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A COMPACT FINITE DIFFERENCE SCHEME FOR THE

FOURTH-ORDER TIME MULTI-TERM FRACTIONAL

SUB-DIFFUSION EQUATIONS WITH THE FIRST

DIRICHLET BOUNDARY CONDITIONS
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Abstract. In this paper, a finite difference scheme is established for solving the fourth-order time

multi-term fractional sub-diffusion equations with the first Dirichlet boundary conditions. Using
the method of order reduction, the original problem is equivalent to a lower-order system. Then
the system is considered at some particular points, and the first Dirichlet boundary conditions
are also specially handled, so that the global convergence of the presented difference scheme

reaches O(τ2 + h4), with τ and h the temporal and spatial step size, respectively. The energy
method is used to give the theoretical analysis on the stability and convergence of the difference
scheme, where some novel techniques have been applied due to the non-local property of fractional
operators and the numerical treatment of the first Dirichlet boundary conditions. Numerical

experiments further validate the theoretical results.

Key words. Multi-term, fractional sub-diffusion equations, the first Dirichlet boundary condi-
tions, stability, convergence.

1. Introduction

With the development of science and technology, fractional differential equations
are widely used in scientific research and engineering applications. Many phenom-
ena in the fields of astronomy [1], finance [2], medicine [3], physics [4], etc. can
use fractional differential equations to build models. Therefore, the theoretical re-
searches and applications of fractional differential equations have become one of
the hot issues of recent concern, which has the widespread good prospects for de-
velopment. Since the solutions to many fractional differential equations cannot
be accurately obtained or the form of the solution is relatively complicated, the
numerical results are particularly important.

When the first-order or second-order time derivatives in the classical diffusion
wave equation are replaced by fractional derivatives, the fractional diffusion wave
equations are obtained. In recent years, many scholars have done a lot of re-
searches on the second-order time fractional diffusion equations. Sun and Wu [5]
analyzed the truncation errors of the L1 numerical approximation formula by us-
ing linear interpolation for the Caputo fractional derivative and then constructed
a fully discrete difference scheme for the fractional wave equations by introducing
new variables to convert the original system of equations into a lower-order system.
The stability and convergence of the difference scheme were proved by the energy
method. Based on the previous content, the numerical results in the case of the slow
diffusion system were also briefly discussed. Du, Cao and Sun [6] further proposed
the high order difference method for the fractional wave equations to improve the
convergence order in space to the fourth-order. Gao and Sun [7] proposed a com-
pact difference scheme for time fractional diffusion equations, where the stability
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and unconditional convergence of the scheme were shown by defining a new inner
product. By selecting σ = 1 − α

2 , Alikhanov [8] obtained the L2 − 1σ formula to
approximate the values of Caputo derivatives at some particular points and proved
that the truncation error of this formula is O(τ3−α), with α the order of the frac-
tional derivative. Based on this formula, the finite difference scheme for the time
fractional diffusion equation was established with the convergence accuracy of order
two in both time and space. Vong and Lyu [9] proposed a finite difference scheme
for a time-fractional Burgers-type equation, where the highlight of the scheme was
that there is no need to use iterative methods to find the approximate solutions,
and the unconditional stability together with convergence were proved.

For some physical phenomena, it is often not enough to describe these phenom-
ena by the second-order spatial derivative term, hence the fourth-order derivative
term in space need be introduced. By using the finite sine transform technique,
Agrawal [10] converted a fractional differential equation from a space domain to a
wave number domain and obtained the solutions to fourth-order fractional diffusion-
wave equations by the method of inverse Laplace and inverse finite sine transforms.
Hu and Zhang [11] applied the extrapolation technique to establish a compact dif-
ference scheme for solving the fourth-order fractional diffusion wave equations, and
in Ref. [12], using the method of order reduction, an implicit compact difference
scheme for the fourth-order fractional diffusion-wave equations was obtained. Wei
and He [13] introduced a fully discrete local discontinuous Galerkin finite element
method based on a finite difference discretization in time and local discontinuous
Galerkin method in space for fourth-order time fractional equations and proved its
unconditional stability and convergence. Yao and Wang [14] established a finite dif-
ference scheme with global convergence order O(τ2+h4) for fourth-order fractional
diffusion equations with Neumann boundary conditions by the special handling of
the Neumann boundary condition. Liu et al. [15] proposed a finite element algo-
rithm for solving nonlinear time fractional diffusion equations with the fourth-order
derivative term.

The fractional diffusion wave equation plays an important role in the field of
anomalous diffusion, especially the case with the time multi-term fractional deriva-
tives. It’s often called the multi-term fractional diffusion-wave equation. Jiang et
al. [16] used the method of separation of variables to present the analytical solu-
tions to the multi-term time-fractional diffusion-wave equation and the multi-term
time-fractional diffusion equation. Liu et al. [17] investigated two implicit numer-
ical methods to simulate the two-term mobile/immobile time fractional diffusion
equation and the two-term time fractional diffusion equation, where the predictor-
corrector method to solve the multi-term time fractional diffusion equations was
proposed and the strict theoretical analysis was provided. Ren and Sun [18] ob-
tained the difference scheme for solving one-dimensional and two-dimensional multi-
term time fractional diffusion-wave equations by using the L1 approximation for the
multi-term time Caputo fractional derivatives. Gao, Alikhanov and Sun [19] con-
sidered the interpolation approximation of the multi-term fractional derivatives at
some special points and established a numerical algorithm for solving time multi-
term fractional diffusion equations. Wei [20] established a fully discrete scheme
using local discontinuous Galerkin method in space and classical L1 approximation
in time and proved the stability and convergence of the resultant scheme. By ex-
tending the domain of the fractional Laplacian to a Banach space and using the
multivariate Mittag-Leffler function, Sin, Ri and Kim [21] obtained the analytical
solutions to the multi-term fractional diffusion equation. Reutskiy [22] introduced
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the backward substitution method for solving fractional partial differential equa-
tions. The method is based on the Fourier series expansion along the spatial coordi-
nate that transforms the original equation into a sequence of multi-term fractional
ordinary differential equations. Zaky [23] handled the multi-term time fractional
diffusion equations by using a Legendre spectral tau method.

