω
|v(r, z)|2 r±1dr dz

) 1
2
.

The complete Sobolev scale Hs
1(ω), s ∈ R is defined in a standard way [14], namely,

when s is an integer, Hs
1(ω) is the space of functions of L2

1(ω) such that all their partial
derivatives of order ≤ s belong to L2

1(ω) while when s is not an integer Hs
1(ω) is

defined by Hilbertian interpolation. Note that when s is an integer, Hs
1(ω) is equipped

with the following semi-norm and norm

|v|Hs
1(ω) =

( s

∑
ℓ=0
∥∂ℓr∂s−ℓ

z v∥2
L2

1(ω)

) 1
2

and ∥v∥Hs
1(ω) =

( s

∑
k=0
|v|2H1

k (ω)

) 1
2
,

respectively.
We also introduce the space

V1
1 (ω) = H1

1(ω) ∩ L2
−1(ω), (2.7)

equipped with the norm

∥v∥V1
1 (ω) =

(
∥v∥2

L2
−1(ω) + |v|

2
H1

1 (ω)

) 1
2 ,

and the variational spaces

L2
1,0(ω) =

{
q ∈ L2

1(ω);
∫

ω
q(r, z) rdrdz = 0

}
, (2.8)

and
H1

1⋄(ω) =
{

v ∈ H1
1(ω); v = 0, on γ

}
. (2.9)

Finally, for each mode k we define the space (associated with mode k)

H1
k =


V1

1 (ω)×V1
1 (ω)× H1

1(ω), if k = 0,{
(vr, vϑ, vz) ∈ H1

1(ω)× H1
1(ω)×V1

1 (ω), vr + ikvϑ ∈ L2
−1(ω)

}
, if |k| = 1,

V1
1 (ω)×V1

1 (ω)×V1
1 (ω), if |k| ≥ 2,

(2.10)

and its corresponding subspace

H1
k⋄(ω) = H1

k(ω) ∩ H1
1⋄(ω)3. (2.11)
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By defining

ak(u, v) =
∫

ω
(∂ru ∂rv + ∂zu ∂zv)(r, z) r dr dz + k2

∫
ω

u(r, z)v(r, z) r−1 dr dz,

we next introduce the sesquilinear forms for each k

Ak(u, v) = a0(ur, vr) + a0(uϑ, vϑ) + a0(uz, vz) +
∫

ω

(
(1 + k2) (urvr + uϑvϑ)

+
2ik
r

(uϑvr − urvϑ) + k2uzvz

)
(r, z) r−1 dr dz,

Bk(v, q) = −
∫

ω
q(r, z)(∂rvr + r−1 vr + ikr−1 vϑ + ∂zvz)(r, z) r dr dz.

For simplicity, we denote by L2
k(ω) the space L2

10(ω) for k = 0 and L2
1(ω) for k ̸= 0.

Following [9, Chapter IX], the variational formulation of Problem (2.4) is: find
(uk, pk) in H1

k(ω)× L2
k(ω), with uk equal to gk on γ, such that ∀v ∈ H1

k,⋄(ω), Ak(uk, v) + Bk(v, pk) =
∫

ω

(
f k · v

)
(r, z) r dr dz,

∀q ∈ L2
k(ω), Bk(uk, q) = 0.

(2.12)

For each k, we introduce the norm associated with H1
k(ω),

∥v∥H1
k(ω) = Ak(v, v)

1
2 .

This norm is equivalent to the norm ∥v eikϑ∥H1(Ω)3 , with equivalence constants inde-
pendent of k. As a consequence, we easily derive the following inf-sup condition from
its analogue on Ω, namely, there exists a positive constant β such that, for all k ∈ Z,

∀q ∈ L2
k(ω), sup

v∈H1
k(ω)

Bk(v, q)
∥v∥H1

k(ω)

≥ β ∥q∥L2
1(ω).

If we assume that the data f k belong to the dual space of H1
k⋄(ω) and that the function

gk admits a lifting gk in H1
k(ω) and satisfies (2.7) if k is equal to zero, then Problem

(2.12) has a unique solution (uk, pk) in H1
k(ω). Moreover this solution satisfies the

inequality
∥uk∥H1

k(ω) + ∥pk∥L2
1(ω) ≤ c

(
∥ f k∥H1

k⋄(ω)′ + ∥g
k∥H1

(k)(ω)

)
. (2.13)

2.2 Reduction of dimension

The reduction of dimension results from the Fourier truncation of the infinite system
of Eq. (2.12).

