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Abstract. In this paper, we propose a new conservative gradient discretization method
(GDM) for one-dimensional parabolic partial differential equations (PDEs). We use
the implicit Euler method for the temporal discretization and conservative gradient
discretization method for spatial discretization. The method is based on a new cell-
centered meshes, and it is locally conservative. It has smaller truncation error than the
classical finite volume method on uniform meshes. We use the framework of the gra-
dient discretization method to analyze the stability and convergence. The numerical
experiments show that the new method has second-order convergence. Moreover, it
is more accurate than the classical finite volume method in flux error, L2 error and L∞

error.
AMS subject classifications: 65M08, 35K10

Key words: Gradient discretization method, mass conservation, parabolic equations.

1 Introduction

Parabolic equations are a typical type of time-dependent problems. Many time-
dependent physical processes, such as heat conduction problems, underground engi-
neering, oil recovery, and nuclear waste disposal, image analysis, can be described
by parabolic equations [11, 12, 15, 22]. Many numerical methods have been applied
to parabolic equations, such as finite difference methods [2, 32], finite element meth-
ods [17, 31, 37, 40, 41], discontinuous Galerkin methods [6, 29, 38], spectral Galerkin
method [36], weak Galerkin method [39], and so on.

However, conventional numerical methods usually do not have local mass conserva-
tion property. Mass conservation property is crucial physically, and a numerical scheme
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may produce a non-physical solution without local mass conservation. There have been
a lot of efforts dedicated to the research of mass conservation preserving schemes. Dif-
ferent types of finite volume schemes have been proposed for the elliptic and parabolic
equations. An implicit multi-point flux approximation on quadrilateral meshes is dis-
cussed in [1]. In [28], a minimal stencil finite volume scheme is studied. A monotone
finite volume method is introduced in [35]. For the conservative finite difference meth-
ods, they also have been applied to various PDEs, including semilinear parabolic equa-
tion [10], hyperbolic conservation laws [9, 18], Helmholtz problem [23], acoustic wave
equations [24,25], the kinetic and fluid simulations [33], multi-component flow computa-
tions, and transport process [30]. In recent years, high order conservative discontinuous
Galerkin methods are also proposed for many PDEs, such as Klein-Gordon-Schrödinger
equations [4], nonlinear electromagnetic Schrödinger equations [34], radiative transfer
equations [26], and hyperbolic conservative equations [5, 27].

The gradient discretization method (GDM) is an efficient numerical method for solv-
ing linear and nonlinear elliptic and parabolic partial differential equations, see [13]. The
main idea of the GDM is to use discrete spaces and discrete differential operators to
mimic the original continuous spaces and differential operators in a variational formula-
tion. In fact, the gradient discretization method is a highly flexible framework consisting
of a large family numerical methods, such as conforming finite element method, non-
conforming finite element method, and two-point flux finite volume method. In recent
years, many numerical methods are analyzed under the framework of GDM, including
the vertex approximate gradient (VAG) methods [20, 21], multi-point flux approxima-
tion method [1], hybrid mimetic mixed methods [14, 15], nodal mimetic finite difference
methods [3,14], discrete duality finite volume methods [7,8,16], and the nine-point stencil
finite volume method [22].

In this paper, we propose a conservative gradient discretization method for 1-d
parabolic equation, and analyze the stability and convergence of the scheme under the
framework of GDM. The main advantages of this scheme are

• it has only cell-centered unknowns;

• the stencil only includes neighbor cells;

• it can be applied to general non-uniform meshes;

• it is locally conservative;

• the resulting linear system is symmetric and positive definite;

• the diffusion coefficient can be discontinuous or nonlinear;

• for linear cases, the convergence orders in H1 and L2 norms are derived; for quasi-
linear cases, the convergences of H1 and L2 norms are proved;
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• on uniform meshes, it has smaller truncation error than the classical finite volume
scheme [19], and numerical experiments show that it is more accurate than the clas-
sical finite volume scheme.

The rest of paper is organized as follows. In Section 2, we propose the new conserva-
tive gradient discretization scheme. Its stability and convergence are proved in Section
3. In Section 4, the convergence order for discontinuous coefficients case is proved. In
Section 5, the truncation errors of the new scheme and classical finite volume method
are analyzed. Some numerical experiments are presented in Section 6. Finally, a brief
summary is given in Section 7.

2 The conservative gradient discretization scheme

Consider the following diffusion problem

ut(x,t)−(κ(x,t)ux(x,t))x = f (x,t) in QT =(0,l)×(0,T], (2.1a)
u(0,t)=u(l,t)=0 in [0,T], (2.1b)

u(x,0)=u0(x) in Q=[0,l], (2.1c)

where f (x,t) ∈ L2(QT), u0(x)∈ L2(Q) and there exist positive constants σ0 and σ1 such
that the diffusion coefficient satisfies σ0≤κ(x,t)≤σ1.

The weak formulation of this problem is: Find u(x,t)∈L2((0,T);H1
0(Q)) such that

−
∫ T

0

∫ l

0
u(x,t)vt(x,t)dxdt−

∫ l

0
u0(x)v(x,0)dx+

∫ T

0

∫ l

0
κ(x,t)ux(x,t)vx(x,t)dxdt

=
∫ T

0

∫ l

0
f (x,t)v(x,t)dxdt, (2.2)

for all v(x,t)∈L2((0,T);H1
0(Q))

⋂
H1(0,T;L2(Q)) satisfying v(x,T)=0.

2.1 Notations

The domain Q=(0,l) is partitioned into the following non-uniform meshes:

x− 1
2
=0< x0< x1< ···< xJ < l= xJ+ 1

2
,

where xj denotes the vertex for 0≤ j≤ J, xj+ 1
2

denotes the center of cell Ij+ 1
2
=(xj,xj+1)

satisfying xj+ 1
2
= (xj+xj+1)/2 for all 0≤ j≤ J−1, I− 1

2
= (x− 1

2
,x0) and IJ+ 1

2
= (xJ ,xJ+ 1

2
).

x− 1
2

and xJ+ 1
2

are the left and right boundaries of Q, which are viewed as cell-centers of
boundary cells I− 1

2
and IJ+ 1

2
, respectively. We define hj+ 1

2
as the length of cell Ij+ 1

2
and

define hj as the length of dual cell Ij =(xj− 1
2
,xj+ 1

2
).

h= max
−1≤j≤J

hj+ 1
2
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Figure 1: The Meshes.

denotes the mesh size. The figure of partition is shown in Fig. 1. Note that the
meshes produced by this partition that are different from that of classical finite volume
method [19]. The difference is that there are two half-cells on the boundary of Q, which
are I− 1

2
and IJ+ 1

2
, respectively. Throughout this paper, we use C to denote generic con-

stant irrelevant to mesh size h.

2.2 Algorithm

Now we begin to construct the conservative gradient discretization scheme for
Eqs. (2.1a)-(2.1c). We use implicit Euler discretization and integrate the diffusion term
on cell Ij+ 1

2
. Denote

Un
j+ 1

2
=

1
hj+ 1

2

∫ xj+1

xj

u(x,tn)dx.

We have

∫ xj+1

xj

ut(x,tn+1)dx≈hj+ 1
2

Un+1
j+ 1

2
−Un

j+ 1
2

τ
. (2.3)

Denote the flux F(x,t)=−κux, where κ= κ(x,t) is piecewise smooth, with discontinuity
at certain cell-vertex. By using the formula of the integration by parts, we have

−
∫ xj+1

xj

(κux)x|t=tn+1dx=F(xj+1,tn+1)−F(xj,tn+1)≈Fn+1
j+1 −Fn+1

j , (2.4)

where Fn+1
j is the approximation of F(xj,tn+1). From (2.3) and (2.4), the discretization of

Eq. (2.1a) is

Un+1
j+ 1

2
−Un

j+ 1
2

τ
+

1
hj+ 1

2

(Fn+1
j+1 −Fn+1

j )= f n+1
j+ 1

2
,

where
f n+1
j+ 1

2
=

1
hj+ 1

2

∫ xj+1

xj

f (x,tn+1)dx.