It can be found that there are limited works dealing with the fourth-order
sub-diffusion equations with the first Dirichlet boundary conditions. Vong and
Wang [24] derived a compact difference scheme to solve the problem, and the sta-
bility as well as the convergence were proved. Ji, Sun and Hao [25] presented a
different way to numerically solve the same problem, where the method of order
reduction was used and the special treatment of the first Dirichlet boundary con-
ditions was introduced. It’s noted that both Refs. [24] and [25] handle the problem
with the single-term time fractional derivative, which was approximated by the L1
formula, and the convergence order of the resultant schemes in time was less than
two. Different from the previous works, for the the fourth-order time multi-term
fractional sub-diffusion equations with the first Dirichlet boundary conditions, in
the present work, we are devoted to find the higher-order numerical solutions for
the problem by the special handling of boundary conditions and higher-order ap-
proximation for the multi-term time fractional derivatives. The main advantages
of the current work include:

• The multi-term time-fractional derivatives are discretized at some special
points based on the interpolation approximation developed in Ref. [19],
instead of the L1 approximation used in Refs. [24] and [25]. Then the
global second-order convergence of the algorithm in time can be achieved.

• The first Dirichlet boundary conditions are handled skillfully to match the
global fourth-order accuracy of the proposed scheme in space by defining
a new and simple average operator, which is also different from some ways
exsiting in the previous works.

• The error estimation on the developed scheme is proceeded successfully
by the energy method. One can find that the essential difference between
error estimation of single-term and multi-term time-fractional parabolic
equations lies in Lemma 4.3, which plays a key role in the current proof.
The difficulty in the proof of this lemma is to show the truth of (2σ −
1)ĉ

(n)
0 − σĉ

(n)
1 > 0, which has been illustrated using some novel techniques

in Ref. [19]. In addition, the difficulty caused by the numerical treatment
of the first Dirichlet boundary conditions in the analysis has been overcome
with the help of ε-inequality and Lemma 4.1.

The outline of this paper is as follows: Section 2 is devoted to some necessary
preliminaries before the construction of the difference scheme. In Section 3, a
compact finite difference scheme is derived for the fourth-order time multi-term
fractional sub-diffusion equations with the first Dirichlet boundary conditions. The
stability and convergence of the scheme are rigorously proved by the energy method
in Section 4. In Section 5, some numerical examples are provided to further validate
our theoretical results. A brief conclusion ends this work finally.
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2. Preliminaries

In the present work, we consider the following fourth-order time multi-term
fractional sub-diffusion equations with the first Dirichlet boundary conditions:

m∑
r=0

λr
C
0 D

αr
t u(x, t) +

∂4u(x, t)

∂x4
+ qu(x, t) = f(x, t), x ∈ (0, L), t ∈ (0, T ],(1)

u(0, t) = g1(t), u(L, t) = g2(t), t ∈ (0, T ],(2)

∂u(0, t)

∂x
= γ1(t),

∂u(L, t)

∂x
= γ2(t), t ∈ (0, T ],(3)

u(x, 0) = ϕ(x), x ∈ [0, L],(4)

where g1(0) = ϕ(0), g2(0) = ϕ(L), ϕ′(0) = γ1(0), ϕ
′(L) = γ2(0), 0 ≤ αm < αm−1 <

· · · < α1 < α0 ≤ 1 and at least one of α′
is belongs to (0, 1), q is a positive constant,

the functions f(x, t), gi(t), γi(t)(i = 1, 2) and ϕ(x) are all given, C
0 D

α
t u(x, t) is the

α-th order time fractional Caputo derivative of u(x, t) defined by

C
0 D

α
t u(x, t) =


u(x, t)− u(x, 0), α = 0,

1

Γ(1− α)

∫ t

0

us(x, s)

(t− s)α
ds, 0 < α < 1,

ut(x, t), α = 1.

For the numerical approach, the mesh partition is essential. For two positive
integers M and N , let h = L/M, τ = T/N, xi = ih(0 ≤ i ≤ M), tn = nτ(0 ≤ n ≤
N),Ωh = {xi|0 ≤ i ≤ M},Ωτ = {tn|0 ≤ n ≤ N}, then the computational domain
[0, L]× [0, T ] is covered by Ωh × Ωτ .

We commence with the following lemmas which will be used in the subsequent
discussions.

Lemma 2.1. Denote θ(s) = (1−s)3[10−3(1−s)2] and ξ(s) = (1−s)3[5−3(1−s)2].
(I)If function g ∈ C6[x0, x1], then we have[2

3
g′′(x0) +

1

3
g′′(x1)

]
− 2

h

[g(x1)− g(x0)

h
− g′(x0)

]
=
h2

12
g(4)(x0) +

7h3

180
g(5)(x0) +

h4

180

∫ 1

0

θ(s)g(6)(x0 + sh)ds.(5)

(II)If function g ∈ C6[xM−1, xM ], then we have[1
3
g′′(xM−1) +

2

3
g′′(xM )

]
− 2

h

[
g′(xM )− g(xM )− g(xM−1)

h

]
=
h2

12
g(4)(xM )− 7h3

180
g(5)(xM ) +

h4

180

∫ 1

0

θ(s)g(6)(xM − sh)ds.(6)

(III) [14] If function g ∈ C6[xi−1, xi+1], then we have

1

12
[g′′(xi−1) + 10g′′(xi) + g′′(xi+1)] =

1

h2
[g(xi−1)− 2g(xi) + g(xi+1)]

+
h4

360

∫ 1

0

ξ(s)[g(6)(xi − sh) + g(6)(xi + sh)]ds.(7)

Proof. By the formula of Taylor expansion with integral remainder

g(x0 + h) =

k∑
l=0

hl

l!
g(l)(x0) +

hk+1

k!

∫ 1

0

g(k+1)(x0 + sh)(1− s)kds,
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we have

g(x1) =g(x0) + g′(x0)h+
h2

2
g′′(x0) +

h3

6
g′′′(x0) +

h4

24
g(4)(x0)

+
h5

120
g(5)(x0) +

h6

120

∫ 1

0

(1− s)5g(6)(x0 + sh)ds.

Hence,

2

h

[g(x1)− g(x0)

h
− g′(x0)

]
=g′′(x0) +

h

3
g′′′(x0) +

h2

12
g(4)(x0) +

h3

60
g(5)(x0)

+
h4

60

∫ 1

0

(1− s)5g(6)(x0 + sh)ds.(8)

In addition, it follows from

g′′(x1) =g′′(x0) + hg′′′(x0) +
h2

2
g(4)(x0) +

h3

6
g(5)(x0)

+
h4

6

∫ 1

0

(1− s)3g(6)(x0 + sh)ds

that

2

3
g′′(x0) +

1

3
g′′(x1) =g′′(x0) +

h

3
g′′′(x0) +

h2

6
g(4)(x0)

+
h3

18
g(5)(x0) +

h4

18

∫ 1

0

(1− s)3g(6)(x0 + sh)ds.(9)

Subtraction of (8) from (9) will yield (5). In a similar way, (6) can be proved.
Remark 1: In Ref. [26], the simple form of (5) and (6) has been given. Here, a de-
tailed result is illustrated in order to handle the first Dirichlet boundary conditions
in the next part.