Since, in general, the data f and g cannot be computed explicitly, we introduce the
nodes

ϑm =
2mπ

2K + 1
, −K ≤ m ≤ K,
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where K is an integer ≥ 2. We also define the approximate Fourier coefficients for
−K ≤ k ≤ K as

f k
∗(r, z) =

√
2π

2K + 1

K

∑
m=−K

f (r, ϑm, z)e−ikϑm , (2.14a)

gk
∗(r, z) =

√
2π

2K + 1

K

∑
m=−K

g(r, ϑm, z)e−ikϑm . (2.14b)

The System (cf. (2.12)) now becomes: for −K ≤ k ≤ K,

find (uk
∗, pk
∗) ∈ H1

k(ω)× L2
k(ω), such that

uk
∗ = gk

∗, on γ, and

∀v ∈ H1
k,⋄(ω), Ak(uk

∗, v) + Bk(v, pk
∗) =

∫
ω
( f k
∗ · v)(r, z) r dr dz,

∀q ∈ L2
k(ω), Bk

(uk
∗, q) = 0.

(2.15)

The reconstruction formula for the three-dimensional solution (uK, pK) associated with
the solution of System (2.15) is given by

uK(r, ϑ, z) =
1√
2π

K

∑
k=−K

uk
∗(r, z) eikϑ, pK(r, ϑ, z) =

1√
2π

K

∑
k=−K

pk
∗(r, z) eikϑ. (2.16)

If we define

Hm,σ(Ω) =
{

v ∈ Hm(Ω); ∂ℓϑv ∈ Hm(Ω), 1 ≤ ℓ ≤ σ
}

,

in the case σ is a nonnegative integer and by Hilbertian interpolation otherwise, the
following result [9, Theorem IX 2.23], holds,

Proposition 2.1. Assume that the data f ∈ H−1,σ(Ω)3, for a real number σ > 0, and g
admits a lifting, also denoted by g, in H1,σ(Ω)3. Then the following error estimate holds

∥u− uK∥H1(Ω)3 + ∥p− pK∥L2(Ω) ≤ cK−σ(∥ f∥H−1,σ(Ω)3 + ∥g∥H1,σ(Ω)3). (2.17)

From Proposition 2.1, it follows that for sufficiently smooth data, only a few modes
are required to compute an accurate approximation to the solution of the initial prob-
lem.

3 Spectral element discretization

Given a partition of the meridian domain ω without overlap

ω = ∪L
ℓ=1ωℓ and ωℓ ∩ωℓ′ = ∅, 1 ≤ ℓ < ℓ′ ≤ L,
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we will assume that the intersection of ∂ωℓ and ∂ωℓ′ , 1 ≤ ℓ < ℓ′ ≤ L, if not empty, is
a vertex or a whole edge of both ωℓ and ωℓ′ . In addition, the intersection of each ∂ωℓ,
1 ≤ ℓ ≤ L, with γ0, if not empty, is a whole edge of both ωℓ and ωℓ′ .

We are interested in sub-domains which are either rectangular or trapezoidal ele-
ments, or curvilinear elements.

In both cases, we will assume there exists a one-to-one mapping Fℓ from the ref-
erence square ω̂ = [−1, 1]2 onto ωℓ such that both Fℓ and F−1

ℓ are infinitely differen-
tiable, for each sub-domain ωℓ, 1 ≤ ℓ ≤ L. The images of the vertices of ω̂ via Fℓ are
called vertices of ωℓ and the images of the edges of ω̂ via Fℓ are called edges of ωℓ. We
set

δ = (N, N#),

to be a pair of integers ≥ 2. For each integer n ≥ 0, we denote by Pn(ω̂) the space of
restrictions to ω̂ of polynomials in two variables and degree ≤ n with respect to each
variable.

We define the basic discrete spaces as follows

X(k)
δ =

{
vδ ∈ H1

(k)(ω); vδ|ωℓ
◦ Fℓ ∈ PN(ω̂), 1 ≤ ℓ ≤ L

}
, (3.1a)

M(k)
δ =

{
qδ ∈ L2

(k)(ω); qδ|ωℓ
◦ Fℓ ∈ PN−2(ω̂), 1 ≤ ℓ ≤ L

}
, (3.1b)

and also introduce the discrete variational spaces

X(k)⋄
δ (ω) = X(k)

δ ∩ H1
1⋄(ω)3. (3.2)

We recall the main properties of the Gauss-Lobatto quadrature formula. For each
positive integer n, with ξ0 = −1 and ξn = 1, there exist a unique set of nodes ξ j,
1 ≤ j ≤ n− 1, in [−1, 1] and a unique set of weights ρj, 0 ≤ j ≤ n, such that

∀Φ ∈ P2n−1(−1, 1),
∫ 1

−1
Φ(ζ) dζ =

n

∑
j=0

Φ(ξ j) ρj. (3.3)

Moreover, the following positivity property holds (see, [11, Eq. (13.20)]):

∀φn ∈ Pn(−1, 1), ∥φn∥2
L2(−1,1) ≤

n

∑
j=0

φ2
n(ξ j) ρj ≤ 3 ∥φn∥2

L2(−1,1).