Then, we need to define the numerical flux Fn+1
j .
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First, we define the discrete unilateral flux

Fn+1,+
j =−κn+1

j+ 1
2

Un+1
j+ 1

2
−Un+1

j

hj+ 1
2

2

, (2.5a)

Fn+1,−
j =−κn+1

j− 1
2

Un+1
j −Un+1

j− 1
2

hj− 1
2

2

, (2.5b)

where
κn+1

j+ 1
2
=κ(xj+ 1

2
,tn+1).

We require the continuity of flux, i.e.,

Fn+1,+
j =Fn+1,−

j ,

then we obtain

Un+1
j =

κn+1
j− 1

2
h

j− 1
2

κn+1
j− 1

2
h

j− 1
2

+
κn+1

j+ 1
2

h
j+ 1

2

Un+1
j− 1

2
+

κn+1
j+ 1

2
h

j+ 1
2

κn+1
j− 1

2
h

j− 1
2

+
κn+1

j+ 1
2

h
j+ 1

2

Un+1
j+ 1

2
. (2.6)

Define the conservative numerical flux Fn+1
j = Fn+1,+

j = Fn+1,−
j . Substituting (2.6) into

(2.5a) yields the numerical flux

Fn+1
j =−κn+1

j

Un+1
j+ 1

2
−Un+1

j− 1
2

hj
,

where

κn+1
j =

2
κn+1

j− 1
2

h
j− 1

2

κn+1
j+ 1

2
h

j+ 1
2

κn+1
j− 1

2
h

j− 1
2

+
κn+1

j+ 1
2

h
j+ 1

2

hj.

Hence we obtain the conservative gradient discretization scheme of (2.1a)-(2.1c) as fol-
lows:

Algorithm 2.1 (The gradient discretization scheme). For any 0≤ j≤ J−1 and 0≤n≤N−1,

Un+1
j+ 1

2
−Un

j+ 1
2

τ
+

1
hj+ 1

2

(Fn+1
j+1 −Fn+1

j )= f n+1
j+ 1

2
, (2.7a)

Un+1
− 1

2
=Un+1

J+ 1
2
=0, (2.7b)

U0
j+ 1

2
=u0

j+ 1
2
, (2.7c)
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where
f n+1
j+ 1

2
=

1
hj+ 1

2

∫ xj+1

xj

f (x,tn+1)dx, u0
j+ 1

2
=

1
hj+ 1

2

∫ xj+1

xj

u0(x)dx.

Remark 2.1. It should be noticed that the main difference between the conservative gra-
dient discretization scheme (2.7a)-(2.7b) and the finite volume scheme in [19] is that they
use different meshes, which leads to different construction of flux on boundary cells. The
detailed comparison can be found in Section 5.

Remark 2.2. Many numerical schemes can be encompassed in the GDM framework, such
as the conforming finite element method has different discrete reconstruction operator,
the discontinuous Galerkin method has different discrete space and discrete gradient,
and the hybrid mimetic mixed method has different discrete space. However, they are
different from the conservative gradient discretization scheme proposed in (2.7a)-(2.7b).
The further illustration of these methods can be found in [13].

2.3 Discrete variational form

The GDM in [13] consists of three key components: discrete space, discrete reconstruction
operator, and the discrete gradient. We rewrite the conservative gradient discretization
scheme (2.7a)-(2.7b) into variational form. For this, we need to introduce the following
discrete space XD,0, and the discrete reconstruction operators.

• We define XD,0 as the set of cell-centered unknowns Un+1={Un+1
i+ 1

2
}J

i=−1 for 0≤n≤N

satisfying Diriclet boundary condition (2.1b), i.e., Un+1
− 1

2
=Un+1

J+ 1
2
=0.

• For any Un+1∈XD,0, We define ΠDUn+1 a piecewise constant function being equal
to Un+1

j+ 1
2

on each cell Ij+ 1
2
.

• The gradient δhUn+1 is constructed to be a piecewise constant function being equal

to
Un+1

j+ 1
2
−Un+1

j− 1
2

hj
on each dual cell Ij.

• For the discrete unknowns U0,U1,··· ,UN∈XD,0, δtUk+1 are piecewise constant func-
tions defined by (ΠDUk+1−ΠDUk)/τ, for any 0≤ k≤N−1.

Before rewriting the variational form of conservative gradient discretization scheme,
we need to introduce the discrete formula of integration by parts.

Lemma 2.1 (Discrete formula of integration by parts). For discrete unknowns V∈XD,0 and
{Wj|j=0,1,··· , J}, it holds that

J−1

∑
j=0

(Wj+1−Wj)Vj+ 1
2
=−

J

∑
j=0

(Vj+ 1
2
−Vj− 1

2
)Wj. (2.8)
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We take V∈XD,0. Multiplying (2.7a) by Vn+1
j+ 1

2
hj+ 1

2
and summing over j=0,1,··· , J−1,

from Lemma 2.1 we obtain∫ l

0
f (x,tn+1)ΠDVD(x)dx=

J−1

∑
j=0

f n+1
j+ 1

2
Vj+ 1

2
hj+ 1

2

=
J−1

∑
j=0

Un+1
j+ 1

2
−Un

j+ 1
2

τ
Vj+ 1

2
hj+ 1

2
−

J−1

∑
j=0

(
κn+1

j+1

Un+1
j+ 3

2
−Un+1

j+ 1
2

hj+1
−κn+1

j

Un+1
j+ 1

2
−Un+1

j− 1
2

hj

)
Vj+ 1

2

=
J−1

∑
j=0

Un+1
j+ 1

2
−Un

j+ 1
2

τ
Vj+ 1

2
hj+ 1

2
+

J

∑
j=0

κn+1
j

Un+1
j+ 1

2
−Un+1

j− 1
2

hj
(Vj+ 1

2
−Vj− 1

2
)

=
∫ l

0
δtUn+1(x)V(x)dx+

∫ l

0
δhUn+1(x)δhV(x)dx.

Finally, the conservative gradient discretization scheme can be written into the following
discrete variational problem:

Find a family of {Un+1}N−1
n=0 ∈XD,0 such that, for all V∈XD,0, there are U0=

{
u0

j+ 1
2
}J

j=−1

and ∫ l

0
δtUn+1(x)ΠDV(x)dx+

∫ l

0
δhUn+1(x)δhV(x)dx

=
∫ l

0
f (x,tn+1)ΠDVD(x)dx. (2.9)

Remark 2.3. It is easy to see that the discrete variational problem is equivalent to the
conservative gradient discretization scheme (2.7a)-(2.7b).

3 Stability and convergence

In this section, we follow the argument framework of gradient discretization method
in [13] to prove the stability and convergence of the gradient discretization scheme (2.7a)-
(2.7b). The main idea of the gradient discretization method is to use discrete spaces and
discrete differential operators to mimic the original continuous spaces and differential
operators in the variational formulation.

3.1 Stability analysis

Now we define the discrete L2 norms,

‖U‖2
d =

J−1

∑
i=0

U2
i+ 1

2
hi+ 1

2
,
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‖δhU‖2
d =

J

∑
i=0

(Ui+ 1
2
−Ui− 1

2
)2

hi
.