Lemma 2.2. [14] If function u ∈ C3[tn−1, tn], σ is a constant and 0 < σ < 1, it
holds that

u(tn−1+σ) = σu(tn) + (1− σ)u(tn−1) +O(τ2).

For simplicity, denote uσn = σu(tn)+ (1−σ)u(tn−1), 1 ≤ n ≤ N . In addition,
for α ∈ [0, 1], denote

a
(α)
0 = σ1−α, a

(α)
l = (l + σ)1−α − (l − 1 + σ)1−α, l > 1,

b
(α)
l =

1

2− α
[(l + σ)2−α − (l − 1 + σ)2−α]− 1

2
[(l + σ)1−α + (l − 1 + σ)1−α], l > 1.

When n = 1,

C
(n,α)
0 = a

(α)
0 ;

When n > 2,

C
(n,α)
k =


a
(α)
0 + b

(α)
1 , k = 0,

a
(α)
k + b

(α)
k+1 − b

(α)
k , 1 6 k 6 n− 2,

a
(α)
k − b

(α)
k , k = n− 1.
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Lemma 2.3. [19] Suppose function u(x, ·) ∈ C3[0, T ]. Then it holds

m∑
r=0

λr
C
0 D

αr
t u(xi, tn−1+σ) =

m∑
r=0

λr
τ−αr

Γ(2− αr)

n−1∑
k=0

C
(n,αr)
k [u(xi, tn−k)

−u(xi, tn−k−1)] +O(τ3−α0),

where 0 ≤ αm < αm−1 < · · · < α0 ≤ 1, σ is the root of the nonlinear equation
m∑
r=0

λr

Γ(3− αr)
σ1−αr [σ − (1− αr

2
)]τ2−αr = 0.

3. The derivation of the compact finite difference scheme

For any mesh function u = (u0, u1, . . . , uM ) defined on Ωh, introduce the follow-
ing notations:

δxui− 1
2
=

1

h
(ui − ui−1), 1 ≤ i ≤ M ; δ2xui =

1

h
(δxui+ 1

2
− δxui− 1

2
), 1 ≤ i ≤ M − 1

and the average operator

(Hu)i =



2

3
u0 +

1

3
u1, i = 0,

1

12
(ui−1 + 10ui + ui+1), 1 ≤ i ≤ M − 1,

1

3
uM−1 +

2

3
uM , i = M.

Let v(x, t) = ∂2u(x,t)
∂x2 . Then Eqs. (1)-(4) are equivalent to

m∑
r=0

λr
C
0 D

αr
t u(x, t) +

∂2v(x, t)

∂x2
+ qu(x, t) = f(x, t), x ∈ (0, L), t ∈ (0, T ],(10)

v(x, t) =
∂2u(x, t)

∂x2
, x ∈ (0, L), t ∈ [0, T ],(11)

u(0, t) = g1(t), u(L, t) = g2(t), t ∈ (0, T ],(12)

∂u(0, t)

∂x
= γ1(t),

∂u(L, t)

∂x
= γ2(t), t ∈ (0, T ],(13)

u(x, 0) = ϕ(x), x ∈ [0, L].(14)

Define the grid functions

Un
i = u(xi, tn), V n

i = v(xi, tn), 0 ≤ i ≤ M, 0 ≤ n ≤ N ;

fn−1+σ
i = f(xi, tn−1+σ), 0 ≤ i ≤ M, 1 ≤ n ≤ N.

Suppose the exact solution u ∈ C(8,3)([0, L] × [0, T ]). Considering Eqs. (10),
(11) at the point (xi, tn−1+σ), we have

m∑
r=0

λr
C
0 D

αr
t u(xi, tn−1+σ) +

∂2v(xi, tn−1+σ)

∂x2
+ qu(xi, tn−1+σ)

= f(xi, tn−1+σ), 0 ≤ i ≤ M, 1 ≤ n ≤ N,

v(xi, tn−1+σ) =
∂2u(xi, tn−1+σ)

∂x2
, 0 ≤ i ≤ M, 1 ≤ n ≤ N.
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Performing the average operator H on both hand sides of the above two equations
yields

H
m∑
r=0

λr
C
0 D

αr
t u(xi, tn−1+σ) +H∂2v(xi, tn−1+σ)

∂x2
+ qHu(xi, tn−1+σ)

= Hf(xi, tn−1+σ), 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,(15)

Hv(xi, tn−1+σ) = H∂2u(xi, tn−1+σ)

∂x2
, 0 ≤ i ≤ M, 1 ≤ n ≤ N.(16)

According to Lemmas 2.1-2.3, we obtain

H
m∑
r=0

λr
τ−αr

Γ(2− αr)

n−1∑
k=0

C
(n,αr)
k (Un−k

i − Un−k−1
i ) + δ2xV

σn
i + qHUσn

i

= Hfn−1+σ
i +Rσn

i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,(17)

HV σn
i = δ2xU

σn
i + Sσn

i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,(18)

where there is a positive constant c1 such that

(19) |Rσn
i | ≤ c1(τ

2 + h4), |Sσn
i | ≤ c1(τ

2 + h4), 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N.

Next, the case of Eq. (16) with i = 0 and i = M will be specially discussed,
respectively. Letting x → 0+ in Eq. (1), one can obtain by using the boundary
condition (2) that

(20)
∂4u(0, t)

∂x4
= f(0, t)−

m∑
r=0

λr
C
0 D

αr
t g1(t)− qg1(t), 1 ≤ n ≤ N.

Meanwhile, differentiating the both hand sides of Eq. (1) with respect to x once
and letting x → 0+, using the boundary condition (3), we obtain

(21)
∂5u(0, t)

∂x5
= fx(0, t)−

m∑
r=0

λr
C
0 D

αr
t γ1(t)− qγ1(t), 1 ≤ n ≤ N.

Similarly, letting x → L−, we can get two equalities similar to the above two ones.
When i = 0, Eq. (16) is

Hv(0, tn−1+σ) = H∂2u(0, tn−1+σ)

∂x2
, 1 ≤ n ≤ N.