Next, taking n = N#, and in view of the integration formula∫
ωℓ

u(r, z)v(r, z) r dr dz =
∫

ω̂
(u ◦ Fℓ)(ζ, ξ)(v ◦ Fℓ)(ζ, ξ) Rℓ(ζ, ξ) Jℓ(ζ, ξ) dζ dξ,

where Rℓ is the first component of the mapping Fℓ and Jℓ the absolute value of its
Jacobian, we define the discrete product, for all functions u and v continuous on ωℓ,
by

(u, v)ℓ =
N#

∑
i=0

N#

∑
j=0

(u ◦ Fℓ)(ξ
ℓ
i , ξℓj )(v ◦ Fℓ)(ξ

ℓ
i , ξℓj ) Rℓ(ξ

ℓ
i , ξℓj ) Jℓ(ξℓi , ξℓj ) ρℓi ρℓj . (3.4)
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The global product is then defined by

[u, v]δ =
L

∑
ℓ=1

(u, v)ℓ. (3.5)

Remark 3.1. When ωℓ is the rectangle [r1, r2]× [z1, z2], Fℓ is affine and given by

Fℓ(ζ, ξ) =

(
r1 +

r2−r1
2 (1 + ζ)

z1 +
z2−z1

2 (1 + ξ)

)
,

and its Jacobian matrix is diagonal. In this case, (3.4) becomes the usual formula

(u, v)ℓ =
(r2 − r1)(z2 − z1)

4

N#

∑
i=0

N#

∑
j=0

u(rℓi , zℓj )v(r
ℓ
i , zℓj ) rℓi ρℓi ρℓj .

The use of over-integration is only required for curved elements (and in the direction
of the curved edges), thus the parameter N# > N in the formula (3.4) could be replaced
by N when over integration is not necessary.

The discrete sesquilinear forms are now defined by

Akδ(u, v) = a0δ(ur, vr) + a0δ(uϑ, vϑ) + a0δ(uz, vz) + (1 + k2)

+ (1 + k2)
[
uϑ r−1, vϑ r−1]

δ
+ 2ik

[
uϑ r−1, vr r−1]

δ

− 2ik
[
ur r−1, vϑ r−1]

δ
+ k2 [uz r−1, vz r−1]

δ
, (3.6a)

Bkδ(v, q) = −
[
q, (∂rvr + r−1 vr + ikr−1 vϑ + ∂zvz)

]
δ

, (3.6b)

where
a0δ(u, v) =

[
∂ru, ∂rv

]
δ
+
[
∂zu, ∂zv

]
δ
. (3.7)

If we let IN denote the Lagrange interpolation operator at all nodes (ri, zj), 1 ≤ i, j ≤
N and for each k still denote by gk

∗ a lifting of the data gk
∗ to ω, then the discrete

problem associated with (2.15) reads:

For each − K ≤ k ≤ K, find (uk
δ, pk

δ) ∈ Xk
δ(ω)×Mk

δ(ω), such that
uk

δ = IN gk
∗, on γ, and

∀vδ ∈ Xk,⋄
δ (ω), Akδ(uk

δ, vδ) + Bkδ(vδ, pk
δ) =

∫
ω
(IN f k

∗ · vδ)(r, z) r dr dz,

∀qδ ∈ Mk
δ(ω), Bk(uk

δ, qδ) = 0.