For any 1≤ k≤N−1, we also denote ‖ f k+1‖d the discrete L2 norm for { f k+1
i+ 1

2
}J−1

i=0 , i.e.,

‖ f k+1‖2
d =

J−1

∑
i=0

(
f k+1
i+ 1

2

)2
hi+ 1

2
.

It should be noticed that ‖ f k+1‖d is the discrete L2 norm for { f k+1
i+ 1

2
}J−1

i=0 instead of the L2

norm of f k+1.
Under these discrete L2 norms, we have the following discrete Poincare’s inequality,

which plays an essential role in the convergence analysis. The proof is left to interested
readers.

Lemma 3.1 (Discrete Poincare’s inequality). For any U∈XD,0, there holds

‖U‖d≤ l‖δhU‖d, (3.1)

where l is the length of domain Q.

In the following theorem, we prove the stability of the conservative gradient dis-
cretization scheme (2.7a)-(2.7b).

Theorem 3.1. The solution of scheme (2.7a)-(2.7b) satisfies

‖Un+1‖2
d≤‖U0‖2

d+τl2
n+1

∑
m=1
‖ f m+1‖2

d.

Proof. Taking V=Un+1 in the discrete variational problem (2.9), according to Lemma 3.1,
we get ∫ l

0
δtUn+1(x)ΠDUn+1(x)dx+

∫ l

0
δhUn+1(x)2dx

=
1

2τ
(‖Un+1‖2

d−‖Un‖2
d+‖Un+1−Un‖2

d)+‖δhUn+1‖2
d

≥ 1
2τ

(‖Un+1‖2
d−‖Un‖2

d+‖Un+1−Un‖2
d)+

1
l2 ‖U

n+1‖2
d.

According to Cauchy inequality ab≤ εa2+ 1
4ε b2, we have

J−1

∑
j=0

f n+1
j+ 1

2
Un+1

j+ 1
2

hj+ 1
2
≤ ε‖Un+1‖2

d+
1
4ε
‖ f n+1‖2

d.
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Taking ε= 1
2l2 , there is

‖Un+1‖2
d−‖Un‖2

d≤τl2‖ f n+1‖2
d.

By conduction, we can come to the conclusion

‖Un+1‖2
d≤‖U0‖2

d+τl2
n+1

∑
m=1
‖ f m+1‖2

d.

Thus, we complete the proof.

3.2 Convergence analysis

According to the framework in [13], in order to get the convergence of scheme (2.9) we
need to verify the GD-consistency and the limit-conformity.

Suppose the exact solution u ∈ L∞(0,T;Ws), where Ws = H2(Q)
⋂

H1
0(Q). First we

introduce the definition of GD-consistency.

Definition 3.1 (GD-consistency). Define SD: Ws→ [0,∞) by

SD(ϕ)= min
V∈XD,0

(
‖ΠDV−ϕ‖L2(Q)+‖δhV−ϕ′‖L2(Q)

)
, ∀ϕ∈Ws. (3.2)

A discretization is GD-consistent if

lim
h→0
SD(ϕ)=0, ∀ϕ∈Ws. (3.3)

Lemma 3.2 (GD-consisitency). The discretization (2.9) is GD-consistent. Moreover, it holds
that

SD(ϕ)≤Ch‖ϕ‖H2(Q), ∀ϕ∈Ws.

Proof. In the definition of GD-consistent (3.2), we select

V=
(

ϕ(x− 1
2
),ϕ(x 1

2
),··· ,ϕ(xJ+ 1

2
)
)

,

and estimate the two terms ‖ΠDV−ϕ‖L2(Q) and ‖δhV−ϕ′‖L2(Q), separately.
For the first term, on each interval (xj,xj+1), j=1,··· , J−1, we have

∫ xj+1

xj

(ΠDV(x)−ϕ(x))2dx=
∫ xj+1

xj

(∫ x

x
j+ 1

2

ϕ′(y)dy

)2

dx.
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From the Cauchy-Schwarz inequality, we have∫ xj+1

xj

(ΠDV(x)−ϕ(x))2dx

≤
∫ xj+1

xj

∫ x

x
j+ 1

2

(
ϕ′(y)

)2dy
(

x−xj+ 1
2

)
dx

≤
∫ xj+1

xj

∫ xj+1

xj

(
ϕ′(y)

)2dyhj+ 1
2
dx

=h2
j+ 1

2

∫ xj+1

xj

(
ϕ′(x)

)2dx. (3.4)

Similarly, on (x− 1
2
,x0) and (xJ ,xJ+ 1

2
) we have∫ x0

x− 1
2

(ΠDV(x)−ϕ(x))2dx≤h2
− 1

2

∫ x0

x− 1
2

(
ϕ′(x)

)2dx, (3.5a)

∫ x
J+ 1

2

xJ

(ΠDV(x)−ϕ(x))2dx≤h2
J+ 1

2

∫ x
J+ 1

2

xJ

(
ϕ′(x)

)2dx. (3.5b)

Summing (3.4) over j=1,··· , J−1, (3.5a) and (3.5b) yields

‖ΠDV−ϕ‖2
L2(Q)≤h2|ϕ|2H1(Q). (3.6)

For the second term, on each interval (xj− 1
2
,xj+ 1

2
), j= 0,··· , J, from the definition of δhV,

we have ∫ x
j+ 1

2

x
j− 1

2

(
δhV(x)−ϕ′(x)

)2dx

=
∫ x

j+ 1
2

x
j− 1

2

(
1
hj

(
ϕ(xj+ 1

2
)−ϕ(xj− 1

2
)
)
−ϕ′(x)

)2

dx

=
∫ x

j+ 1
2

x
j− 1

2

(
1
hj

∫ x
j+ 1

2

x
j− 1

2

(
ϕ′(y)−ϕ′(x)

)
dy

)2

dx

=
1
h2

j

∫ x
j+ 1

2

x
j− 1

2

(∫ x
j+ 1

2

x
j− 1

2

∫ x

y
ϕ′′(z)dzdy

)2

dx.

By using the Cauchy-Schwarz inequality twice, we obtain∫ x
j+ 1

2

x
j− 1

2

(
δhV(x)−ϕ′(x)

)2dx

≤ 1
hj

∫ x
j+ 1

2

x
j− 1

2

∫ x
j+ 1

2

x
j− 1

2

(∫ x

y
ϕ′′(z)dz

)2

dydx
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≤ 1
hj

∫ x
j+ 1

2

x
j− 1

2

∫ x
j+ 1

2

x
j− 1

2

∫ x

y

(
ϕ′′(z)

)2dz(t−x)dydx

≤
∫ x

j+ 1
2

x
j− 1

2

∫ x
j+ 1

2

x
j− 1

2

∫ x
j+ 1

2

x
j− 1

2

(
ϕ′′(z)

)2dzdydx

=h2
j

∫ x
j+ 1

2

x
j− 1

2

(
ϕ′′(x)

)2dx. (3.7)

Summing (3.7) over j=0,··· , J yields

‖δhV−ϕ′‖2
L2(Q)≤h2|ϕ|2H2(Q). (3.8)

Combing (3.6) and (3.8), we complete the proof.

Suppose the derivative of exact solution u′ ∈ L∞(0,T;Ww), where Ww = H1(Q). We
introduce the limit-conforming property.

