
East Asian Journal on Applied Mathematics Vol. 11, No. 1, pp. 43-62
doi: 10.4208/eajam.070420.110720 February 2021

Efficient Hermite Spectral Methods for Space

Tempered Fractional Diffusion Equations

Tengteng Cui1, Sheng Chen2 and Yujian Jiao3,∗

1Fujian Provincial Key Laboratory of Mathematical Modeling and High-

Performance Scientific Computing and School of Mathematical Sciences,

Xiamen University, Xiamen 361005, P.R. China.
2School of Mathematics and Statistics, Jiangsu Normal University,

Xuzhou 221116, P.R. China.
3Department of Mathematics, Shanghai Normal University and Scientific

Computing Key Laboratory of Shanghai Universities, Shanghai 200234,

P.R. China.

Received 7 April 2020; Accepted (in revised version) 11 July 2020.

Abstract. Spectral and spectral collocation methods for tempered fractional diffusion
equations on the real line R are developed. Applying the Fourier transform to the prob-
lem under consideration, we reduce it to systems of algebraic equations. Since Hermite
functions are the eigenfunctions of the Fourier transform, they are used in the construc-
tion of spectral and spectral collocation methods for the algebraic equations obtained.
The stability and convergence of the methods are studied. Numerical examples demon-
strate the efficiency of the algorithms and confirm theoretical findings.
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1. Introduction

Fractional integrals and derivatives are widely used to model anomalous phenomena
arising in physics [1, 10, 12, 25, 32–34], finance [19, 29, 37], biology [3, 21], and hydrol-
ogy [2, 13, 17, 31]. A prominent example of such applications is given by the anomalous
diffusion equation

∂
β
t p(x , t) = ∂ αx p(x , t),

where p(x , t) is the probability density function and 0 < β < 1, 0 < α < 2 [32]. Since
the spatial fractional derivative causes the asymptotic decay |x |−1−α of the solution, the
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moment conditions of the traditional diffusion equation are violated. There are various
approaches to fix the problem — cf. [8, 22, 23, 26, 27, 39, 44], including the use of the
exponential tempering factor e−λ|x |,λ > 0 in the particle jump density function. This leads
to the tempered fractional diffusion equation, which finds numerous applications [4–6,15,
30,35,36].

In order to find the solution of a tempered fractional diffusion equation, numerical
methods based on local operations have been developed recently. In particular, Li and
Deng [24] considered a high order difference scheme for equations on bounded domains,
Sabzikar et al. [36] introduced a finite difference method on truncated domains, Baeumera
and Meerschaert [4] provided finite difference and particle tracking methods, Cartea and
del-Castillo-Negrete [6] constructed a finite difference scheme for a Black-Merton-Scholes
model with tempered fractional derivatives, Sun et al. [40] applied different methods to
spatial operators in the time-space tempered fractional Fokker-Planck equation on a finite
domain, Deng and Zhang [16] designed finite difference and finite element schemes to
simulate the backward time tempered fractional Feynman-Kac equation, Dehghan and Ab-
baszadeh [14] employed finite element methods to the space fractional tempered diffusion-
wave equation, Chen and Deng [9] developed an unconditionally stable second-order fi-
nite difference scheme for the space-time tempered fractional diffusion-wave equation, Çe-
lik and Duman [7] proposed a Galerkin finite element method for symmetric tempered
fractional diffusion equations. Nevertheless, since the tempered derivative operators are
global, the spectral methods using global bases are well-suited for solving tempered frac-
tional diffusion equations. Hanert and Piret [20] employed a pseudospectral method based
on the Chebyshev polynomial expansion for solving space and time tempered fractional
diffusion equation. Zayernouri et al. [43] defined tempered Jacobi poly-fractonomials and
used them to simulate tempered fractional differential operators. All the above mentioned
numerical methods are applied to tempered fractional derivatives in the bounded domain.
However, since there are many problems with tempered fractional derivatives related to
random walks on the whole line, it is important to study the corresponding equations on
unbounded domains. Nevertheless, there are only a few works devoted to such problems.

In this paper, we consider the following space tempered fractional diffusion equation
on the real line — cf. [5,36]: For µ ∈ (k − 1, k), k = 1,2,

∂tu(x , t) + (−1)k+1
�
p∂

µ,λ
+,x + q∂

µ,λ
−,x

�
u(x , t) = f (x , t), x ∈ R, 0< t ≤ T,

u(x , 0) = u0(x),

where p + q = 1, p,q ≥ 0, and ∂ µ,λ
+,x , ∂ µ,λ

−,x are the tempered fractional derivatives defined
by (2.5)-(2.6). Chen et al. [11] developed an efficient spectral method for solving this
equation. Thus they introduced a family of generalised Laguerre functions and derived
useful formulas for tempered fractional integrals and derivatives. However, the numerical
implementation of their method requires substantial efforts because of the complicated
definition of the tempered fractional derivatives. Recently, Mao and Shen [28] showed that
the Hermite functions are the eigenfunction of the Fourier transform operator — Lemma 2.3
below. This can be used to reduce complicated non-local fractional problem to simple
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equations in the frequency space. In particular, the above tempered fractional diffusion
equation is equivalent to the equation