(3.8)

Combining the arguments of [15] and [5], it can be verified that under the condition

N# > N, (3.9)

the sesquilinear forms Ak(·, ·) and Bk(·, ·) are continuous and that the inf-sup condi-
tion is satisfied which yields the well-posedness of Problem (3.8).
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4 Numerical implementation

In the implementation of the method we shall use the saddle-point approach proposed
in [8] (see also [6] for more specific details) which is equivalent to Problem (3.8). To
this end, let us briefly describe the discrete saddle-point formulation. We denote by S
the skeleton of the decomposition of ω which is equal to

∪L
ℓ=1 ∂ωℓ \ ∂ω. The skeleton

S can also be defined as a union of disjoint open edges (mortars),

S =
M∗∪

m=1

γm, γm ∩ γ′m = ∅, 1 ≤ m < m′ ≤ M∗, (4.1)

where each γm is a whole edge of one of the ωℓ, denoted by ωℓ(m).
We introduce the space Tδ as

Tδ =
M∗

∏
m=1

PN−2(γm)
3,

and define the sesquilinear form Dδk(·, ·) on Xk
δ(ω)× Tδ by

Dδk(vk
δ, µδ) =

M∗

∑
m=1

∫
γm

[vδ] · µδ dτ. (4.2)

Note that from the definition of Tδ, the integrals which appear in (4.2) can be equiv-
alently replaced by the Gauss-Lobatto quadrature formula at the nodes ξ j, which be-
long to γm.

Thus Problem (3.8) may be written in the equivalent form:

For each − K ≤ k ≤ K, find

(uk
δ, pk

δ) ∈ Xk
δ(ω)×Mk

δ(ω) and λδ = (λδ,r, λδ,θ , λδ,z) ∈ Tδ, such that

uk
δ = IN gk

∗, on γ, and

∀vδ ∈ Xk,⋄
δ (ω), Akδ(uk

δ, vδ) + Bkδ(vδ, pk
δ) +Dkδ(vδ, λδ) =

∫
ω
(IN f k

∗ · vδ)(r, z)rdrdz,

∀qδ ∈ Mk
δ(ω), Bk(uk

δ, qδ) = 0,

∀µδ ∈ Tδ, Dδk(uk
δ, µδ) = 0.

(4.3)

It may be readily verified that if (uk
δ, pk

δ, λδ), −K ≤ k ≤ K is a solution of Problem
(4.3), then (uk

δ, pk
δ), −K ≤ k ≤ K is also solution of Problem (3.8). Conversely, it can be

proved as in [8] that the only spurious mode µδ in Tδ satisfying

∀vδ ∈ Xk
δ , Dδk(vδ, µδ) = 0,

is zero, and therefore Problem (4.3) is well-posed.
In all examples considered the meridian domain ω is subdivided into three ele-

ments such that
ω = ωI ∪ωI I ∪ωI I I .
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Further, the boundary ∂ω of ω, as mentioned in Section 2.1, is written as

∂ω = γ0 ∪ γ.

In the examples considered, we take

γ = γi ∪ γo,

where γi = [0, ri]× zi and γo = [0, ro]× zo, that is the domain ω lies between the two
vertical lines z = zi and z = zo, see [2]. In all numerical examples we shall assume
that gr and gϑ vanish on γ and that gz vanishes on γ\ (γi ∪ γo). We also assume that

f = 0.

We next present the main features of the implementational process. For the sake of
brevity the full details of the implementation of the method are omitted and may be
found in [7].

For each k, we approximate the solution ((ur, uϑ, uz), p) in each of the three ele-
ments as follows (note that ζ, η ∈ [−1, 1] and that (r, z)→ (ζ, ξ)):

uk
rℓ(ζ, ξ) =

N

∑
i=0

N

∑
j=0

uk
rℓij

qi(ζ)qj(ξ), uk
ϑℓ
(ζ, ξ) =

N

∑
i=0

N

∑
j=0

uk
ϑℓij

qi(ζ)qj(ξ), (4.4a)

uk
zℓ(ζ, ξ) =

N

∑
i=0

N

∑
j=0

uk
zℓij

qi(ζ)qj(ξ), pk
ℓ(ζ, ξ) =

N−2

∑
i=0

N−2

∑
j=0

pk
ℓij

Li(ζ)Lj(ξ), (4.4b)

with ℓ = I, I I, I I I. In (4.4), {Ln(ξ)}∞
n=1 , ξ ∈ [−1, 1] is the set of Legendre polyno-

mials, the qi are the Lagrange interpolating polynomials for the set of points
{

ξ j
}N

j=0
which are the nodes of the Gauss-Lobatto quadrature formula (3.3). Further details
regarding the derivation of the Lagrange interpolating polynomials are provided in
the Appendix.