Definition 3.2 (Limit-conforming). Define WD :Ww→ [0,∞) by

WD(ϕ)= sup
V∈XD,0\{0}

∣∣∣∣∫Q

(
δhV(x)ϕ(x)+ΠDV(x)ϕ′(x)

)
dx
∣∣∣∣

‖δhV‖d
, ∀ϕ∈Ww. (3.9)

A discretization is limit-conforming if

lim
h→0

WD(ϕ)=0, ∀ϕ∈Ww. (3.10)

Lemma 3.3 (Limit-conforming). The discretization (2.9) is limit-conforming. Moreover, it
holds that

WD(ϕ)≤h‖ϕ‖H1(Q), ∀ϕ∈Ww.

Proof. From the definition of δhV we have∫
Q

δhV(x)ϕ(x)dx

=
J

∑
j=0

∫ x
j+ 1

2

x
j− 1

2

1
hj

(
Vj+ 1

2
−Vj− 1

2

)
ϕ(x)dx

=
J

∑
j=0

(
Vj+ 1

2
−Vj− 1

2

)
ϕ̄j, (3.11)

where

ϕ̄j =
1
hj

∫ x
j+ 1

2

x
j− 1

2

ϕ(x)dx.
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From the definition of ΠD and the boundary condition V− 1
2
=VJ+ 1

2
=0, we have∫

Q
ΠDV(x)ϕ′(x)dx

=
J−1

∑
j=0

∫ xj+1

xj

Vj+ 1
2
ϕ′(x)dx

=
J−1

∑
j=0

Vj+ 1
2

(
ϕ(xj+1)−ϕ(xj)

)
.

From the discrete integration by parts in Lemma 2.1, we have∫
Q

ΠDV(x)ϕ′(x)dx=−
J

∑
j=0

(
Vj+ 1

2
−Vj− 1

2

)
ϕ(xj). (3.12)

Summing (3.11) and (3.12) and using the Cauchy-Schwarz inequality, we obtain∫
Q

(
δhV(x)ϕ(x)+ΠDV(x)ϕ′(x)

)
dx

=
J

∑
j=0

(
Vj+ 1

2
−Vj− 1

2

)(
ϕ̄j−ϕ(xj)

)

≤

 J

∑
j=0

(
Vj+ 1

2
−Vj− 1

2

)2

hj


1
2(

J

∑
j=0

hj
(

ϕ̄j−ϕ(xj)
)2

) 1
2

=‖δhV‖d

(
J

∑
j=0

hj
(

ϕ̄j−ϕ(xj)
)2

) 1
2

,

which implies

WD(ϕ)≤
(

J

∑
j=0

hj
(

ϕ̄j−ϕ(xj)
)2

) 1
2

.

From the Newton-Leibniz formula, we have
J

∑
j=0

hj
(

ϕ̄j−ϕ(xj)
)2

=
J

∑
j=0

1
hj

(∫ x
j+ 1

2

x
j− 1

2

ϕ(x)−ϕ(xj)dx

)2

=
J

∑
j=0

1
hj

(∫ x
j+ 1

2

x
j− 1

2

∫ x

xj

ϕ′(y)dydx

)2

.
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Then by using the Cauchy-Schwarz inequality, we obtain

J

∑
j=0

hj
(

ϕ̄j−ϕ(xj)
)2

≤
J

∑
j=0

∫ x
j+ 1

2

x
j− 1

2

(∫ x

xj

ϕ′(y)dy
)2

dx

≤
J

∑
j=0

∫ x
j+ 1

2

x
j− 1

2

∫ x

xj

(
ϕ′(y)

)2dy
(
x−xj

)
dx

≤
J

∑
j=0

∫ x
j+ 1

2

x
j− 1

2

∫ x
j+ 1

2

x
j− 1

2

(
ϕ′(y)

)2dyhjdx

=
J

∑
j=0

h2
j

∫ x
j+ 1

2

x
j− 1

2

(
ϕ′(x)

)2dx

≤h2|ϕ|2H1(Q),

which completes the proof.

Definition 3.3. The space size hD is defined by

hD(Ws;Ww)=max(sD(Ws),wD(Ww)),

where

sD(Ws)=sup
{
SD(ϕ)

‖ϕ‖Ws

: ϕ∈Ws\{0}
}

,

wD(Ww)=sup
{
WD(ϕ)

‖ϕ‖Ww

: ϕ∈Ww\{0}
}

.

From Lemma 3.2 and Lemma 3.3, we obtain that for the discretization (2.9), the space
size is

hD(Ws;Ww)≤Ch. (3.13)

Denote the error of initial condition

eini =‖u0−ΠDU0‖L2(Q).

Similar to the previous proof, we have

eini≤|u0|H1(Q)h, ∀u0∈H1
0(Q). (3.14)

With the previous preparations, we obtain the following the error estimate theorems
for the linear problem. The proof of Theorem 3.2 can be found in Theorem 5.3 in [13].
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Theorem 3.2. Suppose κ be a function bounded by σ0≤ κ≤ σ1, f ∈ L2(QT), and u0 ∈ L2(Q).
Assume the exact solution u is Lipschiz continuous [0,T]→W2,∞(Q) and {Un}N

n=1 are the
solutions of (2.9). Denote τ the time step size, hD the space size, and eini the initial error, then
there exists a constant C such that

max
n=1,···,N

‖u(·,tn)−ΠDUn‖L2(Q)≤C(τ+hD+eini),

‖u′−δhU‖L2(QT)≤C(τ+hD+eini).

From (3.13) and (3.14), we have the following error estimate.

Theorem 3.3. Under the condition of Theorem 3.2 and u0 ∈H1
0(Q), there exists a constant C

such that

max
n=1,···,N

‖u(·,tn)−ΠDUn‖L2(Q)≤C(τ+h),

‖u′−δhU‖L2(QT)≤C(τ+h).

Finally, we give the convergence result for the quasilinear problem. To prove the
convergence we introduce the definitions of time consistent and compactness.

Definition 3.4 (Space-time-consistent). A discretization is space-time-consistent if

lim
h→0
SD(ϕ)=0, ∀ϕ∈Ws, (3.15a)

lim
h→0
‖v−ΠD IDv‖L2(Q)=0, ∀v∈L2(Q). (3.15b)

τ→0 as h→0. (3.15c)

Eqs. (3.15) is proved in Remark 4.4 of [13], hence the discretization (2.9) is space-time-
consistent.

To deal with the quasilinearity, we require the compactness property.

Definition 3.5 (Compactness). A discretization is compact if, for any sequence {Uh} ∈
XD,0 such that {‖δhUh‖L2(Q)} is bounded, the sequence {ΠDUh} is relatively compact in
L2(Q).

According to discrete Poincare’s inequality, the sequence {‖ΠDUh‖L2(Q)} is bounded
when sequence {‖δhUh‖L2(Q)} is bounded. The bounded set is relatively compact in finite
dimensional space XD,0. Hence the discretization (2.9) is compact.

Finally, we state the convergence result for the quasilinear problem. The proof of this
theorem can be found in Theorem 5.4 in [13].

Theorem 3.4. Suppose κ be a function bounded by σ0≤ κ≤ σ1, f ∈ L2(QT), and u0 ∈ L2(Q).
There hold

sup
n∈[0,N]

‖ΠDUn−u(·,tn)‖L2(Q)→0,

δhUn→u′(·,tn) in L2(QT),

where u is the exact solution of problem (2.1a)-(2.1c).
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Remark 3.1. Since the convergence analysis follows the framework of GDM method
in [13], the conditions and conclusions of Theorem 3.3 and Theorem 3.4 are same as The-
orem 5.3 and Theorem 5.4 in [13], respectively.

4 Discontinuous coefficients case

Then we consider the discontinuous coefficients. First we introduce the Gronwall’s in-
equality.