∂tF [u] + (−1)k+1
¦

pBµ,λ
+ (ξ) + qBµ,λ

− (ξ)
©
F [u] =F [ f ],

where F [u] is the Fourier transform of u, and

Bµ,λ
± (ξ) :=

¨
(λ± iξ)µ −λµ, 0< µ < 1,

(λ± iξ)µ −λµ −±iξµλµ−1, 1< µ < 2.

We note that Mao and Shen [28] employed three recurrent formulas in numerical integra-
tion of the function |ξ|2s arising in Fourier transform of the classical fractional Laplacian
(−∆)s. In our case, the Hermite quadrature formula can be directly used in order to com-
pute the inner product involving tempered fractional derivatives. More precisely, we can
accurately approximate (Bµ,λ

± (ξ)F [u],F [v]) = (∂ µ,λ
±,x u, v) by the Hermite quadrature for-

mula since for λ > 0 the function |λ± iξ|µ is smooth. Moreover, this approach has several
remarkable advantages — viz.

1. By transforming the original problem into an equivalent problem in the frequency
space, we can avoid the complicated tempered fractional derivatives, so that the
method can be easily implemented.

2. Using the Hermite functions for the approximation of the tempered fractional diffu-
sion equation on the whole line simplifies theoretical analysis.

3. In contrast to the fractional Laplacian [41, 42], the tempered fractional derivative
leads to an exponential asymptotic behavior [36]. Hence, for smooth sources with
exponential decay the methods based on the Hermite functions may yield a spectral
convergence.

4. Numerical and theoretical technique discussed in this paper can be applied to other
problems involving tempered fractional derivatives.

The remainder of the paper is organised as follows. In Section 2, we recall the defini-
tion and the properties of Hermite functions, tempered fractional derivatives and related
approximation results. Section 3 introduces a Galerkin spectral method with Hermite func-
tions. We prove the stability of the method and its convergence. Numerical examples con-
firm the theoretical analysis and validate the expected behavior of the tempered fractional
diffusion. In Section 4, we consider a Hermite collocation method for tempered fractional
differential equations and present numerical results, which demonstrate the efficiency of
the method. The final section contains concluding remarks.
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2. Preliminaries

Let N and R be the sets of positive integers and real numbers, respectively. For real f

and g, the inner product and norm are defined by

( f , g)ω :=

∫

R

f (x)g(x)ω(x)dx , ‖ f ‖ω :=
Æ
( f , f )ω

and the subscript ω is omitted if ω = 1. Let c be a positive constant independent of any
functions. We also write A® B if A≤ cB.

2.1. Hermite functions and fractional derivatives

Let Hn(x) denote the classical Hermite polynomial of degree n. Considering the corre-
sponding Hermite functions ψn(x) defined by

ψn(x) =
1

π1/4
p

2nn!
e−x2/2Hn(x), n= 0,1,2, . . . , x ∈ R, (2.1)

we note their following properties:

1. The functions ψn(x) are mutually orthonormal — i.e.

∫

R

ψn(x)ψm(x)dx = δnm,

where δnm is the Kronecker delta.

2. ψn(x) is the n-th eigenfunction of the singular Sturm-Liouville problem

ex2/2∂x

�
e−x2

∂x

�
ex2/2u(x)
��
+λnu(x) = 0, λn = 2n.

3. The Hermite functions are generated by three-term recurrence relation

ψ0(x) = π
−1/4e−x2/2,

ψ1(x) = π
−1/4
p

2xe−x2/2,

ψn+1(x) =

√√ 2
(n+ 1)

xψn(x)−
√√ n

(n+ 1)
ψn−1(x), n≥ 1.

We next introduce a Hermite projection operator. Let ω(x) = e−x2
and PN be the set of

polynomials of degree at most N . The L2
ω-orthogonal projection ΠN : L2

w(R) → PN is
defined by ∫

R

{ΠN u− u}(x)vN (x)w(x)dx = 0 for all vN ∈ PN .



Efficient Hermite Spectral Methods for Space Tempered Fractional Diffusion Equations 47

Consider the space
cPN (R) = span
�
ψn(x) : 0≤ n≤ N

	

and the orthogonal projections bΠN : L2(R)→ cPN defined by

bΠN u(x) := e−x2/2
ΠN

�
u(x)ex2/2
�

. (2.2)

It is easily seen that for any ψn ∈ cPN one has
�
u− bΠN u,ψn

�
=
�
uex2/2 −ΠN

�
uex2/2
�
,ψnex2/2
�
ω

.