Problem (4.3) yields a system of the form A D B
DT 0 0
BT 0 0


 u

λ

p

 =

 F
0
G

 , (4.5)

where vectors u, p and λ will have the form

u =



uk
rI

uk
ϑI

uk
zI

uk
rI I

uk
ϑI I

uk
zI I

uk
rI I I

uk
ϑI I I

uk
zI I I


, p =

 pk
I

pk
I I

pk
I I I

 , λ =



λk
rI,I I

λk
ϑI,I I

λk
zI,I I

λk
rI I,I I I

λk
ϑI I,I I I

λk
zI I,I I I


,
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respectively, the matrices A, D and B will have the structures

A =



Ar
I Arϑ

I 0
Aϑr

I Aϑ
I 0

0 0 Az
I

0 0

0
Ar

I I Arϑ
I I 0

Aϑr
I I Aϑ

I I 0
0 0 Az

I I

0

0 0
Ar

I I I Arϑ
I I I 0

Aϑr
I I I Aϑ

I I I 0
0 0 Az

I I I


, (4.6a)

D =



Dr
I,I I 0 0
0 Dϑ

I,I I 0
0 0 Dz

I,I I

0

Dr
I I,I 0 0
0 Dϑ

I I,I 0
0 0 Dz

I I,I

Dr
I I,I I I 0 0
0 Dϑ

I I,I I I 0
0 0 Dz

I I,I I I

0
Dr

I I I,I I 0 0
0 Dϑ

I I I,I I 0
0 0 Dz

I I I,I I


, (4.6b)

and

B =



Br
I

Bϑ
I

Bz
I

0 0

0
Br

I I
Bϑ

I I
Bz

I I

0

0 0
Br

I I I
Bϑ

I I I
Bz

I I I


, (4.6c)

respectively. Finally, F and G will have the structures

F =



0
0
F z

I
0
0

F z
I I

0
0

F z
I I I


, G =

 G I
G I I
G I I I

 ,
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respectively.
After taking into account the boundary conditions for u, the unknowns to be de-

termined in each element and the interfaces are:

ωI

{
uk

rIij

}N−1,N

i=1,j=1
,
{

uk
ϑIij

}N−1,N

i=1,j=1
,
{

uk
zIij

}N−1,N

i=0,j=1
,
{

pk
Iij

}N−2,N−2

i=0,j=0
.

ωI I

{
uk

rI Iij

}N,N−1

i=1,j=0
,
{

uk
ϑI Iij

}N,N−1

i=1,j=0
,
{

uk
zI Iij

}N,N−1

i=0,j=0
,
{

pk
I Iij

}N−2,N−2

i=0,j=0
.

ωI I I

{
uk

rI I Iij

}N−1,N−1

i=0,j=1
,
{

uk
ϑI I Iij

}N−1,N−1

i=0,j=1
,
{

uk
zI I Iij

}N−1,N−1

i=0,j=1
,
{

pk
I I Iij

}N−2,N−2

i=0,j=0
.

Interface I − I I
{

λk
rI,I Ii

}N−1

i=1
,
{

λk
ϑI,I Ii

}N−1

i=1
,
{

λk
zI,I Ii

}N−1

i=1
.

Interface I I − I I I
{

λk
rI I,I I Ii

}N−1

i=1
,
{

λk
ϑI I,I I Ii

}N−1

i=1
,
{

λk
zI I,I I Ii

}N−1

i=1
.

From the expressions (3.6)-(3.6b), the submatrices of the matrices A and B in (4.6a) and
(4.6c) correspond to the discrete products:

Ar
ℓ : a0δ(ur, vr) + (1 + k2)[urr−1, vrr−1]δ, Arϑ

ℓ : 2ik[uϑr−1, vrr−1]δ, (4.7a)

Aϑ
ℓ : a0δ(uϑ, vϑ) + (1 + k2)[uϑr−1, vϑr−1]δ, Aϑr : −2ik[urr−1, vϑr−1]δ, (4.7b)

Az
ℓ : a0δ(uz, vz) + k2[uzr−1, vzr−1]δ, Br

ℓ : −[p, ∂rvr + r−1vr]δ, (4.7c)

Bϑ
ℓ : −ik[p, r−1uϑ]δ, Bz

ℓ : −[p, ∂zvz]δ, (4.7d)

for ℓ = I, I I, I I I.
The submatrices of D in (4.6b) will have all but a few zero elements. The non-zero

elements will be either 1 or −1 ensuring the continuity of the approximations at the
nodes across the interfaces.

The entries of the vectors F and G come from the non-zero boundary conditions
for uz on γi and γo.

After the incorporation of the boundary conditions, the sizes of the submatrices
and subvectors in System (4.5) are as follows:

• The matrices Ar
I , Arϑ

I , Aϑr
I , Aϑ

I will all have size N(N − 1)× N(N − 1) and the
matrix Az

I will have size N2 × N2.

