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Abstract. This article is devoted to three quadrature methods for the rapid solution
of stochastic time-dependent Maxwell’s equations with uncertain permittivity, perme-
ability and initial conditions. We develop the mathematical analysis of the error esti-
mate for single level Monte Carlo method, multi-level Monte Carlo method, and the
quasi-Monte Carlo method. The theoretical results are supplemented by numerical
experiments.
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1 Introduction

Consider the Maxwell’s equations with random coefficients which are parameterized by
a random vector y∈R

n:

ǫ(x,y)∂tE(x,t;y)=∇×H(x,t;y), (1.1)

µ(x,y)∂tH(x,t;y)=−∇×E(x,t;y), (1.2)

where ǫ is the permittivity, µ is the permeability, and E and H represent the electric and
magnetic fields, respectively. We assume that the spatial variable x∈D⊆R

3, and the time
variable t ∈ (0,T]. Here D is a bounded Lipschitz polyhedral domain with connected

∗Corresponding author. Email addresses: wangxiang49@ncu.edu.cn (X. Wang), jichun.li@unlv.edu (J. Li),
fangz1@unlv.nevada.edu (Z. Fang)

http://www.global-sci.com/cicp 211 c©2021 Global-Science Press



212 X. Wang, J. Li and Z. Fang / Commun. Comput. Phys., 29 (2021), pp. 211-236

boundary ∂D. The curl operators are understood to operate on the spatial variables x,
and the parameter vector y=(y1,y2,··· ,yn)=(yi)

n
i=1 consists of n parameters yi which are

assumed to be independent and identically distributed (i.i.d.) on [0,1], i.e.,

y∈ [0,1]n :=U.

The probability measure for y is defined as dy=Πn
i=1dyi.

To complete the problem, we assume that Eqs. (1.1)-(1.2) satisfy the perfect conduct-
ing (PEC) boundary condition:

n×E(x,t;y)=0 ∀x∈∂D, ∀t∈ (0,T] and ∀y∈U, (1.3)

where n is the outward unit normal vector on ∂D. Furthermore, we assume that the
Maxwell’s equations (1.1)-(1.2) satisfy the following initial conditions:

E(x,0;y)=E0(x,y), H(x,0;y)=H0(x,y), (1.4)

where E0(x,y) and H0(x,y) are some given functions.
In the past two decades, the study of uncertainty quantification (UQ) got great atten-

tions across different disciplines of sciences and engineering as detailed in recent review
articles [19, 27, 36, 38] and monographs [16, 33, 41, 42, 47, 50]. Uncertainty quantification
plays an important part in electromagnetic material design. For example, [46] presented
a computational stochastic methodology for generating and optimizing random meta-
material configurations. Compared to many excellent numerical analysis papers pub-
lished for stochastic elliptic problems (e.g., [1,2,8,49]), stochastic parabolic equations [48]
and stochastic hyperbolic or wave equations [24, 26, 35, 43, 45, 52], elastic waves scatter-
ing in random media [3, 15], stochastic porous media flow [13], radiative transfer equa-
tions with uncertain coefficients [51], the mathematical literature on UQ for Maxwell’s
equations is less developed. In 2006, Chauviere et al. [6] developed both the stochastic
Galerkin method and stochastic collocation method for the time-dependent Maxwell’s
equations with uncertainties caused by the physical materials, the source wave and the
physical domain. In 2015, Benner and Schneider [5] described several techniques for
the time-harmonic Maxwell’s equations by using stochastic collocation method. In 2016,
Römer et al. [37] discussed a stochastic nonlinear magnetostatic problem solved by the
stochastic collocation method. In 2018, Kamilis and Polydorides [25] considered an UQ
problem for the low-frequency, time-harmonic Maxwell’s equations with lognormal ran-
dom conductivity. Also Jerez et al. [23] and Hao et al. [20] investigated the time-harmonic
Maxwell’s equations with random interfaces. In 2019, Chen et al. [7] analyzed a semi-
implicit Euler scheme for discretizing the stochastic Maxwell’s equations with multiplica-
tive Itô noise, and derived the mean-square convergence. Recently, the authors carried
out the error analysis of stochastic collocation method [30, 31] and stochastic Galerkin
method [14] for time-dependent Maxwell’s equations.

In this paper, the uncertain permittivity and permeability ǫ and µ in (1.1)-(1.2) are
assumed to depend on both the spatial variable x and the parameter y, and they are
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bounded below and above, i.e., there exist constants ǫ−, ǫ+, µ− and µ+ such that the
following inequalities

0<ǫ−≤ǫ(x,y)≤ǫ+<∞, 0<µ−≤µ(x,y)≤µ+
<∞,

hold true for any x∈D and y∈U almost surely (a.s.).
Our goal is to obtain statistical information on the solution (E,H) to (1.1)-(1.2), espe-

cially its expected value, which is defined on U by

E[u]=
∫

U
u(y)dy, for u=E,H.

To approximate the expected value, we can adopt the single level Monte Carlo (SLMC),
multi-level Monte Carlo (MLMC) quadrature rules (an excellent review is given by Giles
[17]), and the Quasi-Monte Carlo (QMC) quadrature method. There is a huge list of
the literature on the application of QMC to PDEs (especially elliptic PDEs) with random
coefficients, see [4, 9, 18, 21] and references therein. To the best of our knowledge, there
exist few work in the literature which study the QMC method for solving the Maxwell’s
equations with random inputs.

Since the solutions of (1.1)-(1.2) involve an extra parameter y, we introduce the fol-
lowing space to measure the solutions:

Lr(U;V)={v : U 7→V : ‖v‖Lr(U;V)<∞},

where V is a Banach space of real-valued functions on domain D with norm ‖·‖V , and
the space Lr(U;V) is equipped with the norm

‖v‖Lr(U;V) :=





(∫

U
‖v(·,y)‖r

V dy

) 1
r

if 0< r<∞,

esssupy∈U‖v(·,y)‖V if r=∞.

In this paper, to make notation clean, we use the following bold face norms to repre-
sent the corresponding norms for vectors:

L2(D)=(L2(D))3, Hr(D)=(Hr(D))3, L∞(D)=(L∞(D))3.

We also adopt the following notations

‖v‖L2(D×U) :=‖v‖
L2(U;L2

(D))
, ‖v‖L∞(D×U) :=esssupy∈U‖v(·,y)‖L∞(D),

and denote the following Hilbert spaces:

H(div;D)={u∈L2(D) : ∇·u∈L2(D)},

H(curl;D)={u∈L2(D) : ∇×u∈L2(D)},

H0(curl;D)={u∈H(curl;D) : n×u=0 on ∂D}.
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The structure of this paper is as follows. Section 2 is dedicated to development and
error analysis for the single level and multi-level Monte Carlo finite element methods. In
Section 3, we introduce the QMC method, establish the regularity analysis of the solution
with respect to the random vector, and prove the error estimate of the QMC method.
Section 4 presents numerical results which confirm our theoretical results. We conclude
the paper in Section 5.

2 The Monte Carlo finite element methods

2.1 Mixed finite elements for Maxwell’s equations

The idea of Monte Carlo finite element method is very simple: given a sample y, (2.1)-
(2.2) becomes a deterministic problem in the physical domain D, which can be solved by
any classic finite element method for Maxwell’s equations [32, 34]. To solve the problem
(2.1)-(2.2) by a finite element method, we partition the physical domain D by a family of
regular cubic or tetrahedral mesh Th with maximum mesh size h, and adopt the r-th (r≥1
order Raviart-Thomas-Nédélec (RTN) mixed finite element spaces Uh and VVVh [32,34]: For
any r≥1, on tetrahedral elements:

Uh={uh∈H(div;D) | uh|K ∈ (pr−1)
3⊕ p̃r−1x, ∀ K∈Th},

V h={vh∈H(curl;D) | vh|K ∈ (pr−1)
3⊕Sr, ∀ K∈Th}, Sr ={~p∈ ( p̃r)

3,x·~p=0},

or on cubic elements:

Uh={uh∈H(div;D) | uh|K ∈Qr,r−1,r−1×Qr−1,r,r−1×Qr−1,r−1,r, ∀ K∈Th},

V h ={vh ∈H(curl;D) | vh|K ∈Qr−1,r,r×Qr,r−1,r×Qr,r,r−1, ∀ K∈Th}.