In order to evaluate the approximation error, we also consider the Sobolev space

bBr(R) :=
�
u : b∂ k

x u ∈ L2(R), 0 ≤ k ≤ r
	

,

where r ∈ N and b∂x := ∂x + x .

Lemma 2.1 (cf. Shen et al. [38, Theorem 7.14]). For any u ∈ bBr(R) and 2≤ r ≤ N + 1,
∂ l

x(
bΠN u− u)
® N (l−r)/2
b∂ r

x u
, l = 0,1,2.

Let {x j, ω j}Nj=0 be the Hermite-Gauss nodes and weights. Denote by {bx j, Òω j}Nj=0 the
Gauss quadrature nodes and weights of the Hermite function interpolation. It follows from

(2.1) that bx j = x j, Òω j = e
bx2

jω j . Let IN : C(R) → PN be the interpolation operator corre-

sponding to the Hermite-Gauss nodes. The interpolation IN : C(R)→ cPN associated with
the Hermite functions can be defined by

INu = e−x2/2 IN

�
uex2/2
�

. (2.3)

Lemma 2.2 (cf. Shen et al. [38, Theorem 7.18]). For any u ∈ C(R) and b∂ m
x u ∈ L2(R) with

fixed m≥ 1, we have
b∂ k

x (IN u− u)
 ® N1/6+(k−m)/2

b∂ m
x u
, 0≤ k ≤ m

with the differentiation operator b∂x = ∂x + x.

We also employ the Fourier and inverse Fourier transforms — i.e.

F [u](ξ) = 1p
2π

∫ ∞

−∞
u(x)e−iξx dx ,

u(x) =F−1
�F [u](ξ)�(x) = 1p

2π

∫ ∞

−∞
F [u](ξ)eiξx dξ,

and the Parseval’s identity

(u, v) =

∫ ∞

−∞
u(x) v(x)dx =

∫ ∞

−∞
F [u](ξ)F [v](ξ) dξ, (2.4)

where v(x) is the complex conjugate of the function v(x) [18].
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Lemma 2.3. The Hermite functions ψn, n = 0,1, . . . are the eigenfunctions of the Fourier

operator F corresponding the eigenvalues (−i)n, i.e.

F [ψn](ξ) = (−i)nψn(ξ), i =
p−1.

We next consider the tempered fractional derivatives. According to [36], the left and
right tempered fractional derivatives of a function u(x) of order µ are defined in the fol-
lowing way:

1. If 0< µ < 1, then

∂
µ,λ
+,x u(x) :=

µ

Γ (1−µ)

∫ ∞

0

�
u(x)− u(x − t)

�
e−λt t−µ−1dt,

∂
µ,λ
−,x u(x) =

µ

Γ (1−µ)

∫ ∞

0

�
u(x)− u(x + t)

�
e−λt t−µ−1dt.

(2.5)

2. If 1< µ < 2, then

∂
µ,λ
+,x u(x) =

µ(µ− 1)

Γ (2−µ)

∫ ∞

0

�
u(x − t)− u(x) + tu′(x)

�
e−λt t−µ−1dt,

∂
µ,λ
−,x u(x) =

µ(µ− 1)

Γ (2−µ)

∫ ∞

0

�
u(x + t)− u(x)− tu′(x)

�
e−λt t−µ−1dt.

(2.6)

Applying the Fourier transform to the tempered fractional derivatives above yields

F
�
∂
µ,λ
±,x u
�
(ξ) =

¨�
(λ± iξ)µ −λµ�F [u](ξ), 0< µ < 1,�
(λ± iξ)µ −λµ ∓ iξµλµ−1

�F [u](ξ), 1< µ < 2.
(2.7)

Lemma 2.4. Let p+ q = 1, p,q ≥ 0 and µ ∈ (k−1, k), k = 1,2. For any u 6= 0, the tempered

fractional derivatives (2.5)-(2.6) satisfy the relations
�
A µ,λ

p,q u,u
�
> 0, A µ,λ

p,q u = (−1)k+1
�
p∂

µ,λ
+,x + q∂

µ,λ
−,x

�
u. (2.8)

Proof. For notational simplicity, we set

Bµ,λ
p,q (ξ) := (−1)k+1

¦
pBµ,λ

+ (ξ) + qBµ,λ
− (ξ)
©

, (2.9)

where

Bµ,λ
± (ξ) :=

¨
(λ± iξ)µ −λµ, 0< µ < 1,

(λ± iξ)µ −λµ − (±iξµλµ−1), 1< µ < 2.

The Parseval identity (2.4) and representations (2.7) give
�
Bµ,λ

p,q (ξ)F [u],F [u]
�
=
�
A µ,λ

p,q u,u
�

.