Using Lemma 2.1, Lemma 2.2 and Eqs. (20), (21), we can obtain

HV σn
0 =

2

h
[δxU

σn
1
2

− γ1(tn−1+σ)] +
h2

12

[
f(0, tn−1+σ)−

m∑
r=0

λr
C
0 D

αr
t g1(tn−1+σ)

− qg1(tn−1+σ)
]
+

7h3

180

[
fx(0, tn−1+σ)−

m∑
r=0

λr
C
0 D

αr
t γ1(tn−1+σ)

− qγ1(tn−1+σ)
]
+ Sσn

0

=
2

h
δxU

σn
1
2

+ p(tn−1+σ) + Sσn
0 , 1 ≤ n ≤ N,(22)

where

p(t) =− 2

h
γ1(t) +

h2

12

[
f(0, t)−

m∑
r=0

λr
C
0 D

αr
t g1(t)− qg1(t)

]
+

7h3

180

[
fx(0, t)−

m∑
r=0

λr
C
0 D

αr
t γ1(t)− qγ1(t)

]
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and there exists a positive constant c2 such that

(23) |Sσn
0 | ≤ c2(τ

2 + h4), 1 ≤ n ≤ N.

Similarly, we can get

HV σn

M =
2

h
[γ2(tn−1+σ)− δxU

σn

M− 1
2

]

+
h2

12

[
f(xM , tn−1+σ)−

m∑
r=0

λr
C
0 D

αr
t g2(tn−1+σ)− qg2(tn−1+σ)

]
− 7h3

180

[
fx(xM , tn−1+σ)−

m∑
r=0

λr
C
0 D

αr
t γ2(tn−1+σ)− qγ2(tn−1+σ)

]
+ Sσn

M

=− 2

h
δxU

σn

M− 1
2

+ q(tn−1+σ) + Sσn

M , 1 ≤ n ≤ N,(24)

where

q(t) =
2

h
γ2(t) +

h2

12

[
f(xM , t)−

m∑
r=0

λr
C
0 D

αr
t g2(t)− qg2(t)

]
− 7h3

180

[
fx(xM , t)−

m∑
r=0

λr
C
0 D

αr
t γ2(t)− qγ2(t)

]
and there exists a constant c3 such that

(25) |Sσn

M | ≤ c3(τ
2 + h4), 1 ≤ n ≤ N.

Noticing the initial-boundary conditions (12) and (14), one has

Un
0 = g1(tn), Un

M = g2(tn), 1 ≤ n ≤ N,(26)

U0
i = ϕ(xi), 0 ≤ i ≤ M.(27)

Omitting the small terms Rσn
i , Sσn

i in Eqs. (17), (18), (22), (24) and replacing
the exact solution {Un

i , V
n
i |0 ≤ i ≤ M, 0 ≤ n ≤ N} with the numerical one

{un
i , v

n
i |0 ≤ i ≤ M, 0 ≤ n ≤ N}, for Eqs. (10)-(14), we construct the following

difference scheme:

H
m∑
r=0

λr
τ−αr

Γ(2− αr)

n−1∑
k=0

C
(n,αr)
k (un−k

i − un−k−1
i )

+ δ2xv
σn
i + qHuσn

i = Hfn−1+σ
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,(28)

Hvσn
i = δ2xu

σn
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,(29)

Hvσn
0 =

2

h
δxu

σn
1
2

+ p(tn−1+σ), 1 ≤ n ≤ N,(30)

Hvσn

M = − 2

h
δxu

σn

M− 1
2

+ q(tn−1+σ), 1 ≤ n ≤ N,(31)

u0
i = ϕ(xi), 0 ≤ i ≤ M,(32)

un
0 = g1(tn), un

M = g2(tn), 1 ≤ n ≤ N.(33)

Remark 2: For the fractional ODEs, one can collocate the equation at t = tn−1+σ

directly to yield the (3−α0)-th order convergence in view of Lemma 2.3. However,
for the time-fractional PDEs, the spatial partial derivatives at t = tn−1+σ need
be numerically evaluated together and we use Lemma 2.2 to handle it. That is,
a weighted average of spatial partial derivatives at t = tn and t = tn−1 is used
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to approximate the value of spatial partial derivatives at t = tn−1+σ, so that the
global convergence rate of difference scheme in time can only achieve two. The idea
to treat the spatial partial derivatives is similar to that of Crank-Nicolson scheme
for standard parabolic equation. For the time-fractional PDEs, the ideas can be
found in some existing works, such as Refs. [8, 9, 14,19] and so on.

Next, an equivalence result of the difference scheme (28)-(33) can be obtained.

Theorem 3.1. The difference scheme (28)-(33) is equivalent to

19

36

[
H

m∑
r=0

λr
τ−αr

Γ(2− αr)

n−1∑
k=0

C
(n,αr)
k (un−k

1 − un−k−1
1 ) + qHuσn

1

]

+
1

18

[
H

m∑
r=0

λr
τ−αr

Γ(2− αr)

n−1∑
k=0

C
(n,αr)
k (un−k

2 − un−k−1
2 ) + qHuσn

2

]
+

2

h3
δxu

σn
1
2

− 5

3h2
δ2xu

σn
1 +

2

3h2
δ2xu

σn
2

=
19

36
Hfn−1+σ

1 +
1

18
Hfn−1+σ

2 − 1

h2
p(tn−1+σ), 1 ≤ n ≤ N,(34)

H2
m∑
r=0

λr
τ−αr

Γ(2− αr)

n−1∑
k=0

C
(n,αr)
k (un−k

i − un−k−1
i ) + δ4xu

σn
i + qH2uσn

i

= H2fn−1+σ
i , 2 ≤ i ≤ M − 2, 1 ≤ n ≤ N,(35)

19

36

[
H

m∑
r=0

λr
τ−αr

Γ(2− αr)

n−1∑
k=0

C
(n,αr)
k (un−k

M−1 − un−k−1
M−1 ) + qHuσn

M−1

]

+
1

18

[
H

m∑
r=0

λr
τ−αr

Γ(2− αr)

n−1∑
k=0

C
(n,αr)
k (un−k

M−2 − un−k−1
M−2 ) + qHuσn

M−2

]
− 2

h3
δxu

σn

M− 1
2

− 5

3h2
δ2xu

σn

M−1 +
2

3h2
δ2xu

σn

M−2

=
19

36
Hfn−1+σ

M−1 +
1

18
Hfn−1+σ

M−2 − 1

h2
q(tn−1+σ), 1 ≤ n ≤ N,(36)

u0
i = ϕ(xi), 0 ≤ i ≤ M,(37)

un
0 = g1(tn), un

M = g2(tn), 1 ≤ n ≤ N(38)

and

Hvσn
i = δ2xu

σn
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,(39)

Hvσn
0 =

2

h
δxu

σn
1
2

+ p(tn−1+σ), 1 ≤ n ≤ N,(40)

Hvσn

M = − 2

h
δxu

σn

M− 1
2

+ q(tn−1+σ), 1 ≤ n ≤ N.(41)