Lemma 4.1 (Discrete Gronwall’s inequality). Suppose f n≥0, (n=0,1,··· ,N) satisfy

f n+1− f n≤Bτ( f n+1+ f n)+Cnτ, n=0,1,··· ,N−1,

where B is a non-negative constant, Cn≥0, Nτ=T, then

f n+1≤ e3BT

(
f 0+

n

∑
k=0

Ckτ

)
, n=0,1,··· ,N−1,

where τ satisfies Bτ< 1
2 .

Theorem 4.1. Suppose κ be piecewise smooth with discontinuity at certain cell-vertex xj0 , (1≤
j0 ≤ J−1), u is the exact solution of (2.1a)-(2.1b), and Un+1 is the solution of (2.7a)-(2.7b).
Denote

en+1
j+ 1

2
=u(xj+ 1

2
,tn+1)−Un+1

j+ 1
2

, ek+1
h =

{
ek+1

j+ 1
2

}J

j=−1
,

then we have the following estimation

‖en+1
h ‖d+

(
n

∑
k=0

τ‖δtek+1
h ‖2

d

) 1
2

≤C(h+τ), n=0,1,··· ,N−1.

Proof. Denote
un+1

j+ 1
2
=u
(

xj+ 1
2
,tn+1

)
.

Substitute the exact solution u into (2.7a), and we denote

Lhun+1
j+ 1

2
=

un+1
j+ 1

2
−un

j+ 1
2

τ
− 1

hj+ 1
2

κn+1
j+1

un+1
j+ 3

2
−un+1

j+ 1
2

hj+1
−κn+1

j

un+1
j+ 1

2
−un+1

j− 1
2

hj


=E1+E2, (4.1)

where

E1=
un+1

j+ 1
2
−un

j+ 1
2

τ
, E2=−

1
hj+ 1

2

κn+1
j+1

un+1
j+ 3

2
−un+1

j+ 1
2

hj+1
−κn+1

j

un+1
j+ 1

2
−un+1

j− 1
2

hj

.

Then we estimate E1 and E2, separately.
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Step 1. First, we consider E1. From Taylor’s expansion, we have

uj+ 1
2
−un

j+ 1
2

τ
=ut(xj+ 1

2
,tn+1)+τrn+1

j , (4.2)

where |rn+1
j |≤C.

Step 2. Next, we consider E2. From the Taylor’s expansion, we have

un+1
j+ 1

2
=un+1

j +u+
x

hj+ 1
2

2
+O(h2), (4.3a)

un+1
j− 1

2
=un+1

j −u−x
hj− 1

2

2
+O(h2), (4.3b)

where
u+

x =ux

(
xj+0,tn+1

)
, u−x =ux

(
xj−0,tn+1

)
.

Recall the definition of κn+1
j that

κn+1
j =

2hj
h

j− 1
2

κn+1
j− 1

2

+
h

j+ 1
2

κn+1
j+ 1

2

. (4.4)

Then from (4.3a), (4.3b) and (4.4), we have

κn+1
j

un+1
j+ 1

2
−un+1

j− 1
2

hj
=

u+
x hj+ 1

2
+u−x hj− 1

2
h

j− 1
2

κn+1
j− 1

2

+
h

j+ 1
2

κn+1
j+ 1

2

+O(h).

Denote F n+1
j = F(xj,tn+1). It follows from the continuity of flux that F n+1

j =

−κ+u+
x =−κ−u−x , where

κ+=κ(xj+0,tn+1), κ−=κ(xj−0,tn+1).

Then we have

κn+1
j

un+1
j+ 1

2
−un+1

j− 1
2

hj
=−F n+1

j

h
j+ 1

2
κ+ +

h
j− 1

2
κ−

h
j− 1

2
κn+1

j− 1
2

+
h

j+ 1
2

κn+1
j+ 1

2

+O(h).

Since κ is piecewise smooth, thus we have

κ+=κj− 1
2
+O(h), κ−=κj− 1

2
+O(h),
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which implies
h

j+ 1
2

κ+ +
h

j− 1
2

κ−

h
j− 1

2
κn+1

j− 1
2

+
h

j+ 1
2

κn+1
j+ 1

2

=1+O(h).

Then we have

κn+1
j

un+1
j+ 1

2
−un+1

j− 1
2

hj
=−F n+1

j +Rn+1
j ,

where |Rn+1
j |≤Ch.

From the Taylor expansion of Fx, we have

1
hj+ 1

2

(
F n+1

j+1 −F
n+1
j

)
=Fx

(
xj+ 1

2
,tn+1

)
+O(h2).

Then we have

E2=Fx(xj+ 1
2
,tn+1)− 1

hj+ 1
2

(
Rn+1

j+1 −Rn+1
j

)
+O(h2). (4.5)

Step 3. Combining (4.1), (4.2), and (4.5), we have

Lhun+1
j+ 1

2
=ut−Fx+τrn+1

j+ 1
2
− 1

hj+ 1
2

(
Rn+1

j+1 −Rn+1
j

)
+O(h2)

= f n+1
j+ 1

2
+τrn+1

j+ 1
2
− 1

hj+ 1
2

(
Rn+1

j+1 −Rn+1
j

)
+O(h2). (4.6)

Step 4. Denote en+1
j+ 1

2
=un+1

j+ 1
2
−Un+1

j+ 1
2

. Since LhUn+1
j+ 1

2
= f n+1

j+ 1
2

, then we have

Lhen+1
j+ 1

2
=τrn+1

j+ 1
2
− 1

hj+ 1
2

(
Rn+1

j+1 −Rn+1
j

)
+O(h2).

Thus, en+1
j+ 1

2
satisfies the following equations

en+1
j+ 1

2
−en

j+ 1
2

τ
− 1

hj+ 1
2

κn+1
j+1

en+1
j+ 3

2
−en+1

j+ 1
2

hj+1
−κn+1

j

en+1
j+ 1

2
−en+1

j− 1
2

hj


=τrn+1

j+ 1
2
− 1

hj+ 1
2

(
Rn+1

j+1 −Rn+1
j

)
+O(h2), 0≤ j≤ J−1, 0≤n≤N−1, (4.7a)

en+1
− 1

2
= en+1

J+ 1
2
=0, 0≤n≤N−1, (4.7b)

e0
j+ 1

2
=0, −1≤ j≤ J. (4.7c)
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Multiplying (4.7) by en+1
j+ 1

2
hj+ 1

2
, summing over j=0,1,··· , J−1, and using the discrete inte-

gration by parts, we have

1
2τ

(
‖en+1

h ‖2
d−‖en

h‖
2
d+‖e

n+1
h −en

h‖2
d

)
+

J−1

∑
j=0

κn+1
j

∣∣∣∣∣∣
en+1

j+ 1
2
−en+1

j− 1
2

hj

∣∣∣∣∣∣
2

hj

=
J

∑
j=0

Rn+1
j

en+1
j+ 1

2
−en+1

j− 1
2

hj
hj+τ

J−1

∑
j=0

rn+1
j+ 1

2
en+1

j+ 1
2

hj+ 1
2
+

J−1

∑
j=0
O(h2)en+1

j+ 1
2

hj+ 1
2
.

Since |Rn+1
j |≤Ch, |rn+1

j+ 1
2
|≤C, and κ≥σ0, using the Cauchy inequality ab≤ εa2+ 1

4ε b2, we

have

1
2τ

(
‖en+1

h ‖2
d−‖en

h‖2
d+‖en+1

h −en
h‖2

d

)
+

J−1

∑
j=0

κn+1
j

∣∣∣∣∣∣
en+1

j+ 1
2
−en+1

j− 1
2

hj

∣∣∣∣∣∣
2

hj

≤C

 J

∑
j=0

κn+1
j

∣∣∣∣∣∣
en+1

j+ 1
2
−en+1

j− 1
2

hj

∣∣∣∣∣∣
2

hj


1
2

h+Cτ‖en+1
h ‖d+O(h2)‖en+1

h ‖d

≤Ch2+
1
2

J

∑
j=0

κn+1
j

∣∣∣∣∣∣
en+1

j+ 1
2
−en+1

j− 1
2

hj

∣∣∣∣∣∣
2

hj+Cτ2+O(h4)+
1
2
‖en+1

h ‖2
d.