Moreover, the equations

F [u](ξ) =F [u](−ξ), |F [u](ξ)|2 = |F [u](−ξ)|2

yield:
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1. If 0< µ < 1, then

�
Bµ,λ

p,q (ξ)F [u],F [u]
�

=

∫ +∞

0

Bµ,λ
p,q (ξ)|F [u](ξ)|2dξ+

∫ 0

−∞
Bµ,λ

p,q (ξ)|F [u](ξ)|2dξ

=

∫ +∞

0

[p(λ+ iξ)µ + q(λ− iξ)µ −λµ] |F [u](ξ)|2dξ

+

∫ 0

−∞
[p(λ+ iξ)µ + q(λ− iξ)µ −λµ]|F [u](ξ)|2dξ

=

∫ +∞

0

[(λ+ iξ)µ + (λ− iξ)µ − 2λµ]|F [u](ξ)|2dξ.

2. If 1< µ < 2, then

�
Bµ,λ

p,q (ξ)F [u],F [u]
�

=

∫ +∞

0

Bµ,λ
p,q (ξ)|F [u](ξ)|2dξ+

∫ 0

−∞
Bµ,λ

p,q (ξ)|F [u](ξ)|2dξ

= −
∫ +∞

0

[p(λ+ iξ)µ + q(λ− iξ)µ − (p− q)iξµλµ−1 −λµ]|F [u](ξ)|2dξ

−
∫ 0

−∞
[p(λ+ iξ)µ + q(λ− iξ)µ − (p− q)iξµλµ−1 −λµ]|F [u](ξ)|2dξ

=

∫ +∞

0

[2λµ − (λ+ iξ)µ − (λ− iξ)µ]|F [u](ξ)|2dξ.

Therefore,

�
A µ,λ

p,q u,u
�
=

∫ +∞

0

(−1)k+1[(λ+ iξ)µ + (λ− iξ)µ − 2λµ]|F [u](ξ)|2dξ > 0,

since F [u](ξ) 6= 0 and (−1)k+1[(λ + iξ)µ + (λ − iξ)µ − 2λµ] > 0 for ξ 6= 0. The latter
inequality can be proved similar to the proof of [11, theorem 5.1].

2.2. Tempered fractional Hilbert space

Using the positivity of the inner product (A µ,λ
p,q u,u), we can consider the fractional

Hilbert space

Hs,λ
p,q(R) =
¦

v ∈ L2(R) :
�
A 2s,λ

p,q v, v
�
<∞
©

, s ∈ (0,1),
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and equip it with the following norm and semi-norm:

‖v‖
H

s,λ
p,q
=

r
(v, v) +
�
A 2s,λ

p,q v, v
�
, |v|

H
s,λ
p,q
=

r�
A 2s,λ

p,q v, v
�
. (2.10)

Lemma 2.5 (Interpolation Inequality). For any ∂ l
x v ∈ L2(R), l = 0,1, we have

‖v‖
H

s,λ
p,q
≤
Ç
‖v‖2(1−s)
�
λ2‖v‖2 + ‖∂x v‖2�s + (1+λ2s)‖v‖2,

where 0< s < 1.

Proof. Using the Hölder inequality and the identities

|F [v](ξ)|2 = |F [v](−ξ)|2,

‖∂x v‖2 =
∫ +∞

−∞
ξ2|F [v](ξ)|2dξ = 2

∫ +∞

0

ξ2|F [v](ξ)|2dξ,

we obtain
∫ +∞

0

�
(λ+ iξ)2s + (λ− iξ)2s

� |F [v](ξ)|2dξ

≤ 2

∫ +∞

0

�
λ2 + ξ2
�s |F [v](ξ)|2dξ

≤
�

2

∫ +∞

0

|F [v](ξ)|2dξ

�1−s �
2

∫ +∞

0

�
λ2 + ξ2
� |F [v](ξ)|2dξ

�s

= ‖v‖2−2s
�Æ
λ2‖v‖2 + ‖∂x v‖2

�2s
.

The proof can be completed by using the relation

‖v‖2
H

s,λ
p,q
= (v, v) +
�
A 2s,λ

p,q v, v
�
= ‖v‖2 +
�
B2s,λ

p,q (ξ)F [v],F [v]
�

= ‖v‖2 +
∫ +∞

0

(−1)k+1
�
(λ+ iξ)2s + (λ− iξ)2s − 2λ2s

� |F [v](ξ)|2dξ,

where B2s,λ
p,q (ξ) is defined in (2.9).

Theorem 2.1. Let s ∈ (0,1). For any v ∈ bBr(R) and 1≤ r ≤ N + 1, the following inequality

holds: bΠN v − v


H
s,λ
p,q
® N (s−r)/2
b∂ r

x v
,

where b∂x = ∂x + x and bΠ is the projection operator (2.2).