Here pr−1 denotes the space of polynomials of degree r−1, p̃r denotes the space of ho-
mogeneous polynomials of degree r, and Qi,j,k denotes the space of polynomials whose
degrees are less than or equal to i, j,k in variables x,y,z, respectively. To impose the PEC
boundary condition, we denote V0

h ={v∈V h : v×n=0 on ∂D}.

To define a fully discrete scheme, we divide the time interval [0,T] into M uniform
subintervals by points 0= t0 < t1 < ···< tK = T, where tk = kτ, and τ = T/K. Moreover,
we denote the k-th subinterval by Ik = [tk−1,tk], and the central difference and average
operators for any time solutions uk=u(·,kτ):

δτuk− 1
2 =

uk−uk−1

τ
, uk− 1

2 =
uk+uk−1

2
.

Before we construct the finite element scheme, we need to formulate a weak formulation
for the model problem (1.1)-(1.2). For any fixed parameterized vector y, multiplying (1.1)
and (1.2) by φ∈H0(curl;D) and ψ∈H(div;D), respectively, then using Green’s theorem,
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we obtain

(ǫ∂tE,φ)=(H ,∇×φ), (2.1)

(µ∂tH ,ψ)=−(∇×E,ψ), (2.2)

where (·,·) denotes the usual inner product on L2(D).
Now we can formulate our Crank-Nicolson mixed finite element scheme: for k =

1,2,···K, find Ek
h ∈V0

h and Hk
h ∈Uh such that:

(ǫδτE
k− 1

2

h ,φh)−(H
k− 1

2

h ,∇×φh)=0, ∀φh ∈V0
h, (2.3)

(µδτ H
k− 1

2

h ,ψh)+(∇×E
k− 1

2

h ,ψh)=0, ∀ψh∈Uh, (2.4)

subject to the initial conditions

E0
h(x,y)=Πc

hE0(x,y), H0
h(x,y)=Πd

hH0(x,y),

where Πd
h denotes the L2 projection into space Uh and Πc

h denotes the Nédélec interpola-
tion on V0

h (see [32, 34]).
Note that the above scheme (2.3)-(2.4) can be written as follows:

(ǫEk
h,φh)−

τ

2
(Hk

h,∇×φh)=(ǫEk−1
h ,φh)+

τ

2
(Hk−1

h ,∇×φh), (2.5)

(µHk
h,ψh)+

τ

2
(∇×Ek

h,ψh)=(µHk−1
h ,ψh)−

τ

2
(∇×Ek−1

h ,ψh). (2.6)

Hence, at each time step, the coefficient matrix of (2.5)-(2.6) with the vector solution

(Ek
h,Hk

h)
⊤ can be written as Q =

(
A −B

B⊤ D

)
, which can be proved to be non-singular

(cf. [32, Lemma 3.14]).
First, we have the following unconditional stability for our scheme.

Lemma 2.1. For the solution (Ek
h,Hk

h) of (2.3)-(2.4) and any k∈ [1,K], we have

‖ǫ
1
2 Ek

h‖2

L2
(D)

+‖µ
1
2 Hk

h‖2

L2
(D)

=‖ǫ
1
2 E0

h‖2

L2
(D)

+‖µ
1
2 H0

h‖2

L2
(D)

.

Proof. Choosing φh = τE
k− 1

2

h and ψh = τH
k− 1

2

h in (2.3) and (2.4), respectively, and adding
the results together, we have

1

2
(‖ǫ

1
2 Ek

h‖2

L2
(D)

−‖ǫ
1
2 Ek−1

h ‖2

L2
(D)

)+
1

2
(‖µ

1
2 Hk

h‖2

L2
(D)

−‖µ
1
2 Hk−1

h ‖2

L2
(D)

)=0,

which concludes the proof.

Denote Cv=
1√
ǫµ for the wave propagation speed in a medium with permittivity ǫ and

permeability µ. Then we can prove the following optimal error estimate for our scheme.
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Theorem 2.1. Suppose that the solution (E,H) of (2.1)-(2.2) satisfy the following regularity:

ǫ
1
2 E∈L∞(0,T;Hr(curl;D)), ǫ

1
2 ∂tE∈L2(0,T;Hr(curl;D)), ǫ

1
2 ∇×∂2

t E∈L2(0,T;L2(D)),

µ
1
2 H∈L∞(0,T;Hr(D)), µ

1
2 ∇×∂2

t H∈L2(0,T;L2(D)),

then for any k∈ [1,K], we have

‖ǫ
1
2 (Ek

h−E(x,tk;y))‖L2
(D)

+‖µ
1
2 (Hk

h−H(x,tk;y))‖L2
(D)

≤Chr(‖ǫ1/2∂tE‖L2
(0,T;Hr

(curl;D))
+‖ǫ1/2E‖L∞

(0,T;Hr
(curl;D))

+‖µ1/2H‖L∞
(0,T;Hr

(D))
)

+Cτ2(‖µ1/2∇×(∂2
t H)‖L2

(0,T;L2
(D))

+‖ǫ1/2∇×(∂2
t E)‖L2

(0,T;L2
(D))

), (2.7)

where the constant C> 0 is independent of h and τ, and r≥ 1 is the degree of the finite element
spaces V0

h and Uh.

Proof. Integrating (1.1) and (1.2) from tk−1 to tk, multiplying the results by φh ∈V0
h and

ψh∈Uh and integrating over D, respectively, we obtain

(
ǫ

Ek−Ek−1

τ
,φh

)
−
( 1

τ

∫

Ik

Hds,∇×φh

)
=0, (2.8)

(
µ

Hk−Hk−1

τ
,ψh

)
+
( 1

τ

∫

Ik

∇×Eds,ψh

)
=0, (2.9)

where for simplicity we denote uj =u(tj) for u=E and H.
Let us introduce the errors

Ê
k
h :=Ek

h−Ek=(Ek
h−Πc

hEk)−(Ek−Πc
hEk)=Ek

hξ−Ek
hη , (2.10)

Ĥ
k
h :=Hk

h−Hk =(Hk
h−Πd

hHk)−(Hk−Πd
hHk)=Hk

hξ−Hk
hη . (2.11)

Subtracting (2.8)-(2.9) from (2.5)-(2.6), respectively, we obtain the error equations:

(
ǫ

Ê
k
h− Ê

k−1
h

τ
,φh

)
−
( Ĥ

k
h+Ĥ

k−1
h

2
,∇×φh

)
=
(Hk+Hk−1

2
− 1

τ

∫

Ik

Hds,∇×φh

)
, (2.12)

(
µ

Ĥ
k
h−Ĥ

k−1
h

τ
,ψh

)
+
(
∇× Ê

k
h+ Ê

k−1
h

2
,ψh

)
=
( 1

τ

∫

Ik

∇×Eds−∇× Ek+Ek−1

2
,ψh

)
. (2.13)

Using the error decomposition (2.10)-(2.11), we can rewrite the above error equations as
follows:

(ǫδτE
k− 1

2

hξ ,φh)−(H
k− 1

2

hξ ,∇×φh)

=(ǫδτE
k− 1

2

hη ,φh)−(H
k− 1

2

hη ,∇×φh)+
(

H
k− 1

2 − 1

τ

∫

Ik

Hds,∇×φh

)
, (2.14)

(µδτ H
k− 1

2

hξ ,ψh)+(∇×E
k− 1

2

hξ ,ψh)

=(µδτ H
k− 1

2

hη ,ψh)+(∇×E
k− 1

2

hη ,ψh)+
( 1

τ

∫

Ik

∇×Eds−∇×E
k− 1

2 ,ψh

)
. (2.15)
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Choosing φh=2τE
k− 1