It follows that

1
2τ

(
‖en+1

h ‖2
d−‖en

h‖2
d

)
+

1
2

J

∑
j=0

κn+1
j

∣∣∣∣∣∣
en+1

j+ 1
2
−en+1

j− 1
2

hj

∣∣∣∣∣∣
2

hj≤Ch2+Cτ2+
1
2
‖en+1

h ‖2
d. (4.8)

Since κ≥σ0, multiplying (4.8) by 2τ leads to

‖en+1
h ‖2

d−‖en
h‖2

d≤2τC(h2+τ2)+τ‖en+1
h ‖2

d. (4.9)

By using the Discrete Gronwall’s inequality to (4.9) yields,

‖en+1
h ‖2

d≤e3T

(
‖e0

h‖2
d+

n

∑
k=0

2τC(h2+τ2)

)
≤C(τ2+h2). (4.10)

Derivativing (4.9) about t and summing over k=0,1,··· ,n+1, and we have

‖en+1
h ‖2

d+
n

∑
k=0

σ0τ‖δtek+1
h ‖2

d≤C(h2+τ2)+
n

∑
k=0
‖ek+1

h ‖2
dτ. (4.11)
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From (4.10), for any k we have

‖ek+1
h ‖2

d≤C(τ2+h2).

Thus we have

‖en+1
h ‖2

d+
n

∑
k=0

σ0τ‖δtek+1
h ‖2

d≤C(h2+τ2),

which implies

‖en+1
h ‖d+

(
n

∑
k=0

τ‖δtek+1
h ‖2

d

) 1
2

≤C(h+τ).

Thus the proof is completed.

Remark 4.1. The proof of Theorem 4.1 is to analyze the truncation error, and to use the
energy estimate to get convergence of errors. The proof of Theorem 5.3 in [13] is similar.

5 Comparison to the classical finite volume method

In this section, we consider the truncation errors of the new conservative gradient dis-
cretization scheme and the classical finite volume method on uniform meshes. The trun-
cation errors in time direction of two schemes are O(τ). In space direction, the new
scheme’s truncation error is O(h2), but the classical scheme’s truncation error is O(1),
which implies the new scheme has smaller truncation error.

As we mentioned in Remark 2.1, the main difference between the conservative gra-
dient discretization scheme and classical finite volume scheme is that they use different
meshes. The classical finite volume scheme’s uniform meshes are

0= x̃0< x̃1< ···< x̃J−1< x̃J = l, (5.1)

where x̃j denotes the vertex for 0≤ j≤ J, x̃0 and x̃J are the left and right boundaries of
Q, which causes different meshes. The meshes are shown in Fig. 2. x̃j+ 1

2
represents the

center of the cell [x̃j, x̃j+1]. h̃ denotes the mesh size of classical finite volume scheme. The
classical finite volume scheme on uniform meshes [19] is as follows:

Figure 2: The meshes for classical finite volume method.
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Algorithm 5.1 (The classical finite volume scheme). For any 0≤ j≤ J−1, 0≤n≤N−1,

Ũn+1
j+ 1

2
−Ũn

j+ 1
2

τ
+

1
h̃
(F̃n+1

j+1 − F̃n+1
j )= f n+1

j+ 1
2

, (5.2a)

Ũn+1
0 = Ũn+1

J =0, (5.2b)

Ũ0
j+ 1

2
=u0

j+ 1
2
. (5.2c)

The numerical flux is defined as follows

F̃n+1
0 =−κn+1

1
2

2
(

Ũn+1
1
2
−Ũn+1

0

)
h̃

, (5.3a)

F̃n+1
j =−κn+1

j

Ũn+1
j+ 1

2
−Ũn+1

j− 1
2

h̃
, 1≤ j≤ J−1, (5.3b)

F̃n+1
J =−κn+1

J− 1
2

2
(

Ũn+1
J −Ũn+1

J− 1
2

)
h̃

, (5.3c)

where

κn+1
j =

2κn+1
j− 1

2
κn+1

j+ 1
2

κn+1
j− 1

2
+κn+1

j+ 1
2

, f n+1
j+ 1

2
=

1
h̃

∫ x̃j+1

x̃j

f (x,tn+1)dx, u0
j+ 1

2
=

1
h̃

∫ x̃j+1

x̃j

u0(x)dx.

The different meshes cause the different discretization near the boundary cells. As we
have described in Section 2, on the left boundary cell (x0,x1), the conservative gradient
discretization scheme (2.7a) is

Un+1
1
2
−Un

1
2

τ
− 1

h

κn+1
1

Un+1
3
2
−Un+1

1
2

h
−κn+1

0

Un+1
1
2
−Un+1

− 1
2

h

= f n+1
1
2

. (5.4)

Next, we analyze the local truncation error of (5.4). Denote uj+ 1
2

the value of exact

solution at cell center u(xj+ 1
2
,tn+1) and uj the value of exact solution at vertex u(xj,tn+1).

Here we omit the subscript n+1. The Taylor expansion of u 1
2

and u− 1
2

at x0 are

u 1
2
=u0+

h
2

u′0+
1
2

(
h
2

)2

u′′0 +
1
6

(
h
2

)3

u′′′0 +O(h4),

u− 1
2
=u0−

h
2

u′0+
1
2

(
h
2

)2

u′′0−
1
6

(
h
2

)3

u′′′0 +O(h4).

Thus,

κ0

u 1
2
−u− 1

2

h
=κ0

(
u′0+

1
6

(
h
2

)2

u′′′0

)
+O(h4). (5.5)
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Similarly, the Taylor expansions of u 1
2

and u 3
2

at x1 lead to

κ1

u 3
2
−u 1

2

h
=κ1

(
u′1+

1
6

(
h
2

)2

u′′′1

)
+O(h4). (5.6)

Notice that

κ1u′1−κ0u′0=h(κ 1
2
u′1

2
)′+O(h3),

κ1u′′′1 −κ0u′′′0 =h(κ 1
2
u′′′1

2
)′+O(h3),

from (5.5)-(5.6) we have

−1
h

(
κ1

u 3
2
−u 1

2

h
−κ0

u 1
2
−u− 1

2

h

)
=−(κ 1

2
u′1

2
)′+O(h2),

which implies the local spatial truncation error of (5.4) is O(h2).
For any 1≤ j≤ J−1, in the same way we can prove that the local spatial truncation

error is O(h2) at each xj+ 1
2
. Hence, the spatial truncation error is O(h2).