Proof. Performing the average operator H and the operator δ2x on both hand
sides of (28) and (29), respectively, we have

H2
m∑
r=0

λr
τ−αr

Γ(2− αr)

n−1∑
k=0

C
(n,αr)
k (un−k

i − un−k−1
i ) +Hδ2xv

σn
i + qH2uσn

i

= H2fn−1+σ
i , 2 ≤ i ≤ M − 2, 1 ≤ n ≤ N,(42)

Hδ2xv
σn
i = δ4xu

σn
i , 2 ≤ i ≤ M − 2, 1 ≤ n ≤ N.(43)
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Substituting (43) into (42), we obtain

H2
m∑
r=0

λr
τ−αr

Γ(2− αr)

n−1∑
k=0

C
(n,αr)
k (un−k

i − un−k−1
i ) + δ4xu

σn
i + qH2uσn

i

= H2fn−1+σ
i , 2 ≤ i ≤ M − 2, 1 ≤ n ≤ N,(44)

which is exactly (35).
For i = 0, rewriting the left hand of (30) gives

(45) Hvσn
0 = h2(b1δ

2
xv

σn
1 + b2δ

2
xv

σn
2 ) + b3Hvσn

1 + b4Hvσn
2 , 1 ≤ n ≤ N.

Comparing the coefficients on both hand sides, we get the following system of linear
equations 

b1 +
b3
12

=
2

3
,

− 2b1 + b2 +
5

6
b3 +

1

12
b4 =

1

3
,

b1 − 2b2 +
b3
12

+
5

6
b4 = 0,

b2 +
b4
12

= 0,

which implies b1 = 19
36 , b2 = 1

18 , b3 = 5
3 and b4 = −2

3 . Applying the results of (28)
and (29) with i = 1, 2 into (45), noticing (30) and (45) yields

2

h
δxu

σn
1
2

+ p(tn−1+σ) = h2

{
19

36

[
− qHuσn

1 +Hfn−1+σ
1

−H
m∑
r=0

λr
τ−αr

Γ(2− αr)

n−1∑
k=0

C
(n,αr)
k (un−k

1 − un−k−1
1 )

]
+

1

18

[
−H

m∑
r=0

λr
τ−αr

Γ(2− αr)

n−1∑
k=0

C
(n,αr)
k (un−k

2 − un−k−1
2 )

− qHuσn
2 +Hfn−1+σ

2

]}
+

5

3
δ2xu

σn
1 − 2

3
δ2xu

σn
2 , 1 ≤ n ≤ N.(46)

In a similar way, we get

− 2

h
δxu

σn

M− 1
2

+ q(tn−1+σ) = h2

{
19

36

[
− qHuσn

M−1 +Hfn−1+σ
M−1

−H
m∑
r=0

λr
τ−αr

Γ(2− αr)

n−1∑
k=0

C
(n,αr)
k (un−k

M−1 − un−k−1
M−1 )

]
+

1

18

[
−H

m∑
r=0

λr
τ−αr

Γ(2− αr)

n−1∑
k=0

C
(n,αr)
k (un−k

M−2 − un−k−1
M−2 )

− qHuσn

M−2 +Hfn−1+σ
M−2

]}
+

5

3
δ2xu

σn

M−1 −
2

3
δ2xu

σn

M−2, 1 ≤ n ≤ N.(47)

Multiplying (46) and (47) by 1
h2 , respectively, and rearranging the terms, we can

acquire (34) and (36). The proof ends.



110 G.H. GAO, R. TANG AND Q. YANG

Based on Theorem 3.1, we can calculate the numerical solution {un
i |0 ≤ i ≤

M, 0 ≤ n ≤ N} directly from the difference scheme (34)-(38) for the problem (1)-
(4), whereas, the theoretical analysis which follows will still start from the difference
scheme (28)-(33), which is more convenient for the analysis.

4. Stability and convergence analysis of the finite difference scheme

In this section, the stability and convergence of the compact difference scheme
(28)-(33) will be studied. To this end, we introduce some lemmas, which play a
vital role in the subsequent analysis.

Lemma 4.1. Let v be a grid function defined on Ωh, then it holds that

(48) h

M−1∑
i=1

(Hvi)
2 ≥ 5

12
h

M−1∑
i=1

(vi)
2 − 5

72
h(v20 + v2M ).

Proof. A direct calculation shows

h

M−1∑
i=1

(Hvi)
2

= h

M−1∑
i=1

( 1

12
vi−1 +

10

12
vi +

1

12
vi+1

)2

=
1

144
h

M−1∑
i=1

(v2i−1 + 20vi−1vi + 2vi−1vi+1 + 100v2i + 20vivi+1 + v2i+1)

≥ 1

144
h

M−1∑
i=1

[v2i−1 − 10(v2i−1 + v2i )− (v2i−1 + v2i+1)

+100v2i − 10(v2i + v2i+1) + v2i+1]

=
1

144
h

M−1∑
i=1

(−10v2i−1 + 80v2i − 10v2i+1)

=
1

144

(
− 10h

M−2∑
i=0

v2i + 80h

M−1∑
i=1

v2i − 10h

M∑
i=2

v2i

)
=

1

144

(
− 10h

M−1∑
i=1

v2i − 10hv20 + 10hv2M−1 + 80h
M−1∑
i=1

v2i

−10h
M−1∑
i=1

v2i + 10hv21 − 10hv2M

)
≥ 5

12
h

M−1∑
i=1

(vi)
2 − 5

72
h(v20 + v2M ),

where the inequality 2ab ≥ −(a2 + b2) has been used in the third step.

Lemma 4.2. For any grid function u and v defined on Ωh, if u0 = uM = 0, we
have

(49) h
M−1∑
i=1

δ2xvi · Hui − h
M−1∑
i=1

δ2xui · Hvi =
(
δxu 1

2

)
v0 −

(
δxuM− 1

2

)
vM .
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Proof. Noticing that Hui =
(
I + h2

12 δ
2
x

)
ui for 1 ≤ i ≤ M − 1 and u0 = uM = 0,

we have

h

M−1∑
i=1

δ2xvi · Hui − h
M−1∑
i=1

δ2xui · Hvi

= h
M−1∑
i=1

δ2xvi ·
(
I +

h2

12
δ2x

)
ui − h

M−1∑
i=1

δ2xui ·
(
I +

h2

12
δ2x

)
vi

= h
M−1∑
i=1

(δ2xvi)ui − h
M−1∑
i=1

(δ2xui)vi

=
(
δxu 1

2

)
v0 −

(
δxuM− 1

2

)
vM ,

where the summation formula by parts has been applied in the last step above.
This completes the proof.