Proof. The proof follows from Lemmas 2.1 and 2.5.
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Theorem 2.2. Let µ ∈ [0,2]. For any v ∈ bBr(R) and 2≤ r ≤ N + 1, we have

A µ,λ
p,q

�bΠN v − v
	® N (µ−r)/2
b∂ r

x
v
,

whereA µ,λ
p,q is the operator defined in (2.8).

Proof. Let Θ(ξ) ∈ (−π/2,π/2) be the argument of λ+ iξ, i.e.

Θ(ξ) =






arccos

�
λp
λ2 + ξ2

�
, if ξ > 0,

−arccos

�
λp
λ2 + ξ2

�
, if ξ < 0.

Since the cases 0 < µ < 1 and 1 < µ < 2 are similar, we only consider the later one. It
follows from (2.9) that for 1< µ < 2 one has

Bµ,λ
p,q (ξ) = λ

µ − �ξ2 +λ2
�µ/2

cos(µΘ) + i(p− q)
��
ξ2 +λ2
�µ/2

sin(µΘ) + ξµλµ−1
�

,

and
�
λµ − �ξ2 +λ2
�µ/2

cos(µΘ)
�2 ≤ 2λ2µ + 2
�
ξ2 +λ2
�µ

,
�
(p− q)
��
ξ2 +λ2
�µ/2

sin(µΘ) + ξµλµ−1
��2 ≤ (p− q)2
�
2
�
ξ2 +λ2
�µ
+ 2ξ2µ2λ2µ−2
�
.

The above formulas, the Parseval identity and the Hölder inequality give

‖Aµ,λ
p,q v‖2 =
�
Bµ,λ

p,q (ξ)F [v],Bµ,λ
p,q (ξ)F [v]
�
=

∫

R

��Bµ,λ
p,q (ξ)
��2|F [v](ξ)|2dξ

≤ 2λ2µ‖v‖2 + 2
�
1+ (p− q)2
�∫

R

�
ξ2 +λ2
�µ |F [v](ξ)|2dξ

+ 2(p− q)2µ2λ2µ−2

∫

R

ξ2|F [v](ξ)|2dξ

≤ 2λ2µ‖v‖2 + 4‖v‖2−2µ
�
λ2‖v‖2 + ‖∂x v‖2�µ + 2µ2λ2µ−2‖∂x v‖2. (2.11)

Combining (2.11) and Lemma 2.1 finishes the proof.

3. Hermite Spectral Methods

In this section, we construct an efficient Hermite Galerkin spectral method for the tem-
pered fractional diffusion equation

∂tu(x , t) + (−1)k+1
�
p∂

µ,λ
+,x + q∂

µ,λ
−,x

�
u(x , t) = f (x , t),

u(x , 0) = u0(x), lim|x |→+∞ u(x , t) = 0, x ∈ R, 0< t ≤ T.
(3.1)
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3.1. Weak formulation and spectral scheme

The weak formulation for (3.1) is to find u(·, t) ∈ H
µ/2,λ
p,q (R), 0≤ t ≤ T such that

�
∂tu(·, t), v
�
+
�A µ,λ

p,q u(·, t), v
�
=
�

f (·, t), v
�
,

�
u(·, 0), v
�
= (u0, v) for all v ∈ Hµ/2,λ

p,q (R).
(3.2)

The well-posedness of the problem (3.1) can be checked by choosing v = 2u. In fact, the
inequality

∂t‖u(·, t)‖2 + 2|u(·, t)|2
H
µ/2,λ
p,q
≤ ‖ f (·, t)‖2 + ‖u(·, t)‖2 (3.3)

holds with |u(·, t)|
H
µ/2,λ
p,q

defined in (2.10). Setting

E(u, t) = ‖u(·, t)‖2 + 2

∫ t

0

|u(·, s)|2
H
µ/2,λ
p,q

ds, (3.4)

and using (3.3)-(3.4), we obtain

∂t E(u, t) ≤ ‖ f (·, t)‖2 + ‖u(·, t)‖2 ≤ ‖ f (·, t)‖2 + E(u, t).

This yields the inequality
∂t

�
e−t E(u, t)
� ≤ e−t‖ f (·, t)‖2,

and its integral version

E(u, t) ≤ et

�
‖u0‖+
∫ t

0

e−s‖ f (·, s)‖2ds

�
. (3.5)

The Galerkin method for the problem (3.2) consists in finding uN (·, t) ∈ cPN , 0≤ t ≤ T

such that �
∂tuN (·, t), vN

�
+
�A µ,λ

p,q uN (·, t), vN

�
=
�IN f (·, t), vN

�
,

�
uN (·, 0), vN

�
=
�bΠN u0, vN

�
for all vN ∈ cPN .