2

hξ in (2.14) and ψh=2τH
k− 1

2

hξ in (2.15), then adding the resultants, we
obtain

(‖ǫ1/2Ek
hξ‖2−‖ǫ1/2Ek−1

hξ ‖2)+(‖µ1/2Hk
hξ‖2−‖µ1/2Hk−1

hξ ‖2)

=2τ(ǫδτE
k− 1

2

hη ,E
k− 1

2

hξ )−2τ(H
k− 1

2

hη ,∇×E
k− 1

2

hξ )+2τ
(

H
k− 1

2 − 1

τ

∫

Ik

Hds,∇×E
k− 1

2

hξ

)

+2τ(µδτ H
k− 1

2

hη ,H
k− 1

2

hξ )+2τ(∇×E
k− 1

2

hη ,H
k− 1

2

hξ )+2τ
( 1

τ

∫

Ik

∇×Eds−∇×E
k− 1

2 ,H
k− 1

2

hξ

)

:=
6

∑
i=1

Erri. (2.16)

By the Cauchy-Schwarz inequality, the following estimate [32, Lemma 3.16]:

‖δτuk− 1
2 ‖2

L2(D) :=
∥∥∥uk−uk−1

τ

∥∥∥
2

L2(D)

≤ 1

τ

∫ tk

tk−1

‖∂tu‖2
L2(D)ds, ∀ u∈H1((tk−1,tk);L

2(D)), (2.17)

and the interpolation error estimates: for any r≥1, any u∈Hr(curl;D),

‖u−Πc
hu‖L2(D)+‖∇×(u−Πc

hu)‖L2(D)≤Chr‖u‖H r
(curl;D)

, (2.18)

‖v−Πd
hv‖L2(D)≤Chr‖u‖H r

(D)
, ∀ v∈Hr(D), (2.19)

we have

Err1 ≤2τ‖ǫ1/2δτE
k− 1

2

hη ‖L2(D)‖ǫ1/2E
k− 1

2

hξ ‖L2(D)

≤τ
( 1

4δ∗
‖ǫ1/2δτE

k− 1
2

hη ‖2
L2(D)

+4δ∗‖ǫ1/2E
k− 1

2

hξ ‖2
L2(D)

)

≤ 1

4δ∗

∫

Ik

‖ǫ1/2∂tEhη‖2
L2(D)

ds+2τδ∗(‖ǫ1/2Ek
hξ‖2

L2(D)
+‖ǫ1/2Ek−1

hξ ‖2
L2(D)

)

≤ 1

δ∗

∫

Ik

Ch2r‖ǫ1/2∂tE‖2
H r

(curl;D)
ds+4τδ∗ max

0≤k≤K
‖ǫ1/2Ek

hξ‖2
L2(D)

,

where we used the arithmetic-geometric inequality in the second inequality.

By the definition of projection Πd
h and the property ∇×E

k− 1
2

hξ ⊆Uh, we have

Err2 =0, Err4 =0.

Using integration by parts, the following estimate [32, Lemma 3.16]:

∥∥∥u(tk−1)+u(tk)

2
− 1

τ

∫

Ik

u(s)ds
∥∥∥

L2(D)

≤τ3

4

∫ tk

tk−1

‖∂2
t u‖2

L2(D)ds, ∀ u∈H2((tk−1,tk);L
2(D)), (2.20)
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and the Cauchy-Schwarz inequality, we have

Err3 ≤2τ

(
∇×(H

k− 1
2 − 1

τ

∫

Ik

Hds),E
k− 1

2

hξ

)

≤2τCv

(
1

8δ∗
‖µ1/2(∇×H

k− 1
2 − 1

τ

∫

Ik

∇×Hds)‖2
L2(D)

+2δ∗‖ǫ1/2E
k− 1

2

hξ ‖2
L2(D)

)

≤2τCv

(
τ3

32δ∗

∫

Ik

‖µ1/2∇×(∂2
t H)‖2

L2(D)
ds+δ∗(‖ǫ1/2Ek

hξ‖2
L2(D)

+‖ǫ1/2Ek−1
hξ ‖2

L2(D)
)

)

≤ τ4Cv

16δ∗

∫

Ik

‖µ1/2∇×(∂2
t H)‖2

L2(D)
ds+4τδ∗Cv max

0≤k≤K
‖ǫ1/2Ek

hξ‖2
L2(D)

.

Using the Cauchy-Schwarz inequality and the interpolation error estimate (2.18), we have

Err5 ≤2τ‖∇×E
k− 1

2

hη ‖L2(D)‖H
k− 1

2

hξ ‖L2(D)

≤2τCv

(
1

8δ∗
‖ǫ1/2∇×E

k− 1
2

hη ‖2
L2(D)

+2δ∗‖µ1/2H
k− 1

2

hξ ‖2
L2(D)

)

≤ τCvCh2r

δ∗
‖ǫ1/2E‖2

L∞
(0,T;Hr

(curl;D))
+4τCvδ∗ max

0≤k≤K
‖µ1/2Hk

hξ‖2
L2(D)

.

By the Cauchy-Schwarz inequality and (2.20), we have

Err6 ≤2τCv

(
1

8δ∗
‖ǫ1/2(

1

τ

∫

Ik

∇×Eds−∇×E
k− 1

2 )‖2
L2(D)

+2δ∗‖µ1/2H
k− 1

2

hξ ‖2
L2(D)

)

≤ τ4Cv

16δ∗

∫

Ik

‖ǫ1/2∇×(∂2
t E)‖2

L2(D)
ds+4τCvδ∗ max

0≤k≤K
‖µ1/2Hk

hξ‖2
L2(D)

.

Substituting the above estimates of Erri into (2.16), then summing up the resultant from
k=1 to n≤K and using the fact that nτ≤T, we have

(‖ǫ
1
2 En

hξ‖2
L2(D)

−‖ǫ
1
2 E0

hξ‖2
L2(D)

)+(‖µ
1
2 Hn

hξ‖2
L2(D)

−‖µ
1
2 H0

hξ‖2
L2(D)

)

≤Ch2r

δ∗

∫ tn

0
‖ǫ1/2∂tE‖2

H r
(curl;D)

ds+4Tδ∗‖ǫ1/2Ehξ‖2
∞

+
τ4Cv

16δ∗

∫ tn

0
‖µ1/2∇×(∂2

t H)‖2
L2(D)

ds+4Tδ∗Cv‖ǫ1/2Ehξ‖2
∞

+
TCvCh2r

δ∗
‖ǫ1/2E‖2

L∞
(0,T;Hr

(curl;D))
+4TCvδ∗‖µ1/2Hhξ‖2

∞

+
τ4Cv

16δ∗

∫ tn

0
‖ǫ1/2∇×(∂2

t E)‖2
L2(D)

ds+4TCvδ∗‖µ1/2Hhξ‖2
∞, (2.21)

where we denote

‖ǫ1/2Ehξ‖∞ := max
0≤k≤K

‖ǫ1/2Ek
hξ‖, ‖µ1/2Hhξ‖∞ := max

0≤k≤K
‖µ1/2Hk

hξ‖L2(D).
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Taking the maximum of (2.21) with respect to n, then choosing δ∗ small enough (e.g.,
4Tδ∗max(1,Cv)≤ 1

3 ), we have

‖ǫ
1
2 Ehξ‖∞+‖µ

1
2 Hhξ‖∞

≤Chr(‖ǫ1/2∂tE‖L2
(0,T;Hr

(curl;D))
+‖ǫ1/2E‖L∞

(0,T;Hr
(curl;D))

)

+Cτ2(‖µ1/2∇×(∂2
t H)‖L2

(0,T;L2
(D))

+‖ǫ1/2∇×(∂2
t E)‖L2

(0,T;L2
(D))

). (2.22)

Using the interpolation error estimates (2.18)-(2.19), we obtain

‖ǫ
1
2 Ehη‖L2

(D)
+‖µ

1
2 Hhη‖L2

(D)

≤Chr(‖ǫ1/2E‖L∞
(0,T;Hr

(curl;D))
+‖µ1/2H‖L∞

(0,T;Hr
(curl;D))

). (2.23)

Combining the estimates of (2.22) and (2.23), and using the triangle inequality, we com-
plete the proof.