Lemma 4.3. [19] Denote ĉ
(n)
k =

∑m
r=0 λr

τ−αr

Γ(2−αr)
C

(n,αr)
k and suppose that u is a

grid function defined on Ωh, then

h

M−1∑
i=1

n−1∑
k=0

ĉ
(n)
k (un−k

i − un−k−1
i )uσn

i

≥1

2

n−1∑
k=0

ĉ
(n)
k

[
h

M−1∑
i=1

(un−k
i )2 − h

M−1∑
i=1

(un−k−1
i )2

]
, 1 ≤ n ≤ N.(50)

With these preparations, the following theorem can be obtained.

Theorem 4.1. (A prior estimate) Suppose that {un
i |0 ≤ i ≤ M, 0 ≤ n ≤ N} and

{vσn
i |0 ≤ i ≤ M, 1 ≤ n ≤ N} be the solution of the following difference scheme

H
m∑
r=0

λr
τ−αr

Γ(2− αr)

n−1∑
k=0

C
(n,αr)
k (un−k

i − un−k−1
i ) + δ2xv

σn
i + qHuσn

i

= Pn−1+σ
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,(51)

Hvσn
i = δ2xu

σn
i +Qn−1+σ

i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,(52)

Hvσn
0 =

2

h
δxu

σn
1
2

+Qn−1+σ
0 , 1 ≤ n ≤ N,(53)

Hvσn

M = − 2

h
δxu

σn

M− 1
2

+Qn−1+σ
M , 1 ≤ n ≤ N,(54)

u0
i = ωi, 0 ≤ i ≤ M,(55)

un
0 = 0, un

M = 0, 1 ≤ n ≤ N.(56)

Then we have

h
M−1∑
i=1

(un
i )

2 ≤12

5

{
2∑m

r=0
λr

TαrΓ(1−αr)

max
1≤l≤n

[
1

2q
h

M−1∑
i=1

(P l−1+σ
i )2

+ 2h
M−1∑
i=1

(Ql−1+σ
i )2 + h(Ql−1+σ

0 )2 + h(Ql−1+σ
M )2

]

+ h

M−1∑
i=1

(Hu0
i )

2

}
, 1 ≤ n ≤ N.(57)
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Proof. Multiplying the both hand sides of (51) and (52) by hHuσn
i , hHvσn

i , re-
spectively, and summing up for i from 1 to M − 1, then adding the results, we
get

h
M−1∑
i=1

n−1∑
k=0

ĉ
(n)
k (Hun−k

i −Hun−k−1
i )Huσn

i + h
M−1∑
i=1

δ2xv
σn
i · Huσn

i

+ qh
M−1∑
i=1

(Huσn
i )2 + h

M−1∑
i=1

(Hvσn
i )2 = h

M−1∑
i=1

Pn−1+σ
i · Huσn

i

+ h
M−1∑
i=1

δ2xu
σn
i · Hvσn

i + h
M−1∑
i=1

Qn−1+σ
i · Hvσn

i , 1 ≤ n ≤ N.(58)

Using the ε-inequality (ab ≤ εa2 + 1
4εb

2), for 1 ≤ n ≤ N, we obtain

h
M−1∑
i=1

Pn−1+σ
i · Huσn

i ≤ qh
M−1∑
i=1

(Huσn
i )2 +

1

4q
h

M−1∑
i=1

(Pn−1+σ
i )2,(59)

h
M−1∑
i=1

Qn−1+σ
i · Hvσn

i ≤ h

4

M−1∑
i=1

(Hvσn
i )2 + h

M−1∑
i=1

(Qn−1+σ
i )2.(60)

Noticing Lemmas 4.1-4.3 and substituting (59), (60) into (58), we get

1

2

n−1∑
k=0

ĉ
(n)
k

[
h

M−1∑
i=1

(Hun−k
i )2 − h

M−1∑
i=1

(Hun−k−1
i )2

]
+

5

16
h

M−1∑
i=1

(vσn
i )2

≤− (δxu
σn
1
2

)vσn
0 + (δxu

σn

M− 1
2

)vσn

M +
5h

96
(vσn

0 )2 +
5h

96
(vσn

M )2

+
1

4q
h

M−1∑
i=1

(Pn−1+σ
i )2 + h

M−1∑
i=1

(Qn−1+σ
i )2, 1 ≤ n ≤ N.(61)

From Eqs. (53) and (54), using the ε-inequality, one can know that

−(δxu
σn
1
2

)vσn
0 + (δxu

σn

M− 1
2

)vσn

M +
5h

96
(vσn

0 )2 +
5h

96
(vσn

M )2

= −h

2
(Hvσn

0 −Qn−1+σ
0 )vσn

0 − h

2
(Hvσn

M −Qn−1+σ
M )vσn

M

+
5h

96
(vσn

0 )2 +
5h

96
(vσn

M )2

= −h

2

(2
3
vσn
0 +

1

3
vσn
1 −Qn−1+σ

0

)
vσn
0 − h

2

(2
3
vσn

M +
1

3
vσn

M−1

−Qn−1+σ
M

)
vσn

M +
5h

96
(vσn

0 )2 +
5h

96
(vσn

M )2

≤ −h

3
(vσn

0 )2 +
h

6

[1
4
(vσn

0 )2 + (vσn
1 )2

]
+

h

2

[1
4
(vσn

0 )2 + (Qn−1+σ
0 )2

]
−h

3
(vσn

M )2 +
h

6

[1
4
(vσn

M )2 + (vσn

M−1)
2
]

+
h

2

[1
4
(vσn

M )2 + (Qn−1+σ
M )2

]
+

5h

96
(vσn

0 )2 +
5h

96
(vσn

M )2

= −11h

96
(vσn

0 )2 +
h

6
(vσn

1 )2 − 11h

96
(vσn

M )2 +
h

6
(vσn

M−1)
2

+
h

2
(Qn−1+σ

0 )2 +
h

2
(Qn−1+σ

M )2
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≤ h

6
[(vσn

1 )2 + (vσn

M−1)
2] +

h

2
[(Qn−1+σ

0 )2 + (Qn−1+σ
M )2], 1 ≤ n ≤ N.(62)

Noticing

h

6
[(vσn

1 )2 + (vσn

M−1)
2] ≤ 5

16
h

M−1∑
i=1

(vσn
i )2,

the substitution of (62) into (61) produces

1

2

n−1∑
k=0

ĉ
(n)
k

[
h

M−1∑
i=1

(Hun−k
i )2 − h

M−1∑
i=1

(Hun−k−1
i )2

]