(3.6)

Following the considerations in (3.3)-(3.5), one obtains

E(uN , t) ≤ et

�
‖bΠNu0‖+
∫ t

0

e−s‖IN f (·, s)‖2ds

�
. (3.7)

3.2. Numerical implementation

For a fixed t ∈ (0, T ], the approximate solution uN is sought in the form

uN (x , t) =

N∑

l=0

ũl(t)ψl (x).



Efficient Hermite Spectral Methods for Space Tempered Fractional Diffusion Equations 53

Substituting uN and vN = ψm(x), m = 0,1, . . . , N into (3.6) leads to the system of the first
order ordinary differential equations

MUt(t) + SU(t) = F(t) (3.8)

with the vectors

U(t) =
�
ũ0(t), · · · , ũN (t)

�T
, F(t) =
�
(IN f (t),ψ0), · · · , (IN f (t),ψN )

�T

and the matrices

M= (aml), aml = (ψl ,ψm) = δml ,

S= (bml), bml =
�
A µ,λ

p,q ψl ,ψm

�
=
�
Bµ,λ

p,q F [ψl],F [ψm]
�

,
0≤ m, l ≤ N .

According to Lemma 2.3, the entries bml can be calculated as

bml =
�
Bµ,λ

p,q F [ψl],F [ψm]
�
= (−i)l · (−i)m
∫ ∞

−∞
Bµ,λ

p,q (ξ)ψl(ξ)ψm(ξ)dξ

≈ (−i)l · (−i)m
∑N

j=0
Bµ,λ

p,q (bx j)ψl(bx j)ψm(bx j)Òω j ,

where {bx j}Nj=0 and {Òω j}Nj=0 are, respectively, Gauss quadrature nodes and weights of the

Hermite function interpolation andBµ,λ
p,q (ξ) are defined in (2.9).

Remark 3.1. Recently, Mao and Shen [28] employed Hermite functions to approximate
the fractional Laplacian (−∆)s, 0 < s < 1 on unbounded domains. In particular, they used
a three recurrence formula to compute the entries

slm =

∫ ∞

−∞
|ξ|2sψm(ξ)ψl(ξ)dξ

of the corresponding stiffness matrix. In tempered fractional diffusion equation, the inte-
grandBµ,λ

p,q (ξ)e
−ξ2

is smooth rather than the singular term |ξ|2s. So the stiffness matrix S

in (3.8) can be directly computed by traditional Hermite-Gauss quadratures.

We note that the system of the first order ordinary differential equations (3.8) can
be solved by various numerical methods, including Euler, Runge-Kutta or Crank-Nicolson
method.

3.3. Convergence analysis

Using the notation U∗
N
= bΠNu, we rewrite (3.2) as

�
∂t U
∗
N

, vN

�
+
�
A µ,λ

p,q U∗
N

, vN

�
= ( f , vN ) +
�
∂t

�
U∗

N
− u
	

, vN

�
+
�
A µ,λ

p,q

�
U∗

N
− u
	

, vN

�
. (3.9)

For notational simplicity, we further denote ẽN = U∗
N
− uN , f̃N = f −IN f , and
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F
�
u, f , U∗

N

�
= f + ∂t

�
U∗

N
− u
	
+A µ,λ

p,q

�
U∗

N
− u
	

.

Subtracting (3.6) from (3.9) yields

�
∂t ẽN , vN

�
+
�
A µ,λ

p,q ẽN , vN

�
=
�
F
�
u, f̃N , U∗N
�

, vN

�
, (ẽN , vN ) = 0 for all vN ∈ cPN .

Choosing vN = 2ẽN and using (3.7), we obtain

E(ẽN , t) ≤ et

∫ t

0

e−s
F
�
u, f̃N , U∗N
�2 ds, (3.10)

and the triangle inequality implies
F
�
u, f̃N , U∗N
� ≤ ‖ f −IN f ‖+

∂t

�
U∗N − u
�+
A µ,λ

p,q

�
U∗N − u
�.

Theorem 3.1. Let u and uN be the solutions of (3.2) and (3.6), respectively. If f ∈
L2(0, T ; bBm(R)) and u ∈ H1(0, T ; L2(R)) ∩ H1(0, T ; bBr(R)) ∩ L2(0, T ; bBr (R)) for a given

λ > 0, then the estimate

‖u(·, t)− uN (·, t)‖ ®
p

N1/3−m + Nµ−r

�
et

∫ t

0

e−sVm,r{u(·, s)}ds

�
(3.11)

holds with

Vm,r{u(·, t)} =
rb∂ m

x
f (·, t)
2 +
b∂ r

x
∂tu(·, t)
2 +
b∂ r

x
u(·, t)
2.