For the classical finite volume method (5.2a)-(5.2c), on the left boundary cell (x̃0, x̃1)
the numerical scheme is

Ũn+1
1
2
−Ũn

1
2

τ
− 1

h̃

κ̃n+1
1

Ũn+1
3
2
−Ũn+1

1
2

h̃
−κ̃n+1

0

Ũn+1
1
2
−Ũn+1

0

1
2 h̃

= f n+1
1
2

. (5.7)

The Taylor expansion for the term κ̃1
ũ 3

2
−ũ 1

2
h̃

is the same

κ̃1

ũ 3
2
−ũ 1

2

h̃
= κ̃1

(
ũ′1+

1
6

(
h̃
2

)2

ũ′′′1

)
+O(h̃4). (5.8)

For the term κ̃0
ũ 1

2
−ũ0

1
2 h̃

, we have

κ̃0

ũ 1
2
−ũ0

1
2 h̃

= κ̃0

(
ũ′0+

1
2

(
h̃
2

)
ũ′′0 +

1
6

(
h̃
2

)2

ũ′′′0

)
+O(h̃3). (5.9)

Notice that

κ̃1ũ′1−κ̃0ũ′0= h̃(κ̃ 1
2
ũ′1

2
)′+O(h̃3),

κ̃1ũ′′′1 −κ̃0ũ′′′0 = h̃(κ̃ 1
2
ũ′′′1

2
)′+O(h̃3),
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from (5.8)-(5.9) we have

−1
h̃

(
κ̃1

ũ 3
2
−ũ 1

2

h̃
−κ̃0

ũ 1
2
−ũ0

1
2 h̃

)
=−(κ̃ 1

2
ũ′1

2
)′− 1

4
κ̃0ũ′′0 +O(h̃2). (5.10)

Since the term − 1
4 κ̃0ũ′′0 is O(1), the local spatial truncation error of (5.7) is O(1). Hence,

the spatial truncation error is O(1).

Remark 5.1. It should be noticed that whatever the boundary conditions Ũn+1
0 and Ũn+1

J

are, (5.10) always holds. For any Dirichlet boundary condition, the term − 1
4 κ̃0ũ′′0 does

not vanish in general, and then the spatial truncation error of the classical finite volume
scheme is O(1).

6 Numerical experiments

In this section, we compare the errors between the new conservative gradient discretiza-
tion scheme (2.7a)-(2.7b) and the classical finite volume scheme. The results of experi-
ments show that the new scheme is better than the classical scheme in terms of flux error,
L2 error and L∞ error.

Define the L2 error of solution by

eu
2 =

(
J−1

∑
i=0

(
u(xi+ 1

2
,T)−UN

i+ 1
2

)2hi+ 1
2

) 1
2

,

and the L∞ error of solution by

eu
∞ = max

−1≤i≤J

{∣∣∣u(xi+ 1
2
,T)−UN

i+ 1
2

∣∣∣},

and the error of flux by

eF
2 =

(
J

∑
i=0

(F(xi,T)−FN
i )2hi

) 1
2

.

Define the conservative error by

edcon =

∣∣∣∣∣J−1

∑
j=0

UN
j+ 1

2
hj+ 1

2
−

J−1

∑
j=0

U0
j+ 1

2
hj+ 1

2
−

N

∑
n=1

(
Fn

J−1−Fn
0
)

τ−
N

∑
n=1

J−1

∑
j=0

f n
j+ 1

2
hj+ 1

2
τ

∣∣∣∣∣,
and the total energy error by

eenergy =

∣∣∣∣∣
∫ l

0
u(x,T)dx−

J

∑
j=−1

UN
j+ 1

2
hj+ 1

2

∣∣∣∣∣.
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We verify the conservation of the scheme (2.7a)-(2.7b) by testing on the exact solution
u= e−π2t cos(πx) on (0,1) with κ = 1. In this case the source term f = 0 and the flux at
x=0 and x=1 are zero. The result shows that the conservative error edcon is of scale 10−14,
which is caused by rounding error.

In the numerical experiments, we test the new conservative gradient discretization
scheme (2.7a)-(2.7b) and classical finite volume scheme on random meshes. We take the
domain Q=(0,1) in the following numerical experiments. We first generate the uniform
meshes with mesh size h, then disturb the vertex by random numbers lying in (− σh

2 , σh
2 ),

where σ=0.5. Especially, the final random number is the same as the first random num-
ber.

6.1 Example 1

In the first example, we test the numerical schemes for inhomogeneous coefficient κ.
We take u(x,t) = e−t cos(πx), κ = sin(πx)+2, and T = 1. In order to show the spatial
convergence order, the time step needs to be sufficiently small, hence we take τ = 5E-6.
We test the new scheme and classical scheme on meshes of sizes 1/10, 1/20, ···, 1/320,
separately. The results are shown in Tables 1-2.

From Tables 1-2 we see that all the flux error, L2 error and L∞ error are of second order
convergence for both two schemes. Compared to the classical finite volume scheme, we
can see that for the new scheme, the flux error is reduced by 40%, the L2 error is reduced
by about 15%, and the L∞ error is reduced by about 13%.

We take the sufficiently fine meshes to obtain the temporal convergence order of the
new scheme, where h=1E-5. Then we take time steps 1/10, 1/20, ···, 1/320, separately.

Table 1: The errors and spatial convergence orders of conservative gradient discretization scheme.

h eF
2 order eu

2 order eu
∞ order eenergy order

1/10 1.44E-02 3.50E-03 5.84E-03 2.65E-03
1/20 3.19E-03 2.02 8.40E-04 1.91 1.50E-03 1.82 6.81E-04 1.82
1/40 8.15E-04 1.90 2.12E-04 1.92 4.52E-04 1.67 1.70E-04 1.93
1/80 2.03E-04 1.97 5.26E-05 1.97 1.06E-04 2.06 4.40E-05 1.91
1/160 5.13E-05 1.96 1.38E-05 1.91 2.99E-05 1.81 1.18E-05 1.88
1/320 1.27E-05 2.00 3.31E-06 2.05 7.62E-06 1.96 2.84E-06 2.05

Table 2: The errors and spatial convergence orders of classical finite volume scheme.

h eF
2 order eu

2 order eu
∞ order eenergy order

1/10 2.35E-02 4.03E-03 6.10E-03 4.35E-04
1/20 5.79E-03 1.87 9.91E-04 1.88 1.91E-03 1.55 4.48E-05 3.04
1/40 1.41E-03 1.97 2.55E-04 1.89 5.36E-04 1.77 1.61E-05 1.43
1/80 3.47E-04 1.99 6.28E-05 1.98 1.37E-04 1.93 1.97E-06 2.97
1/160 8.76E-05 1.97 1.56E-05 1.99 3.58E-05 1.92 2.06E-07 3.23
1/320 2.17E-05 2.01 3.83E-06 2.02 8.72E-06 2.03 7.12E-08 1.52
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Table 3: The errors and temporal convergence orders of conservative gradient discretization scheme.

τ eF
2 order eu

2 order eu
∞ order eenergy order

1/10 1.90E-03 1.18E-04 1.64E-04 2.98E-09
1/20 9.33E-04 1.02 5.78E-05 1.02 8.06E-05 1.02 2.98E-09 0.00
1/40 4.62E-04 1.01 2.86E-05 1.01 4.00E-05 1.01 2.97E-09 0.00
1/80 2.30E-04 1.01 1.43E-05 1.01 1.99E-05 1.01 2.97E-09 0.00

1/160 1.15E-04 1.00 7.11E-06 1.00 9.93E-06 1.00 2.97E-09 0.00
1/320 5.74E-05 1.00 3.55E-06 1.00 4.96E-06 1.00 2.97E-09 0.00

The results are shown in Table 3. The numerical results show that the flux error, L2 error
and L∞ error achieve first order convergence in time direction.

6.2 Example 2

In the second example, we test the numerical schemes for discontinuous coefficient. We
take

u=
{

e−t cos(πx), x≤1/2,
2e−t cos(πx), x>1/2,

and κ=

{
2, x≤1/2,
1, x>1/2.

T is set to be 1 and the time step is τ= 5E-6. We test the new scheme and classical scheme
on meshes of sizes 1/10, 1/20, ···, 1/320, separately. The results are shown in Tables 4-5.