≤ 1

4q
h

M−1∑
i=1

(Pn−1+σ
i )2 + h

M−1∑
i=1

(Qn−1+σ
i )2

+
h

2
[(Qn−1+σ

0 )2 + (Qn−1+σ
M )2], 1 ≤ n ≤ N,

that is
n−1∑
k=0

ĉ
(n)
k

[
h

M−1∑
i=1

(Hun−k
i )2 − h

M−1∑
i=1

(Hun−k−1
i )2

]
≤ 1

2q
h

M−1∑
i=1

(Pn−1+σ
i )2 + 2h

M−1∑
i=1

(Qn−1+σ
i )2

+h[(Qn−1+σ
0 )2 + (Qn−1+σ

M )2], 1 ≤ n ≤ N,

or

ĉ
(n)
0 h

M−1∑
i=1

(Hun
i )

2 ≤
n−1∑
k=1

(ĉ
(n)
k−1 − ĉ

(n)
k )h

M−1∑
i=1

(Hun−k
i )2 + ĉ

(n)
n−1h

M−1∑
i=1

(Hu0
i )

2

+
1

2q
h

M−1∑
i=1

(Pn−1+σ
i )2 + 2h

M−1∑
i=1

(Qn−1+σ
i )2

+ h[(Qn−1+σ
0 )2 + (Qn−1+σ

M )2], 1 ≤ n ≤ N.

Noticing [19]

ĉ
(n)
n−1 ≥

m∑
r=0

λr
τ−αr

Γ(2− αr)

1− αr

2
(n− 1 + σ)−αr ≥ 1

2

m∑
r=0

λr

TαrΓ(1− αr)
,

further one can get

ĉ
(n)
0 h

M−1∑
i=1

(Hun
i )

2 ≤
n−1∑
k=1

(ĉ
(n)
k−1 − ĉ

(n)
k )h

M−1∑
i=1

(Hun−k
i )2 + ĉ

(n)
n−1

{
h

M−1∑
i=1

(Hu0
i )

2

+
2∑m

r=0
λr

TαrΓ(1−αr)

[
1

2q
h

M−1∑
i=1

(Pn−1+σ
i )2 + h(Qn−1+σ

0 )2

+ 2h

M−1∑
i=1

(Qn−1+σ
i )2 + h(Qn−1+σ

M )2
]}

, 1 ≤ n ≤ N.

The induction method applied to the above inequality will lead to

h
M−1∑
i=1

(Hun
i )

2 ≤ 2∑m
r=0

λr

TαrΓ(1−αr)

max
1≤l≤n

[
1

2q
h

M−1∑
i=1

(P l−1+σ
i )2
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+ 2h
M−1∑
i=1

(Ql−1+σ
i )2 + h(Ql−1+σ

0 )2 + h(Ql−1+σ
M )2

]

+ h
M−1∑
i=1

(Hu0
i )

2, 1 ≤ n ≤ N.

Noticing (56) and Lemma 4.1, further one can reach the desired inequality (57).
The proof ends.

From Theorem 3.1 and Theorem 4.1, one can read off the unconditional stability
of the difference scheme (34)-(38) with respect to both the initial value and the
source term f(x, t).

Theorem 4.2. (Stability) The difference scheme (34)-(38) is unconditionally stable
with respect to the right hand term f and the initial value u0.

Theorem 4.3. (Convergence) Suppose that {un
i , v

n
i | 0 ≤ i ≤ M, 0 ≤ n ≤ N} is

the solution of the difference scheme (28)-(33). Let

eni = Un
i − un

i , ϵni = V n
i − vni , 0 ≤ i ≤ M, 0 ≤ n ≤ N,

then there exists a positive constant c, independent of h and τ , such that√√√√h

M−1∑
i=1

(eni )
2 ≤ c(τ2 + h4), 1 ≤ n ≤ N,

where

c2 =
24L

5
∑m

r=0
λr

TαrΓ(1−αr)

[( 1

2q
+ 2

)
c21 + c22 + c23

]
.

Proof. Subtracting Eqs. (28)-(33) from (17)-(18), (22), (24) and (26)-(27), re-
spectively, we have the error system

H
m∑
r=0

λr
τ−αr

Γ(2− αr)

n−1∑
k=0

C
(n,αr)
k (en−k

i − en−k−1
i )

+δ2xϵ
σn
i + qHeσn

i = Rσn
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,(63)

Hϵσn
i = δ2xe

σn
i + Sσn

i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,(64)

Hϵσn
0 =

2

h
δxe

σn
1
2

+ Sσn
0 , 1 ≤ n ≤ N,(65)

Hϵσn

M = − 2

h
δxe

σn

M− 1
2

+ Sσn

M , 1 ≤ n ≤ N,(66)

e0i = 0, 0 ≤ i ≤ M,(67)

en0 = 0, enM = 0, 1 ≤ n ≤ N.(68)

The application of Theorem 4.1 into (63)-(68) produces

h
M−1∑
i=1

(eni )
2 ≤12

5

{
2∑m

r=0
λr

TαrΓ(1−αr)

max
1≤l≤n

[
1

2q
h

M−1∑
i=1

(Rσl
i )2 + h(Sσl

0 )2

+ 2h
M−1∑
i=1

(Sσl
i )2 + h(Sσl

M )2
]
+ h

M−1∑
i=1

(He0i )
2

}
, 1 ≤ n ≤ N.

Noticing (19), (23) and (25), together with (67)-(68), further it follows

h
M−1∑
i=1

(eni )
2 ≤ 24

5
∑m

r=0
λr

TαrΓ(1−αr)

[(
L

2q
+ 2L

)
c21(τ

2 + h4)2
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+ (c22 + c23)h(τ
2 + h4)2

]
≤ 24L

5
∑m

r=0
λr

TαrΓ(1−αr)

[( 1

2q
+ 2

)
c21 + c22 + c23

]
(τ2 + h4)2,

1 ≤ n ≤ N.

The proof ends.

Table 1. Numerical errors and convergence orders of the differ-
ence scheme (34)-(38) in time for solving Example 5.1 (M = 100).