Proof. Applying Lemmas 2.1 and 2.2 with k = 0 gives
 f −IN f
 ® N1/6−m/2
b∂ m

x
f
,
∂t

�
U∗

N
− u
�® N−r/2
b∂ r

x
∂tu
.

The term ‖A µ,λ
p,q (U

∗
N − u)‖ can be estimated by Theorem 2.2, so that

A µ,λ
p,q

�
U∗N − u
� ® N (µ−r)/2
b∂ r

x u
. (3.12)

The estimate (3.11) is now follows from (3.10)-(3.12) and the triangle inequality

‖u− uN‖ ≤
u− U∗N
+ ‖ẽN‖ ≤
u− U∗N
+
Æ

E(ẽN , t).

3.4. Numerical examples

In the forthcoming examples, the Crank-Nicolson scheme is used to solve the system
of first order ordinary differential equations (3.8). In order to compute M, S and F, the
Hermite Gauss quadrature with the degree of freedom N + 1 is employed.
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Example 3.1. In the Eq. (3.1) we choose the parameters p = q = 1/2,λ = 5/2, forcing
term f (x , t) = cos(t)e−x2

and the initial distribution u0 = 10e−4x2
.

With fixed time step τ = 0.001 and T = 1, we plot the L∞-error max
x
(|uτN (x , T ) −

u(x , T )|) on the left of Fig. 1, and for fixed µ = 1.7 we draw the errors with distinct τ
on the right of Fig. 1. Since the exact solution of the problem is not known, the term
u = uτN (x , T ),τ = 10−4, N = 150 is used as the reference solution in both cases. Numer-
ical results demonstrate the efficiency of the method in the approximation of tempered
fractional diffusion equations.

Figure 1: Left: µ= 0.8, 1.7 with τ = 0.001. Right: µ= 1.7 with distinct τ.

Example 3.2. Consider the tempered fractional diffusion (3.1) with u0 = 10e−4x2
and

f (x , t) = 0. We simulate the diffusion process for understanding the roles of the parameters
p,q and λ.

Fig. 2 demonstrates the solution profile at different time with p = 1/4, q = 3/4, µ =
0.9, λ = 2 (left) and p = 3/4, q = 1/4, µ = 0.9, λ = 2 (right), respectively. The case
p = q = 1/2 is presented in Fig. 3. We note that for p > q the particles tend to jump to
the right, and for p < q they tend to jump to the left. If p = q the probabilities of particles
jumping are equal. In order to make comparison with usual fractional diffusion equation,
i.e. if λ= 0, on the right of Fig. 3 we plot the corresponding distributions at time t = 10. It
shows that for large |x | the tail of the tempered fractional diffusion behaves as |x |−µ−1e−λ|x |

and the usual fractional diffusion behaves as |x |−µ−1.

4. Hermite Spectral Collocation Methods

Considering the images of the Hermite functions under Fourier transform, one can de-
velop an efficient Hermite collocation method for tempered fractional differential equa-
tions. Let us first consider the steady tempered fractional differential equation

u(x) + (−1)k+1
¦

p∂
µ,λ
+,x + q∂

µ,λ
−,x

©
u(x) = f (x), µ ∈ (k− 1, k), k = 1,2, (4.1)
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Figure 2: Left: p = 1/4, q = 3/4, λ= 2. Right: p = 3/4, q = 1/4, λ= 2.

Figure 3: Left: p = q = 1/2, λ = 2. Right: p = q with λ= 1 and λ = 0, respectively.

where p,q are nonnegative constants such that p + q = 1, f ∈ L2(R), and λ > 0 is a tem-
pered parameter. Applying the Fourier transform (2.7), we reduce the problem (4.1) to the
following equation:

F [u](ξ) +Bµ,λ
p,q (ξ)F [u](ξ) =F [ f ](ξ),

where

Bµ,λ
p,q (ξ) = (−1)k+1

¦
pBµ,λ

+ (ξ) + qBµ,λ
− (ξ)
©

,

and

Bµ,λ
± (ξ) :=

¨
(λ± iξ)µ −λµ, 0< µ < 1,

(λ± iξ)µ −λµ −±iξµλµ−1, 1< µ < 2.
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Therefore, the solution can be found by applying the inverse Fourier transform to the term

F [u](ξ) = F [ f ](ξ)
1+Bµ,λ

p,q (ξ)
.