Also, the optimal convergence orders are observed. Compared to the classical finite
volume scheme, from Tables 4-5 we see that for the new scheme, the flux error is reduced
by 70%, the L2 error is reduced by about 10%, and the L∞ error is reduced by about 20%.

Table 4: The errors and spatial convergence orders of conservative gradient discretization scheme.

h eF
2 order eu

2 order eu
∞ order eenergy order

1/10 3.70E-03 4.06E-03 7.23E-03 3.74E-03
1/20 9.89E-04 1.90 1.14E-03 1.84 2.31E-03 1.65 1.07E-03 1.81
1/40 2.62E-04 1.92 3.46E-04 1.72 8.07E-04 1.52 3.12E-04 1.78
1/80 6.74E-05 1.96 8.02E-05 2.11 1.92E-04 2.07 7.59E-05 2.04

1/160 1.70E-05 1.99 2.14E-05 1.91 5.65E-05 1.77 2.02E-05 1.91
1/320 4.39E-06 1.95 5.19E-06 2.04 1.37E-05 2.04 4.95E-06 2.03

Table 5: The errors and spatial convergence orders of classical finite volume scheme.

h eF
2 order eu

2 order eu
∞ order eenergy order

1/10 1.44E-02 5.72E-03 1.02E-02 1.84E-03
1/20 3.74E-03 1.80 1.43E-03 1.85 3.18E-03 1.56 4.90E-04 1.77
1/40 9.02E-04 1.98 3.75E-04 1.87 9.68E-04 1.66 1.22E-04 1.94
1/80 2.20E-04 2.00 9.35E-05 1.97 2.46E-04 1.94 3.20E-05 1.89

1/160 5.66E-05 1.94 2.34E-05 1.98 7.07E-05 1.78 8.72E-06 1.86
1/320 1.39E-05 2.02 5.75E-06 2.02 1.68E-05 2.06 2.05E-06 2.08
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6.3 Example 3

In the third example, we test the numerical schemes for quasilinear equations. We still
take u(x,t) = e−t cos(πx), and we select κ = u2+5. T is set to be 1 and the time step is
τ=5E-6. We test the new scheme and classical scheme on meshes of sizes 1/10, 1/20, ···,
1/320, separately. The results are shown in Tables 6-7.

Table 6: The errors and spatial convergence orders of conservative gradient discretization scheme.

h eF
2 order eu

2 order eu
∞ order eenergy order

1/10 1.76E-02 3.24E-03 5.17E-03 2.64E-03
1/20 4.28E-03 1.89 8.04E-04 1.87 1.40E-03 1.75 6.80E-04 1.82
1/40 1.14E-03 1.84 2.05E-04 1.90 4.17E-04 1.68 1.73E-04 1.90
1/80 2.90E-04 1.94 5.07E-05 1.98 9.98E-05 2.03 4.42E-05 1.94
1/160 7.19E-05 2.00 1.32E-05 1.93 2.88E-05 1.78 1.16E-05 1.91
1/320 1.82E-05 1.97 3.19E-06 2.03 6.98E-06 2.03 2.84E-06 2.02

Table 7: The errors and spatial convergence orders of classical finite volume scheme.

h eF
2 order eu

2 order eu
∞ order eenergy order

1/10 3.66E-02 3.66E-03 5.89E-03 3.12E-04
1/20 9.28E-03 1.83 9.24E-04 1.84 1.79E-03 1.59 4.34E-05 2.64
1/40 2.25E-03 1.97 2.38E-04 1.89 5.17E-04 1.73 1.14E-05 1.86
1/80 5.54E-04 1.98 5.88E-05 1.98 1.35E-04 1.91 1.56E-06 2.81
1/160 1.39E-04 1.97 1.46E-05 2.00 3.52E-05 1.92 7.47E-08 4.35
1/320 3.45E-05 2.01 3.57E-06 2.02 8.61E-06 2.02 4.68E-08 0.67

Also, the optimal convergence orders are observed. Compared to the classical finite
volume scheme, from Tables 6-7 we see that for the new scheme, the flux error is reduced
by 50%, the L2 error is reduced by about 12%, and the L∞ error is reduced by about 20%.

6.4 Example 4

In the last example, we test the numerical schemes for nonlinear equations. We still take
u(x,t)=e−t cos(πx), and we select κ=u2

x+10. T is set to be 1 and the time step is τ=5E-6.
We test the new scheme and classical scheme on meshes of sizes 1/10, 1/20, ···, 1/320,
separately. The results are shown in Tables 8-9.

Also, the optimal convergence orders are observed. Compared to the classical finite
volume scheme, from Tables 8-9 we see that for the new scheme, the flux error is reduced
by 50%, the L2 error is reduced by about 12%, and the L∞ error is reduced by about 20%.

7 Conclusions

We present a new conservative gradient discretization scheme for the parabolic equa-
tions. The new scheme is locally conservative on the new cell-centered meshes. Under
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Table 8: The errors and spatial convergence orders of conservative gradient discretization scheme.

h eF
2 order eu

2 order eu
∞ order eenergy order

1/10 4.54E-02 3.22E-03 5.15E-03 2.51E-03
1/20 1.01E-02 2.01 7.94E-04 1.87 1.37E-03 1.77 6.60E-04 1.79
1/40 2.67E-03 1.85 2.02E-04 1.90 4.21E-04 1.64 1.66E-04 1.91
1/80 6.76E-04 1.94 5.02E-05 1.97 1.00E-04 2.03 4.30E-05 1.92

1/160 1.69E-04 1.98 1.31E-05 1.92 2.89E-05 1.78 1.14E-05 1.90
1/320 4.26E-05 1.98 3.16E-06 2.05 7.08E-06 2.02 2.76E-06 2.04

Table 9: The errors and spatial convergence orders of classical finite volume scheme.

h eF
2 order eu

2 order eu
∞ order eenergy order

1/10 9.23E-02 3.67E-03 5.81E-03 4.33E-04
1/20 2.30E-02 1.86 9.12E-04 1.86 1.78E-03 1.59 4.24E-05 3.11
1/40 5.58E-03 1.97 2.36E-04 1.88 5.13E-04 1.73 1.38E-05 1.56
1/80 1.37E-03 1.98 5.82E-05 1.98 1.34E-04 1.91 1.68E-06 2.99

1/160 3.47E-04 1.97 1.45E-05 1.99 3.50E-05 1.92 1.43E-07 3.52
1/320 8.57E-05 2.01 3.54E-06 2.02 8.56E-06 2.02 6.53E-08 1.12

the framework of the gradient discretization method, we prove the new scheme is stable.
We also prove that the scheme has O(τ+h) convergence order for the linear problem
with continuous and discontinuous coefficients, and it is convergent for the quasilinear
problem with continuous coefficient on random meshes.

We compare the truncation errors of the new scheme (2.7a)-(2.7b) and the classical
finite volume scheme (5.2a)-(5.2c) on uniform meshes with continuous coefficient. In this
case, the truncation error of the new scheme is O(τ+h2), which is smaller than O(1)
of the classical scheme. However, when the meshes are non-uniform or the coefficient
is discontinuous, the truncation error of the new scheme (2.7a)-(2.7b) is O(1), and the
theoretical convergence rate is O(τ+h).

In numerical aspects, we compare the errors of two schemes with linear, quasilinear,
and nonlinear diffusion coefficients. We observe that both schemes are of second order.
Although the total energy error of the new scheme is larger than the classical scheme, the
new scheme’s flux error is reduced by 50%, and the L2 error is reduced by 12% and L∞

error is reduced by 20% on average, respectively. The results show that the new scheme
has better numerical performance.
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