2.2 Analysis of single level Monte Carlo method

In practice, we are often interested in estimating the expected value (also known as ex-
pectation) of the random solutions. The expectation E[u] can be estimated by a sample
mean over the solution samples {ûi}, i=1,2,···M, corresponding to M i.i.d. realizations
of the random inputs:

E[u]≈EM[u] :=
1

M

M

∑
i=1

ûi. (2.24)

Here u can denote either the analytic solutions E and H , or the finite element solutions
Eh and Hh.

The following result was proved in [4] and gives a bound on the statistical error for
the Monte Carlo estimator (2.24).

Lemma 2.2. [4, Lemma 4.1] For any M∈N and u∈L2(U;L2(D)), we have

‖E[u]−EM [u]‖L2(D×U)≤
1√
M

‖u‖L2(D×U).

Remark 2.1. If we define the variance of a function u as

σ(u) :=
√

E[‖u‖2

L2
(D)

]−‖E[u]‖2

L2
(D)

,

then we have a more accurate statistical error estimate for the Monte Carlo method (cf.
the proof of [4, Lemma 4.1]):

‖E[u]−EM[u]‖L2(D×U)=
1√
M

σ(u).
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The single level Monte Carlo method is to find out the estimator EM[u] defined in
(2.24). To this end, we pick a sequence of i.i.d. sample points yi, i=1,2,···M, and compute
the corresponding numerical solution ûi of (2.5)-(2.6). The error estimate of single level
Monte Carlo finite element method is given by the following theorem:

Theorem 2.2. Under the same regularity assumptions given in Theorem 2.1, the single level
Monte Carlo method (2.5)-(2.6) satisfies the following error estimate: at any time step tk = kτ,
k=1,2,··· ,K, we have

‖E[E(tk)]−EM[Ek
h]‖L2(D×U)+‖E[H(tk)]−EM[Hk

h]‖L2(D×U)≤C(τ2+hr+M−1/2).

Proof. For simplicity, we denote Ek :=E(x,tk) and Hk :=H(x,tk).
Using Jensen’s inequality for the solution E, we have

‖E[E(tk)]−EM[Ek
h]‖L2(D×U)≤‖E[E(tk)]−E[Ek

h]‖L2(D×U)+‖E[Ek
h]−EM[Ek

h]‖L2(D×U)

≤E

[
‖E(tk)−Ek

h‖2

L2
(D)

]1/2

+‖E[Ek
h]−EM[Ek

h]‖L2(D×U),

which, along with a similar estimate for the solution H , leads to

‖E[E(tk)]−EM[Ek
h]‖L2(D×U)+‖E[H(tk)]−EM[Hk

h]‖L2(D×U)≤
√

2I+ I I, (2.25)

where we denote

I :=E

[
‖E(tk)−Ek

h‖2

L2
(D)

+‖H(tk)−Hk
h‖2

L2
(D)

]1/2

,

I I :=‖E[Ek
h]−EM[Ek

h]‖L2(D×U)+‖E[H k
h]−EM[Hk

h]‖L2(D×U).

The first term I in (2.25) measures the error of the finite element scheme and the second
term I I gives the statistical error. Note that the estimate of I is given by Theorem 2.1,
with the constant coefficient C independent of vector y after taking the mean.

To bound the term I I, we use Lemma 2.2 and Lemma 2.1 to obtain

ǫ−‖E[Ek
h]−EM[Ek

h]‖2
L2(D×U)+µ−‖E[H k

h]−EM[Hk
h]‖2

L2(D×U)

≤ 1

M

(∫

D

∫

U
ǫ|Ek

h|2+µ|Hk
h|2dydx

)

≤ 1

M

(∫

D

∫

U
ǫ|E0

h|2+µ|H0
h|2dydx

)
≤ 1

M

(
ǫ+‖E0

h‖2
L2(D×U)+µ+‖H0

h‖2
L2(D×U)

)
≤ C

M
.

This leads to I I≤CM−1/2. Substituting the estimates of I and I I into (2.25) concludes our
proof.
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2.3 Analysis of multi-level Monte Carlo method

For the multi-level Monte Carlo (MLMC) method we discretize the physical domain D
by a sequence of nested partitions {Tl}L

l=1 with corresponding mesh size hl and time step
τl, and then solve the finite element scheme (2.5)-(2.6) in the corresponding mixed finite
element spaces Uhl

and Vhl
. Introducing the notation u0 :=0, we can write

uL=
L

∑
l=1

(ul−ul−1),

where ul represents the solution obtained on mesh Tl.
By the linearity of expectation, we have

E[uL]=E

[
L

∑
l=1

(ul−ul−1)

]
=

L

∑
l=1

E[ul−ul−1].

In the MLMC method, we estimate E[ul−ul−1] by a level dependent number of samples
Ml, i.e, the MLMC estimator is given by:

E[uL]≈EML[u] :=
L

∑
l=1

EMl
[ul−ul−1] (2.26)

Theorem 2.3. Under the same assumptions as Theorem 2.2, the MLMC finite element solution
of (2.5)-(2.6) satisfies the following error estimate:

‖E[E(tk)]−EML[Ek
h]‖L2

(D×U)
+‖E[H(tk)]−EML[Hk

h]‖L2
(D×U)

≤C

(
τ2

L+hr
L+

L

∑
l=1

(hr
l +τ2

l )M−1/2
l

)
.

Proof. Similar to the proof of Theorem 2.2, we rewrite the error of E in two parts:

‖E[E(tk)]−EML[Ek
h]‖L2

(D×U)

=

∥∥∥∥∥E[E(tk)]−E[Ek
L]+E[Ek

L]−
L

∑
l=1

EMl
[Ek

l −Ek
l−1]

∥∥∥∥∥
L2

(D×U)

≤‖E[E(tk)]−E[Ek
L]‖L2

(D×U)
+

∥∥∥∥∥
L

∑
l=1

(
E[Ek

l −Ek
l−1]−EMl

[Ek
l −Ek

l−1]
)∥∥∥∥∥

L2
(D×U)

≤E

[
‖E(tk)−Ek

L‖2

L2
(D)

]1/2

+

∥∥∥∥∥
L

∑
l=1

(
E[Ek

l −Ek
l−1]−EMl

[Ek
l −Ek

l−1]
)∥∥∥∥∥

L2
(D×U)

.

Similar estimate holds true for H.



222 X. Wang, J. Li and Z. Fang / Commun. Comput. Phys., 29 (2021), pp. 211-236

Hence, we have

‖E[E(tk)]−EML[Ek
h]‖L2

(D×U)
+‖E[H(tk)]−EML[Hk

h]‖L2
(D×U)

≤
√

2I+ I I,

where we denote

I :=E

[
‖E(tk)−Ek

L‖2
L2(D)

+‖H(tk)−Hk
L‖2

L2(D)

]1/2
,

I I :=

∥∥∥∥∥
L

∑
l=1

(
E[Ek

l −Ek
l−1]−EMl

[Ek
l −Ek

l−1]
)∥∥∥∥∥

L2
(D×U)

+

∥∥∥∥∥
L

∑
l=1

(
E[H k

l −Hk
l−1]−EMl

[Hk
l −Hk

l−1]
)∥∥∥∥∥

L2
(D×U)

.

The error term I is the error caused by the finite element scheme, which is given by
Theorem 2.1.