Let {ξ j = bx j}Nj=0 be the set of Hermite-Gauss nodes. The Hermite collocation method

consists in finding uN ∈ cPN such that

F [uN ](ξ j) =
F [IN f ](ξ j)

1+Bµ,λ
p,q (ξ j)

, 0≤ j ≤ N , (4.2)

where IN is the interpolation operator (2.3).
The numerical solution uN and uN (bx j), 0 ≤ j ≤ N can be determined by the following

four steps:

1. Perform the forward discrete Hermite transform to obtain f̃l , 0≤ l ≤ N such that

IN f (x) =
∑N

l=0
f̃lψl(x). (4.3)

2. Apply the Fourier transform to (4.3) and use Lemma 2.3 to obtain

F [IN f ](ξ) =
∑N

l=0
f̃l(−i)lψl(ξ). (4.4)

3. Determine F [uN ](ξ j), 0 ≤ j ≤ N in (4.2) and perform the forward Hermite trans-
form to obtain ũl , 0 ≤ l ≤ N such that

F [uN ](ξ) =
∑N

l=0
ũlψl(ξ). (4.5)

4. Apply the inverse Fourier transform to (4.5) and obtain

uN (x) =
∑N

l=0
ũl i

lψl(x). (4.6)

4.1. Application to steady tempered fractional diffusion equations

Consider the steady tempered fractional diffusion equation (4.1) with fixed parameters
p = q = 1/2 and λ = 5/2. Applying (4.3)-(4.6) to (4.2), we can derive the numerical
solution uN .

Let f (x) = (1 + x)e−x2
. On the left of Fig. 4, we plot the error curves in L∞-norm

with µ = 1.5 and µ = 0.8, respectively. We note that the numerical solutions obtained
by the proposed Hermite collocation method converge exponentially. We also consider
algebraically decaying forcing function f (x) = 1/(1+ x2)2 and numerical results displayed
on the right of Fig. 4 demonstrate the algebraic convergence rate. Both numerical results
verified the approximation theory of Hermite collocation method. Since the exact solutions
are not known, we take uN , N = 200 as the reference solution in both cases.
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Figure 4: Left: f (x) = (1+ x)e−x2
. Right: f (x) = 1/(1+ x2)2.

4.2. Application to tempered fractional diffusion equations

Using the same approach, we can numerically solve the tempered fractional diffusion
equation (3.1). In fact, the application of the Fourier transform leads to the following
equation:

F [∂tu](ξ, t) +Bµ,λ
p,q (ξ)F [u](ξ, t) =F [ f ](ξ, t),

F [u](ξ, 0) =F [u0](ξ).

The spectral collocation scheme is to solve N + 1 ordinary differential equations

F [∂tuN ](ξ j , t) +Bµ,λ
p,q (ξ j)F [uN ](ξ j , t) =F [ f ](ξ j , t),

F [uN ](ξ j , 0) =F [u0](ξ j), j = 0,1, . . . , N .

Analogously, we use the Crank-Nicolson scheme to solve the ordinary differential equations
and derive the numerical solutionF [uN ](ξ, t) for fixed t = T . Then, following (4.3)-(4.6),
we can determine the solution uτN (x , T ) in the physical space.

• Consider the problem (3.1) with the exponentially decaying forcing term f (x , t) =

cos(t)e−x2
and the initial distribution u0 = 10e−4x2

. On the left of Fig. 5, with fixed
p = q = 1/2,λ = 5/2, T = 1 and time step τ = 0.001, we show the errors in L∞-
norm with µ = 0.8 and µ = 1.7, respectively. We observe that numerical solutions
exponentially converge in the range of the time error τ2. In order to demonstrate the
high-efficiency of the collocation method, distinct τ, are chosen and the correspond-
ing numerical results are presented on the right of Fig. 5. Since the exact solution is
not known, we take u= uτ

N
, N = 150,τ= 0.0001 as the reference solution.

• Analogously to the steady case, the tempered fractional diffusion equation with al-
gebraically decaying forcing term f (x , t) is also considered. Keeping all sets of the
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Figure 5: Collocation method for tempered fractional diffusion equation, f (x , t) = cos(t)e−x2
, u0 =

10e−4x2
, p = q = 1/2, λ= 5/2.

Figure 6: Collocation method for tempered fractional diffusion equation, f (x , t) = cos(t)/(1 + x2)2,

u0 = 10e−4x2
, p = q = 1/2, λ= 5/2.

above case but taking f (x , t) = cos(t)/(1 + x2)2, we plot the error curves in Fig. 6.
The numerical results are consistent with theoretical findings. Numerical solutions
converge with algebraic convergence rate.

5. Conclusion

Considering tempered fractional diffusion equations on the whole line, we develop
spectral and spectral collocation methods based on the fact that Hermite functions are the
eigenfunctions of the Fourier transform. Applying the Fourier transform to the underlying
problem, we approximate the resulting equations by Hermite functions. The convergence
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and stability of such methods are analysed. Numerical examples demonstrate the efficiency
of the algorithms and confirm theoretical findings. The approach is simple, efficient and
accurate. It can be applied to more general problems with tempered fractional integrals
and derivatives, including Riemann-Liouville tempered fractional integrals and derivatives
defined in [36].
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