• The matrices Ar
I I , Arϑ

I I , Aϑr
I I , Aϑ

I I will all have size N2 × N2 and the matrix Az
I I will

have size N(N + 1)× N(N + 1).

• The matrices Ar
I I I , Arϑ

I I I , Aϑr
I I I , Aϑ

I I I , Az
I I I will all have size N(N − 1)× N(N − 1).

• The matrices Br
I , Bϑ

I will both have size N(N − 1)× (N − 1)2 and the matrix Bz
I

will have size N2 × (N − 1)2.

• The matrices Br
I I , Bϑ

I I will both have size N2× (N− 1)2 and the matrix Bz
I I will have

size N(N + 1)× (N − 1)2.

• The matrices Br
I I , Bϑ

I I , Bz
I I will all have size N(N − 1)× (N − 1)2.
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• The matrices Dr
I,I I , Dϑ

I,I I will both have size N(N − 1)× (N − 1) and the matrix

Dz
I,I I will have size N2 × N.

• The matrices Dr
I I,I , Dϑ

I I,I will both have size N2× (N− 1) and the matrix Dz
I I,I will

have size N(N + 1)× N.

• The matrices Dr
I I,I I I , Dϑ

I I,I I I will both have size N2× (N− 1) and the matrix Dz
I I,I I I

will have size N(N + 1)× (N − 1).

• The matrices Dr
I I I,I I , Dϑ

I I I,I I , Dz
I I I,I I will all have size N(N − 1)× (N − 1).

• The vectors F z
I , F z

I I , F z
I I I will have size N2 × 1, N(N + 1) × 1, N(N − 1) × 1,

respectively. The vectors G I , G I I , G I I I , will all have size (N − 1)2 × 1.

5 Numerical examples

In the axisymmetric case (k = 0) considered, the boundary conditions are defined by
(see, [2])

gz(r,−2) = 4(1− r2), on γi,

gz(r, 2) =
1
4
(4− r2), on γe,

while in the case k = 3, also considered, the boundary conditions defined by (see, [2])

gz(r,−2) = 4r2(1− r2) sin(3ϑ), on γi,

gz(r, 2) =
1
4

r2(4− r2) cos(3ϑ), on γe.

5.1 Example 1

We consider the rectangularly decomposable domain depicted in Fig. 1, defined by

ωI = [0, 1]× [−2, 0], ωI I = [0, 1]× [0, 2], ωI I I = [1, 2]× [0, 2].

ω
I

ω
II

ω
III

Figure 1: Geometry for Example 1.
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5.1.1 Case k = 0

In Figs. 2(a) and 2(b), we present the isolines of the coordinates uz and ur of the ve-
locity, respectively, for N = 28. These results are in excellent agreement with the
corresponding results of [2]. We have also observed the consistency of the results for
different numbers of degrees of freedom and for N as little as 12 the results are almost
indistinguishable.

We also calculated the values of uz and ur on a uniform 51 × 51 grid in each of
the three elements for N = 8, 12, 16, 20, 24, 28 and 30. We subsequently calculated the
quantities ||uzN − uz30 ||∞, ||urN − ur30 ||∞, N = 8, 12, 16, 20, 24, 28, to be the maximum
absolute difference at these points. In Fig. 3, we present the log-log plots for ||uzN −
uz30 ||∞ and ||urN − ur30 ||∞ versus N. Both plots in Fig. 3 exhibit spectral accuracy.

 u
z
,   N = 28

0.5

1

1.5

2

2.5

3

3.5

(a) Isolines for uz

 u
r
,   N = 28

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b) Isolines for ur

Figure 2: Results for Example 1, k = 0, N = 28.
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Figure 3: Convergence curves for uz and ur for first geometry, k = 0.
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5.1.2 Case k = 3

In Figs. 4(a) and 4(b), we present the isolines of the coordinates uz and uϑ of the ve-
locity, respectively, for N = 20. These results are in excellent agreement with the
corresponding results of [2]. The same comments as those mentioned for k = 0 re-
garding the consistency of the figures for values of N as low as 12 also apply in this
case.

We also calculated the values of uz, ur and uϑ on a uniform 51× 51 grid in each of
the three elements for N = 8, 10, 12, 14, 16, 18, 20 and 22. We subsequently calculated
the quantities ||uzN − uz22 ||∞, ||urN − ur22 ||∞, ||uϑN − uϑ22 ||∞, N = 8, 10, 12, 14, 16, 18
and 20, to be the maximum absolute difference at these points. In Fig. 5, we present
the log-log plots for these quantities versus N. All three plots in Fig. 5 exhibit spectral
accuracy.