To estimate term I I, by Lemma 2.2, for any 1≤ l≤M we have:

∥∥∥
(

E[Ek
l −Ek

l−1]−EMl
[Ek

l −Ek
l−1]
)∥∥∥

L2
(D×U)

+
∥∥∥
(

E[H k
l −Hk

l−1]−EMl
[Hk

l −Hk
l−1]
)∥∥∥

L2
(D×U)

=
∥∥∥(E−EMl

)[Ek
l −Ek

l−1]
∥∥∥

L2
(D×U)

+
∥∥∥(E−EMl

)[Hk
l −Hk

l−1]
∥∥∥

L2
(D×U)

≤M
− 1

2

l

(
‖Ek−Ek

l ‖L2
(D×U)

+‖Ek−Ek
l−1‖L2

(D×U)

+‖Hk−Hk
l ‖L2

(D×U)
+‖Hk−Hk

l−1‖L2
(D×U)

)

≤CM
− 1

2

l (hr
l +τ2

l +hr
l−1+τ2

l−1)≤CM
− 1

2

l (hr
l +τ2

l ).

Hence we have the error estimate for term I I: I I≤C∑
L
l=1(h

r
l +τ2

l )M
− 1

2

l , which, along with
the estimate of I, completes the proof.

3 Quasi-Monte Carlo finite element method

Due to the slow convergence of the classical Monte Carlo method, the quasi-Monte Carlo
methods have been proposed to solve stochastic elliptic equations (e.g., [11, 29]). In this
section, we will analyze the usage of this method for solving the stochastic Maxwell’s
equations. Instead of considering the expectation of E and H directly, we will find out
estimator of E[G1(E)] and E[G2(H)] respectively, where G1,G2 : L2(D) 7→ R are some
bounded linear functionals.



X. Wang, J. Li and Z. Fang / Commun. Comput. Phys., 29 (2021), pp. 211-236 223

3.1 QMC integration in the finite dimensional setting

For any function F defined on U=[0,1]n, consider the following integral

I(F) :=
∫

U
F(y)dy.

To approximate I(F), we use the N point QMC estimator given by

QN(F) :=
1

N

N

∑
i=1

F(y(i)),

where {y(i)}N
i=1 ⊂U is the set of points which needs to be chosen carefully. Here we just

focus on the shifted rank-1 lattice rules. In these rules, the quadrature points are given
by the following formula

y(i)= frac

(
iz

N
+∆

)
, i=1,2,···N,

where z∈Z
s is known as the generating vector, ∆∈ [0,1]s is the shift, and frac(·) means

taking the fractional part of each component in the vector. More details on the general
theory and choices of quadrature points for QMC lattice rules for the s-dimensional cube
can be found in [10, 11] and references therein.

To measure the error of this method, we need the following weighted and unan-
chored Sobolev space Ws,γ which is a Hilbert space containing functions defined over
U, equipped with the norm

‖F‖2
Ws,γ

:= ∑
u⊂{1:s}

γ−1
u

∫

[0,1]|u|

(∫

[0,1]s−|u|

∂|u|F
∂y

u

(y
u
;y{1:s}\u)dy{1:s}\u

)2

dy
u

= ∑
u⊆{1:s}

γ−1
u

∫

[0,1]|u|

(∫

[0,1]s−|u|
∂uF(y

u
;y{1:s}\u)dy{1:s}\u

)2

dy
u
,

where {1:s} is a shorthand notation for the set of indices {1,2,··· ,s}, ∂|u|F
∂y

u

and ∂uF denote

the mixed first derivative with respect to the active variables yj with j ∈ u, and y{1:s}\u
denotes the inactive variables yj with j 6∈u. And γu≥0 is a weight parameter associated
with each group of variables y

u
, with the convention that γ∅=1. If γu=0, then we expect

that the corresponding integral of the mixed first derivative is also zero, and we follow
the convention ”0/0=0”.

The weighted spaces was first introduced by Sloan and Woźniakowski [40] and later
generalized in many papers (e.g., [12, 39]). We now state the essential theorem for QMC
error estimate.
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Theorem 3.1. [28, Theorem 4.1] Let s,N ∈N be given, and assume F∈Ws,γ for a particular
choice of weights γ. Then a randomly shifted lattice rule can be constructed using a component-
by-component algorithm such that the root-mean-square error satisfies: for all λ∈ (1/2,1],

√
E

[
|I(F)−QN(F)|2

]
≤
(

∑
∅ 6=u⊆{1:s}

γλ
u

(
2ζ(2λ)

(2π2)λ

)|u|) 1
2λ

ϕ(N)−
1

2λ ‖F‖Ws,γ
, (3.1)

where E[·] denotes the expectation with respect to the random shift which is uniformly distributed
over U, ζ(·) is the Riemann zeta function, and ϕ(N) is the Euler totient function [28].

3.2 Regularity analysis with respect to the random vector

To obtain the error estimate for the QMC finite element method, we need the regularity
estimate for the solution of (1.1)-(1.4) with respect to the random vector.

First, we have the following energy conservation property.

Theorem 3.2. For the solution (E,H) of (1.1)-(1.4), we have: ∀ m≥0 and ∀t∈ [0,T],

(‖ǫ
1
2 ∂m

t E‖2

L2
(D×U)

+‖µ
1
2 ∂m

t H‖2

L2
(D×U)

)(t)=(‖ǫ
1
2 ∂m

t E‖2

L2
(D×U)

+‖µ
1
2 ∂m

t H‖2

L2
(D×U)

)(0),

here and below we denote ∂m
t :=∂tm for the m-th derivative with respect to variable t.

Proof. When m= 0, the proof is the same as that of [30, Lemma 2.1] even when ǫ and µ
depend on spatial variable x.

For any m≥ 1, taking the m-th time derivative of (1.1) and (1.2), multiplying the re-
spective result by ∂m

t E and ∂m
t H, then integrating over Ω and D, and adding the results

together, we obtain

1

2

d

dt

(
‖ǫ

1
2 ∂m

t E‖2

L2
(D×U)

+‖µ
1
2 ∂m

t H‖2

L2
(D×U)

)

=
∫

U

∫

D
∇×∂m

t H ·∂m
t E dxdy−

∫

U

∫

D
∇×∂m

t E·∂m
t H dxdy

=−
∫

U

∫

∂D
(n×∂m

t E)·∂m
t H dsdy

=−
∫

U

∫

∂D
∂m

t (n×E)·∂tm H dsdy=0, (3.2)

where we used the PEC boundary condition (1.3) in the last step. Integrating (3.2) from
t=0 to any time t concludes the proof.

With Theorem 3.2, we can prove the following bound for the first derivative of the
solution with respect to the random vector.
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Theorem 3.3. Denote constant C
ǫµ
s := |ǫ−1∂s

yi
ǫ|L∞(D×U)+|µ−1∂s

yi
µ|L∞(D×U) for any integer

s≥1. Then for solution (E,H) of (1.1)-(1.4), we have: for any t∈ [0,T] and yi,

(‖ǫ
1
2 ∂yi

E‖2

L2
(D×U)

+‖µ
1
2 ∂yi

H‖2

L2
(D×U)

)(t)

≤
[

tC
ǫµ
1 (‖ǫ

1
2 ∂tE‖2

L2
(D×U)

+‖µ
1
2 ∂t H‖2

L2
(D×U)

)(0)

+(‖ǫ
1
2 ∂yi

E‖2

L2
(D×U)

+‖µ
1
2 ∂yi

H‖2

L2
(D×U)

)(0)

]
exp(tC

ǫµ
1 ).

Proof. Differentiating (1.1) and (1.2) with respect to yi, respectively, we have

ǫ∂t∂yi
E+∂yi

ǫ·∂tE=∇×∂yi
H , (3.3)

µ∂t∂yi
H+∂yi

µ·∂t H=−∇×∂yi
E. (3.4)

Multiplying (3.3) and (3.4) by ∂yi
E and ∂yi

H, respectively, then integrating over U and D,
and adding the resultants together, we obtain

1

2

d

dt

(
‖ǫ

1
2 ∂yi

E‖2

L2
(D×U)

+‖µ
1
2 ∂yi

H‖2

L2
(D×U)

)

=
∫

U

∫

D

(
−∂yi

ǫ·∂tE+∇×∂yi
H
)
·∂yi

E dxdy−
∫

U

∫

D

(
∂yi

µ·∂t H+∇×∂yi
E
)
·∂yi

H dxdy

=−
∫

U

∫

D
∂yi

ǫ·∂tE ·∂yi
E dxdy−

∫

U

∫

D
∂yi

µ·∂t H ·∂yi
H dxdy, (3.5)

where we used integration by parts and the PEC boundary condition (1.3) in the last step,
i.e.,
∫

U

∫

D
∇×∂yi

E·∂yi
H=

∫

U

∫

∂D
n×∂yi

E·∂yi
H+

∫

U

∫

D
∂yi

E ·∇×∂yi
H =

∫

U

∫

D
∂yi

E·∇×∂yi
H.

By the Cauchy-Schwarz inequality, from (3.5) we have

1

2

d

dt

(
‖ǫ

1
2 ∂yi

E‖2

L2
(D×U)

+‖µ
1
2 ∂yi

H‖2

L2
(D×U)

)

≤|ǫ−1∂yi
ǫ|L∞(D×U)

1

2
(‖ǫ

1
2 ∂tE‖2

L2
(D×U)

+‖ǫ
1
2 ∂yi

E‖2

L2
(D×U)

)

+|µ−1∂yi
µ|L∞(D×U)

1

2
(‖µ

1
2 ∂tH‖2

L2
(D×U)

+‖µ
1
2 ∂yi

H‖2

L2
(D×U)

)

≤C
ǫµ
1 · 1

2
(‖ǫ

1
2 ∂tE‖2

L2
(D×U)

+‖µ
1
2 ∂tH‖2

L2
(D×U)

)(0)

+C
ǫµ
1 · 1

2
(‖ǫ

1
2 ∂yi

E‖2

L2
(D×U)

+‖µ
1
2 ∂yi

H‖2

L2
(D×U)

),

where we used the notation of C
ǫµ
1 and Theorem 3.2 in the last step.

Using the Gronwall inequality to the last inequality concludes the proof.
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By the same technique, we can prove the following bound for the higher order deriva-
tives of the solution with respect to the random vector.

Theorem 3.4. For the solution (E,H) of (1.1)-(1.4) and any |m|≥1, we have: ∀ t∈ [0,T],

(‖ǫ
1
2 ∂

|m|
y E‖2

L2
(D×U)

+‖µ
1
2 ∂

|m|
y H‖2

L2
(D×U)

)(t)

≤exp

(
t ∑

1≤|s|≤|m|

(
m

s

)
C

ǫµ
s

)
·
[
(‖ǫ

1
2 ∂

|m|
y E‖2

L2
(D×U)

+‖µ
1
2 ∂

|m|
y H‖2

L2
(D×U)

)(0)

+
∫ t

0
∑

1≤|s|≤|m|

(
m

s

)
C

ǫµ
s (‖ǫ

1
2 ∂

|m|−|s|
y ∂tE‖2

L2
(D×U)

+‖µ
1
2 ∂

|m|−|s|
y ∂t H‖2

L2
(D×U)

)dt

]
,

where we denote ∂
|m|
y = ∂m1

y1
···∂mn

yn
and (ms ) = Πn

j=1(
m j
s j
) for any m = (m1,··· ,mn) and s =

(s1,··· ,sn) with mi and si either 0 or 1.

Proof. Taking the |m|-th mixed derivative of (1.1) and (1.2) with respect to y1,··· ,yn, re-
spectively, we have

ǫ∂t(∂
|m|
y E)=∇×∂

|m|
y H− ∑

1≤|s|≤|m|

(
m

s

)
∂
|s|
y ǫ∂

|m|−|s|
y ∂tE, (3.6)

µ∂t(∂
|m|
y H)=−∇×∂

|m|
y E− ∑

1≤|s|≤|m|

(
m

s

)
∂
|s|
y µ∂

|m|−|s|
y ∂t H. (3.7)

Multiplying (3.6) and (3.7) by ∂
|m|
y E and ∂

|m|
y H, respectively, then integrating over U and

D, and adding the resultants together, we easily obtain

1

2

d

dt

(
‖ǫ

1
2 ∂

|m|
y E‖2

L2
(D×U)

+‖µ
1
2 ∂

|m|
y H‖2

L2(D×U)

)

=−
∫

U

∫

D
∑

1≤|s|≤|m|

(
m

s

)
∂
|s|
y ǫ∂

|m|−|s|
y ∂tE·∂|m|

y E dxdy

−
∫

U

∫

D
∑

1≤|s|≤|m|

(
m

s

)
∂
|s|
y µ∂

|m|−|s|
y ∂t H ·∂m

y H dxdy

≤ ∑
1≤|s|≤|m|

(
m

s

)
C

ǫµ
s · 1

2
(‖ǫ

1
2 ∂

|m|−|s|
y ∂tE‖2

L2
(D×U)

+‖µ
1
2 ∂

|m|−|s|
y ∂tH‖2

L2
(D×U)

)

+ ∑
1≤|s|≤|m|

(
m

s

)
C

ǫµ
s · 1

2
(‖ǫ

1
2 ∂

|m|
y E‖2

L2
(D×U)

+‖µ
1
2 ∂

|m|
y H‖2

L2
(D×U)

), (3.8)

which, along with the Gronwall inequality, completes the proof.
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Note that Theorem 3.4 involves the estimate ‖ǫ
1
2 ∂

|m|−|s|
y ∂tE‖2

L2(D×U)
and

‖µ
1
2 ∂

|m|−|s|
y ∂t H‖2

L2(D×U)
, which can be bounded as below.

Theorem 3.5. For the solution (E,H) of (1.1)-(1.4) and any |m|,n≥1, we have: ∀ t∈ [0,T],

(‖ǫ
1
2 ∂

|m|
y ∂n

t E‖2

L2
(D×U)

+‖µ
1
2 ∂

|m|
y ∂n

t H‖2

L2
(D×U)

)(t)

≤exp(t ∑
1≤|s|≤|m|

(
m

s

)
C

ǫµ
s )·

[
(‖ǫ

1
2 ∂

|m|
y ∂n

t E‖2

L2
(D×U)

+‖µ
1
2 ∂

|m|
y ∂n

t H‖2

L2
(D×U)

)(0)

+
∫ t

0
∑

1≤|s|≤|m|

(
m

s

)
C

ǫµ
s (‖ǫ

1
2 ∂

|m|−|s|
y ∂n+1

t E‖2

L2
(D×U)

+‖µ
1
2 ∂

|m|−|s|
y ∂n+1

t H‖2

L2
(D×U)

)dt

]
.

Proof. Taking the n-th derivative of (3.6) and (3.7) with respect to t, respectively, we have

ǫ∂t(∂
|m|
y ∂n

t E)=∇×∂
|m|
y ∂n

t H− ∑
1≤|s|≤|m|

(
m

s

)
∂
|s|
y ǫ∂

|m|−|s|
y ∂n+1

t E, (3.9)

µ∂t(∂
|m|
y ∂n

t H)=−∇×∂
|m|
y ∂n

t E− ∑
1≤|s|≤|m|

(
m

s

)
∂
|s|
y µ∂

|m|−|s|
y ∂n+1

t H. (3.10)

Multiplying (3.9) and (3.10) by ∂
|m|
y ∂n

t E and ∂
|m|
y ∂n

t H, respectively, then following the

proof of Theorem 3.4, we easily conclude the proof.