(a) Isolines for uz (b) Isolines for uϑ

Figure 4: Results for Example 1, k = 3, N = 20.
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 N

 uθ

Figure 5: Convergence curves for uz, ur and uϑ for first geometry, k = 3.
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5.2 Example 2

We consider domain depicted in Fig. 6, defined by (in (r, z))

ωI = [0, 1]× [−2, 0], ωI I = [0, 1]× [0, 2],

and ωI I I is the trapezium with vertices (1, 0), (1, 2), (2, 2) and (3/2, 0).
In this example, the element ωI I I is non-rectangular and the mapping F I I I is given

by (see Remark 3.1)

F I I I(ζ, ξ) =

( 1
8

[
ξ + 3ζ + ξζ + 11

]
ξ + 1

)
.

Also, the absolute value of the determinant of the Jacobian is

JI I I =
1
8
(3 + ξ).

In Figs. 7(a) and 7(b),we present the isolines of the coordinates uz and ur of the velocity,
respectively, for N = 28. As in Example 1, the results are consistent for values of N as
low as 12.

ω
I

ω
II

ω
III

Figure 6: Geometry for Example 2.
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Figure 7: Results for Example 2, k = 0, N = 28.
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8 12 16 20 24 28
10

−3

10
−2

10
−1

10
0

|| 
u z N

−
u z 30

|| ∞

 N

 u
z

8 12 16 20 2428
10

−3

10
−2

10
−1

10
0

|| 
u r N

−
u r 30

|| ∞
 N

 u
r

Figure 8: Convergence curves for uz and ur for Example 2, k = 0.

We also calculated the values of uz and ur on a uniform 51 × 51 grid in each of
the three elements for N = 8, 12, 16, 20, 24, 28 and 30. We subsequently calculated the
quantities ||uzN − uz30 ||∞, ||urN − ur30 ||∞, N = 8, 12, 16, 20, 24, 28, to be the maximum
absolute difference at these points. In Fig. 8, we present the log-log plots for ||uzN −
uz30 ||∞ and ||urN − ur30 ||∞ versus N. Both plots in Fig. 8 exhibit spectral accuracy.

5.3 Example 3

We consider domain depicted in Fig. 9, defined by (in (r, z))

ωI = [0, 1]× [−2,−1], ωI I I = [0, 2]× [0, 2],

and ωI I is the trapezium with vertices (0,−1), (0, 1), (2, 1) and (1,−1).
In this example, the element ωI I is non-rectangular and the mapping F I I is given

by (see Remark 3.1)

F I I(ζ, ξ) =

( 1
4 (ξ + 3)(ζ + 1)

ξ

)
.

Also, the absolute value of the determinant of the Jacobian is

JI I =
1
4
(3 + ξ).

In Figs. 10(a)and 10(b), we present the isolines of the coordinates uz and ur of the
velocity, respectively, for N = 28. As in Examples 1 and 2, the results are consistent
for values of N as low as 12.

We also calculated the values of uz and ur on a uniform 51 × 51 grid in each of
the three elements for N = 8, 12, 16, 20, 24, 28 and 30. We subsequently calculated the
quantities ||uzN − uz30 ||∞, ||urN − ur30 ||∞, N = 8, 12, 16, 20, 24, 28, to be the maximum
absolute difference at these points. In Fig. 11, we present the log-log plots for ||uzN −
uz30 ||∞ and ||urN − ur30 ||∞ versus N. Both plots in Fig. 11 exhibit spectral accuracy.
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ω
I
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III

Figure 9: Geometry for Example 3.
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Figure 10: Results for Example 3, k = 0, N = 28.
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Figure 11: Convergence curves for uz and ur for Example 3, k = 0.

5.4 Example 4

We consider domain depicted in Fig. 12, defined by (in (r, z))

ωI = [0, 1]× [−2, 0], ωI I = [0, 1]× [0, 2],
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and ωI I I is the curvilinear element with vertices (1, 0), (1, 2), (2, 2) and (3/2, 0). The
segments joining the vertices (1, 0) and (1, 2), (1, 2) and (2, 2), and (2, 2) and (3/2, 0)
are all straight lines while the segment joining the vertices (3/2, 0) and (2, 2) is curved
and described by the equation

r = α(z) =
3
2
+

3
8

z− 1
16

z2.

In this example, the element ωI I I is non-rectangular and curved and the mapping F I I I
is given by (see Remark 3.1)

F I I I(ζ, ξ) =

(
1 + (ζ+1)

2 (α(ξ + 1)− 1)
ξ + 1

)
.

Also, the absolute value of the determinant of the Jacobian is

JI I I =
1
2
(α(ξ + 1)− 1).

In Figs. 13(a) and 13(b), we present the isolines of the coordinates uz and ur of the ve-
locity, respectively, for N = 28. As in the previous examples, the results are consistent
for values of N as low as 12.
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III

Figure 12: Geometry for Example 4.
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Figure 13: Results for Example 4, k = 0, N = 28.
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Figure 14: Convergence curves for uz and ur for Example 4, k = 0.

We also calculated the values of uz and ur on a uniform 51 × 51 grid in each of
the three elements for N = 8, 12, 16, 20, 24, 28 and 30. We subsequently calculated the
quantities ||uzN − uz30 ||∞, ||urN − ur30 ||∞, N = 8, 12, 16, 20, 24, 28, to be the maximum
absolute difference at these points. In Fig. 14, we present the log-log plots for ||uzN −
uz30 ||∞ and ||urN − ur30 ||∞ versus N. Both plots in Fig. 14 exhibit spectral accuracy.

6 Conclusions

In the current study, we investigate the solution of the Stokes equations in deformed
axisymmetric geometries. These may include trapezoidal or curved boundaries which
are, in general, difficult to treat. By means of truncated Fourier series expansions in
the azimuthal direction, the three-dimensional problem is reduced to a series of two-
dimensional problems. Each of these problems is subsequently solved numerically by
combining the idea of over-integration with the spectral mortar element method. The
numerical results of several examples exhibit the expected spectral accuracy and are
in excellent agreement with results from the literature.

The extension of the proposed technique to the solution of the Navier-Stokes equa-
tions in deformed axisymmetric geometries is a topic of future research.

Appendix

Lagrange interpolating polynomials and their derivatives
We provide information regarding Lagrange interpolating polynomials and their

derivatives which is useful in the implementation of the method. For further details
see, e.g., [4, 10].

First, recall that the Gauss-Lobatto nodes {ξ j}N
j=0 are the zeros of (1− ξ2)L′N(ξ),

where {Ln} is the set of Legendre polynomials.
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On the interval [−1, 1], we define the interpolating polynomials {qj(ζ)}N
j=0 from

qj(ζ) = −
(1− ζ2) L′N(ζ)

N (N + 1) (ζ − ξ j) LN(ξ j)
, (A.1)

and since L′N(ξi) = 0, i = 1, · · · , N − 1, we have that

qj(ξi) = δji, i, j = 0, · · · , N.

The first derivatives of the interpolating polynomials are given by

q′j(ζ) =
1

LN(ξ j)

LN(ζ)

(ζ − ξ j)
+

1
N (N + 1) LN(ξ j)

(1− ζ2) L′N(ζ)
(ζ − ξ j)2 . (A.2)

For j = 1, · · · , N − 1 and i = 0, · · · , N, i ̸= j, we have

q′j(ξi) =
1

LN(ξ j)

LN(ξi)

(ξi − ξ j)
,

while for j = 1, · · ·N − 1 and i = j,

q′j(ξ j) =
L′N(ξ j)

2 LN(ξ j)
.

Finally, for i = 0, · · · , N,

q′0(ξi) = (−1)N−1 (1− ξi)L′′N(ξi)− L′N(ξi)

N(N + 1)
,

q′N(ξi) =
(1 + ξi)L′′N(ξi) + L′N(ξi)

N(N + 1)
.

The second derivatives of the interpolating polynomials are given by

q′′j (ζ) =
1

LN(ξ j)

(
L′N(ζ)
(ζ − ξ j)

− 2LN(ζ)

(ζ − ξ j)2 −
2(1− ζ2)L′N(ζ)

N(N + 1)(ζ − ξ j)3

)
. (A.3)

For j = 1, · · · , N − 1 and i = 0, · · · , N, i ̸= j, we have

q′′j (ξi) =
1

LN(ξ j)

( L′N(ξi)

(ξi − ξ j)
− 2 LN(ξi)

(ξi − ξ j)2

)
,

while for j = 1, · · ·N − 1 and i = j,

q′′j (ξ j) =
L′′N(ξ j)

3 LN(ξ j)
.

Finally, for i = 0, · · · , N,

q′′0 (ξi) = (−1)N−1 (1− ξi)L′′′N (ξi)− 2L′′N(ξi)

N (N + 1)
,

q′′N(ξi) =
(1 + ξi)L′′′N (ξi) + 2L′′N(ξi)

N(N + 1)
.
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