Using Theorem 3.2, and Theorem 3.5 recursively in Theorem 3.4, we can see that the

higher order derivatives (‖ǫ
1
2 ∂

|m|
y E‖2

L2
(D×U)

+‖µ
1
2 ∂

|m|
y H‖2

L2
(D×U)

)(t) can be bounded by

a linear combination of the initial values:

‖ǫ
1
2 ∂

|m|
y E‖2

L2
(D×U)

(0), ‖µ
1
2 ∂

|m|
y H‖2

L2
(D×U)

(0), (3.11)

‖∂
|s|
y ∂l

tE‖2

L2
(D×U)

(0), ‖∂
|s|
y ∂l

tH‖2

L2
(D×U)

(0), ∀ 1≤ l≤|m|, 1≤|s|+l≤|m|. (3.12)

But an explicit expression for the bound is too complicated to write down due to the
recursive dependence. Below we illustrate the exact bound for m=2.
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Theorem 3.6. For the solution (E,H) of (1.1)-(1.4) and any t∈ [0,T], we have:

(‖ǫ
1
2 ∂2

yE‖2

L2
(D×U)

+‖µ
1
2 ∂2

yH‖2

L2
(D×U)

)(t)

≤exp(t(2C
ǫµ
1 +C

ǫµ
2 ))

{
(‖ǫ

1
2 ∂2

yE‖2

L2
(D×U)

+‖µ
1
2 ∂2

yH‖2

L2
(D×U)

)(0)

+2exp(tC
ǫµ
1 )

[
(‖ǫ

1
2 ∂y∂tE‖2

L2
(D×U)

+‖µ
1
2 ∂y∂tH‖2

L2
(D×U)

)(0)

+tC
ǫµ
1 (‖ǫ

1
2 ∂2

t E‖2

L2
(D×U)

+‖µ
1
2 ∂2

t H‖2

L2
(D×U)

)(0)

]

+tC
ǫµ
2 (‖ǫ

1
2 ∂tE‖2

L2
(D×U)

+‖µ
1
2 ∂tH‖2

L2
(D×U)

)(0)

}
.

Proof. Using Theorem 3.4 for m=2, we have

(‖ǫ
1
2 ∂2

yE‖2

L2
(D×U)

+‖µ
1
2 ∂2

yH‖2

L2
(D×U)

)(t)

≤exp(t(2C
ǫµ
1 +C

ǫµ
2 ))·

{
(‖ǫ

1
2 ∂2

yE‖2

L2
(D×U)

+‖µ
1
2 ∂2

yH‖2

L2
(D×U)

)(0)

+
∫ t

0

[
2C

ǫµ
1 (‖ǫ

1
2 ∂y∂tE‖2

L2
(D×U)

+‖µ
1
2 ∂y∂t H‖2

L2
(D×U)

)

+C
ǫµ
2 (‖ǫ

1
2 ∂tE‖2

L2
(D×U)

+‖µ
1
2 ∂t H‖2

L2
(D×U)

)

]
dt

}
. (3.13)

To bound the ∂y∂tE and ∂y∂tH terms in (3.13), we use Theorem 3.5 with m = n = 1 to
obtain

(‖ǫ
1
2 ∂y∂tE‖2

L2
(D×U)

+‖µ
1
2 ∂y∂tH‖2

L2
(D×U)

)(t)

≤exp(tC
ǫµ
1 )·

[
(‖ǫ

1
2 ∂y∂tE‖2

L2
(D×U)

+‖µ
1
2 ∂y∂tH‖2

L2
(D×U)

)(0)

+
∫ t

0
C

ǫµ
1 (‖ǫ

1
2 ∂2

t E‖2

L2
(D×U)

+‖µ
1
2 ∂2

t H‖2

L2
(D×U)

)dt

]

≤exp(tC
ǫµ
1 )·

[
(‖ǫ

1
2 ∂y∂tE‖2

L2
(D×U)

+‖µ
1
2 ∂y∂tH‖2

L2
(D×U)

)(0)

+tC
ǫµ
1 (‖ǫ

1
2 ∂2

t E‖2

L2
(D×U)

+‖µ
1
2 ∂2

t H‖2

L2
(D×U)

)(0)

]
, (3.14)

where in the last step we used Theorem 3.2 with m=2.
Substituting (3.14) into (3.13) and using the following estimates
∫ t

0
C

ǫµ
1 etC

ǫµ
1 dt= etC

ǫµ
1 −1≤ etC

ǫµ
1 ,

∫ t

0
tC

ǫµ
1 etC

ǫµ
1 dt= tetC

ǫµ
1 − 1

C
ǫµ
1

(etC
ǫµ
1 −1)≤ tetC

ǫµ
1 ,

we conclude the proof.
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3.3 The error estimate

In this subsection, we are going to find out the error G1(E(·,y)−Eh(·,y)) and G2(H(·,y)−
Hh(·,y)) where y∈U is given and Eh(·,y) and Hh(·,y) are the finite element solutions of
(2.5)-(2.6).

Theorem 3.7. Under the same conditions as Theorem 3.1, we have the following error estimate
√

E

[∣∣∣I(G1(E))−QN(G1(E
k
h))
∣∣∣
2
+
∣∣∣I(G2(H))−QN(G2(Hk

h))
∣∣∣
2
]
≤C

(
hr+τ2+ϕ(M)−

1
2λ

)
.

Proof. By the triangle inequality, we have

E

[∣∣∣I(G1(E))−QN(G1(E
k
h))
∣∣∣
2
+
∣∣∣I(G2(H))−QN(G2(Hk

h))
∣∣∣
2
]
≤Err1+Err2,

where

Err1 =2E
[
|(I−QN)(G1(E))|2+|(I−QN)(G2(H))|2

]
,

Err2 =2E

[
QN(G1(E−Ek

h))
2+QN(G2(H−Hk

h))
2
]

.

The first term, which is the statistical error of QMC, can be estimated by Theorem 3.1. In
fact, by Theorem 3.1 and the derivative estimates given by Theorems 3.4-3.5, we have

E

[
|(I−QN)(G1(E))|2

]
≤Cϕ(M)−

1
λ ‖E‖2

Ws,γ
≤Cϕ(M)−

1
λ .

Using the similar estimates for H, we have

Err1 ≤Cϕ(M)−
1
λ .

For the second term, we first notice that G1 and G2 are bounded on L2(D):

|G1(E−Ek
h)|≤‖G1‖(L2

(D))∗
‖E−Ek

h‖L2
(D)

, |G2(H−Hk
h)|≤‖G2‖(L2

(D))∗
‖H−Hk

h‖L2
(D)

.

Applying the property that the QMC quadrature weights 1/N are positive and have a
sum 1, we obtain

E

[
QN(G1(E−Ek

h))
2
]
≤E

[
QN

(
‖G1‖(L2

(D))∗
‖E−Ek

h‖L2
(D)

)2
]

≤C‖E−Ek
h‖2

L2
(D)

≤C(τ2+hr)2.

Hence, by Theorem 2.1 we have

Err2 ≤C(‖E−Ek
h‖2

L2
(D)

+‖H−Hk
h‖2

L2
(D)

)≤C(τ2+hr)2.

Combining the estimates Err1 and Err2 together, we complete the proof.
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4 Numerical experiments

In this section, we present three numerical examples to verify our analysis. Note that the
3D theoretical analyses also hold true for 2D problems by interpreting the curl operators
differently for 2D vectors and scalars, since for 2D problem one unknown is a vector and
another unknown becomes a scalar. As shown in Section 2.1, we will apply the Crank-
Nicolson scheme for the TEz mode, which has unknowns as electric field E :=(Ex1

,Ex2)
and magnetic field H, with the lowest order edge element on the triangular mesh. We
will compute the sample means by using the single level Monte Carlo, multi-level Monte
Carlo and QMC methods, respectively.

To test the convergence rate with an exact solution, we add additional source terms to
the original governing equations. More specifically, we solve the following mixed finite
element scheme: for any k≥1, find Ek

h :=(Ek
x1,h,Ek

x2,h)∈V 0
h, Hk

h ∈Uh such that

(ǫEk
h,φh)−

τ

2
(Hk

h,∇×φh)=(ǫEk−1
h ,φh)+

τ

2
(Hk−1

h ,∇×φh)+τ( f k−1/2,φh),

(µHk
h,ψh)+

τ

2
(∇×Ek

h,ψh)=(µHk−1
h ,ψh)−

τ

2
(∇×Ek−1

h ,ψh)+τ(gk−1/2,ψh)

hold true for any φh ∈V0
h and ψh ∈Uh, where f and g are the added source terms. The

finite element spaces Uh and V h on a regular triangular mesh Th of the domain D=[0,1]2

are given as follows:

Uh={ψh ∈L2(Ω) : ψh|e is a constant, ∀e∈Th},

V h={φh ∈H(curl;Ω) : φh|e ∈ span{φ i∇φj−φj∇φi}, i, j=1,2,3, ∀e∈Th},

where φi denotes the barycentric coordinates of a triangular element e. To impose the 2D
perfect conducting boundary condition, we introduce the subspace

V0
h={φh ∈V h : τ̂ ·φh=0, on ∂Ω},

where τ̂ is the unit tangential vector on ∂Ω.

4.1 Single level Monte Carlo Method

For this example, we adopt the following random coefficients and exact solutions: for
any t∈ (0,1],

ǫ(x,y)=1+0.01(y1x1+y2x2+y3x2
1+y4x2

2+y5x1x2+y6x3
1),

µ(x,y)=1+0.01(y1x2+y2x1+y3x2
2+y4x2

1+y5x1x2+y6x3
2),

Ex(x,y)=sin(πx1)cos(πx2)e
−πt(ǫ+2µ),

Ey(x,y)=−cos(πx1)sin(πx2)e
−πt(2ǫ+µ),

H(x,y)=sin(πx1)sin(πx2)e
−πt(ǫ−2µ),
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Table 1: Errors of (Ex1 ,Ex2 ,H) obtained by the single level Monte Carlo method with the lowest edge element.

Mesh
∥∥E[E(T)]−EM[Ek

h]
∥∥

l2(D)
Rate

∥∥E[H(T)]−EM[Hk
h]
∥∥

l2(D)
Rate CPU time(s)

N=2 2.025681E−01 - 9.855452E−01 - 0.57096

N=4 8.016480E−02 1.9413 2.456558E−01 1.9868 13.29811

N=8 1.846385E−02 2.0869 6.260263E−02 1.9837 540.99794

N=16 4.241596E−03 2.0654 1.580314E−02 1.9891 43986.39742

N=32 1.053961E−03 2.0088 3.972438E−03 1.9921 258671.07102

where x=(x1,x2)∈D and y=(y1,··· ,y6)∈U=[0,1]6, i.e., yi are uniformly distributed ran-
dom variables. The source functions f and g are obtained by plugging the exact solutions
Ex,Ey,H into the governing equations.

To test the convergence rate, we set the number of samples for Monte Carlo test as M=
N4, where N is the number of partition D in both x and y-direction, i.e., we first partition
D into N×N rectangles, then partition each rectangle into two triangles by connecting
the diagonals. The total number of time steps is chosen as N also. All the numerical
tests have been carried out by using the FEniCS package (https://fenicsproject.org/) on
a 2017 MacBook Pro laptop with a 2.8 GHz Intel Core i7 processor and a memory of 16 GB
2133 MHz LPDDR3. The discrete l2(D) errors between the expectation of exact solution
and the sample mean of numerical solution at the final time T=1 is computed to check
our theoretical convergence rate given in Theorem 2.2.

Table 1 shows clearly that both the errors of E and H are second order, which
is due to the superconvergence phenomenon obtained for the lowest order triangular
edge element [22]. Note that the finest mesh numerical test needs to solve the prob-
lem 324=1,048,576 times, which takes about 72 hours, which shows that the simple level
Monte Carlo method is unpractically slow. Later, we will show that the multi-level Monte
Carlo and QMC methods are much more efficient than the simple level Monte Carlo
method.

To further confirm our theoretical analysis, we resolve this example by using one
order higher basis functions, i.e., a second order edge element for the electric field and
linear Lagrange element for the magnetic field. The numerical results are presented in
Table 2, which clearly shows the second order error estimate for both E and H. This is
consistent with Theorem 2.2.

4.2 Multi-level Monte Carlo Method

We repeat the last numerical example by using the multi-level Monte Carlo method an-
alyzed in Section 2.3 and compute the sample mean by the telescope series of (2.26). At
level l of each numerical test, we set hl =τl =1/2l and Ml =16L−l l2, where l=1,··· ,L. We
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Table 2: Errors of (Ex1 ,Ex2 ,H) obtained by the single level Monte Carlo method with the second order edge
element.

Mesh
∥∥E[E(T)]−EM[Ek

h]
∥∥

L2(D)
Rate

∥∥E[H(T)]−EM[Hk
h]
∥∥

L2(D)
Rate CPU time(s)

N=2 1.467381E−01 - 5.914026E−01 - 0.53130

N=4 3.563603E−02 2.0418 1.550685E−01 1.9312 15.71102

N=8 9.159853E−03 2.0009 3.790434E−02 1.9819 733.77024

N=16 2.232569E−03 2.0075 9.409349E−03 1.9954 67682.74943

Table 3: Errors of (Ex1 ,Ex2 ,H) obtained by the multi-level Monte Carlo method.

Mesh
∥∥E[E(T)]−EM[Ek

h]
∥∥

l2(D)
Rate

∥∥E[H(T)]−EM[Hk
h]
∥∥

l2(D)
Rate CPU time(s)

L=1 8.022609E−02 - 2.464436E−01 - 0.61908

L=2 1.866771E−02 1.8555 6.106013E−02 2.0151 23.07685

L=3 4.516066E−03 1.7770 1.496582E−02 2.0165 437.75725

L=4 1.758842E−03 1.7113 3.842888E−03 2.0196 27501.86158

L=5 4.211790E−04 2.0621 9.102927E−04 2.0778 69150.66038

choose the parameters to obtain O((hL)
2) convergence, since

L

∑
l=1

h2
l M−1/2

l =
L

∑
l=1

h2
L

( hl

hL

)2
M−1/2

l =h2
L

L

∑
l=1

(2L

2l

)2
(16L−ll2)−1/2=h2

L

L

∑
l=1

l−1=O(h2
L).

As we can see from Table 3, the errors are still second order, which verifies Theorem
2.3. For the finest mesh case (L=5), it requests total ∑

5
l=1 Ml =84,510 Monte Carlo tests.

Compared to the single level method, this saves a lot in the computational time as shown
in Table 3.

4.3 The QMC method

This test is used to verify Theorem 3.7. We used the shifted lattice rule to generate the
quasi random sequence on [0,1]6. Since the theoretical convergent results of QMC in this
case is of O(M−1+ǫm) where 0< ǫm ≪ 1 (see [29]), we just take the total QMC test times
M= N2 for each test, where N is the spatial and temporal partition number. As shown
in Table 4, both the convergence rates of E and H are about second order. Note that the
QMC sample for the finest temporal and spatial mesh is only M= 322 = 1,024, which is
much lower than both the single level and multi-level Monte Carlo methods.
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Table 4: Errors of (Ex1 ,Ex2 ,H) obtained by the QMC method.

Mesh
∥∥E[E(T)]−EM[Ek

h]
∥∥

L2(D)
Rate

∥∥E[H(T)]−EM[Hk
h]
∥∥

L2(D)
Rate CPU time(s)

N=2 2.022678E−01 - 9.852111E−01 - 0.13250

N=4 8.019398E−02 1.9454 2.455848E−01 1.9872 0.71975

N=8 1.843664E−02 2.0936 6.260027E−02 1.9844 8.207584

N=16 4.244253E−03 2.0758 1.580382E−02 1.9903 165.89224

N=32 1.037406E−03 2.0325 3.965429E−03 1.9947 4970.95464

5 Conclusion

In this paper, we have investigated the single level and multi-level Monte Carlo methods
and the quasi-Monte Carlo method for solving the time-dependent Maxwell’s equations
with random inputs. The convergences of all methods have been established. Note that
the QMC method’s convergence rate depends on the regularity or smoothness of the
random inputs. Numerical results supporting the analysis are presented. As for future
work, we plan to consider higher order QMC rules such as the multi-level QMC, and
applications to practical uncertainty quantification problems for Maxwell’s equations.
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