(λ0, λ1, λ2) = (3, 2, 1) (λ0, λ1, λ2) = (1, 2, 3)

(α0, α1, α2) τ err(h, τ) ordert err(h, τ) ordert

( 1
3
, 1
4
, 1
5
)

1/10 7.021464e− 3 1.96 6.076584e− 3 1.95

1/20 1.807379e− 3 1.98 1.568653e− 3 1.97

1/40 4.593740e− 4 1.99 3.996679e− 4 1.98

1/80 1.160392e− 4 1.99 1.011902e− 4 1.99

1/160 2.922078e− 5 — 2.554141e− 5 —

( 2
3
, 1
2
, 1
3
)

1/10 1.202742e− 2 1.97 1.068150e− 2 1.95

1/20 3.071287e− 3 1.98 2.762612e− 3 1.97

1/40 7.774683e− 4 1.99 7.070557e− 4 1.97

1/80 1.959674e− 4 1.99 1.799903e− 4 1.98

1/160 4.928183e− 5 — 4.567631e− 5 —

(1, 1
2
, 0)

1/10 1.460960e− 2 1.99 1.404951e− 2 1.96

1/20 3.673673e− 3 2.00 3.612040e− 3 1.98

1/40 9.202870e− 4 2.00 9.139085e− 4 1.99

1/80 2.302377e− 4 2.00 2.296745e− 4 2.00

1/160 5.757304e− 5 — 5.755096e− 5 —

5. Numerical examples

In this section, we are devoted to use some numerical examples to further validate
our previous theoretical results. Denote

err(h, τ) = max
06i6M
06n6N

|u(xi, tn)− un
i |, ordert = log2

err(h, τ)

err(h, τ/2)
,

orderx = log2
err(h, τ)

err(h/2, τ)
.

Example 5.1. In (1)-(4), take L = 1, T = 1, m = 2, q = 1, ϕ(x) = 0, f(x, t) =
[24

∑m
r=0 λrt

4−αr/Γ(5 − αr) + π4t4 + t4] sinπx, g1(t) = 0, g2(t) = 0, γ1(t) = πt4,
γ2(t) = −πt4.

The exact solution of this example is u(x, t) = t4 sinπx.
Taking different values of λr and αr(r = 0, 1, . . . ,m), we calculate the maximum

errors and convergence orders using the difference scheme (34)-(38). Firstly, when
the spatial step size h is fixed to be sufficiently small and the temporal step size
τ varies from 1

10 to 1
160 , the computational results will be listed in Table 1, from

which one can see that the convergence order in time of the difference scheme (34)-
(38) we proposed reaches the second-order accuracy, which is in agreement with
our theoretical results.
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Table 2. Numerical errors and convergence orders of the differ-
ence scheme (34)-(38) in space for solving Example 5.1 (N =
10000).

(λ0, λ1, λ2) = (3, 2, 1) (λ0, λ1, λ2) = (1, 2, 3)

(α0, α1, α2) h err(h, τ) orderx err(h, τ) orderx

( 1
3
, 1
4
, 1
5
)

1/4 6.061004e− 4 3.90 6.067914e− 4 3.90

1/8 4.058035e− 5 3.98 4.062686e− 5 3.98

1/16 2.579793e− 6 4.06 2.583560e− 6 4.05

1/32 1.548619e− 7 — 1.558968e− 7 —

( 2
3
, 1
2
, 1
3
)

1/4 6.008189e− 4 3.90 6.031158e− 4 3.90

1/8 4.022607e− 5 3.98 4.037848e− 5 3.98

1/16 2.552319e− 6 4.11 2.562481e− 6 4.10

1/32 1.482862e− 7 — 1.493519e− 7 —

(1, 1
2
, 0)

1/4 5.965199e− 4 3.90 6.036876e− 4 3.90

1/8 3.993985e− 5 3.98 4.041412e− 5 3.98

1/16 2.532271e− 6 4.12 2.562545e− 6 4.12

1/32 1.452571e− 7 — 1.471400e− 7 —

Similarly, Table 2 lists the maximum errors and convergence orders under dif-
ferent values of h, from which, we can easily get the similar conclusion as shown
above, that is, the convergence order of the difference scheme (34)-(38) in space
matches the theoretical results we proved previously.

Table 3. Numerical errors and convergence orders of the differ-
ence scheme (34)-(38) in time for solving Example 5.2 (M = 100).

(λ0, λ1, λ2) = (3, 2, 1) (λ0, λ1, λ2) = (1, 2, 3)

(α0, α1, α2) τ err(h, τ) ordert err(h, τ) ordert

( 1
3
, 1
4
, 1
5
)

1/10 7.021464e− 3 1.96 6.076584e− 3 1.95

1/20 1.807379e− 3 1.98 1.568653e− 3 1.97

1/40 4.593742e− 4 1.99 3.996681e− 4 1.98

1/80 1.160392e− 4 1.99 1.011901e− 4 1.99

1/160 2.922070e− 5 — 2.554131e− 5 —

( 2
3
, 1
2
, 1
3
)

1/10 1.202742e− 2 1.97 1.068150e− 2 1.95

1/20 3.071287e− 3 1.98 2.762612e− 3 1.97

1/40 7.774684e− 4 1.99 7.070557e− 4 1.97

1/80 1.959674e− 4 1.99 1.799902e− 4 1.98

1/160 4.928188e− 5 — 4.567628e− 5 —

(1, 1
2
, 0)

1/10 1.460960e− 2 1.99 1.404951e− 2 1.96

1/20 3.673673e− 3 2.00 3.612040e− 3 1.98

1/40 9.202869e− 4 2.00 9.139085e− 4 1.99

1/80 2.302375e− 4 2.00 2.296744e− 4 2.00

1/160 5.757295e− 5 — 5.755088e− 5 —

Example 5.2. In (1)-(4), take L = 1, T = 1, m = 2, ϕ(x) = cosx, q = 1, f(x, t) =
[24

∑m
r=0 λrt

4−αr/Γ(5 − αr) + π4t4 + t4] sinπx + 2 cosx, g1(t) = 1, g2(t) = cos 1,
γ1(t) = πt4, γ2(t) = −πt4 − sin 1.

The exact solution for this example is u(x, t) = t4 sinπx+ cosx.
Table 3 lists the maximum errors and the temporal convergence orders when the

spatial step size h = 1/100 and τ is taken as 1/10, 1/20, 1/40, 1/80 and 1/160,
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Table 4. Numerical errors and convergence orders of the differ-
ence scheme (34)-(38) in space for solving Example 5.2 (N =
10000).

(λ0, λ1, λ2) = (3, 2, 1) (λ0, λ1, λ2) = (1, 2, 3)

(α0, α1, α2) h err(h, τ) orderx err(h, τ) orderx

( 1
3
, 1
4
, 1
5
)

1/8 4.056457e− 5 3.98 4.061108e− 5 3.97

1/16 2.579443e− 6 4.06 2.583210e− 6 4.05

1/32 1.548593e− 7 — 1.558946e− 7 —

( 2
3
, 1
2
, 1
3
)

1/8 4.021022e− 5 3.98 4.036266e− 5 3.98

1/16 2.551968e− 6 4.11 2.562130e− 6 4.10

1/32 1.482846e− 7 — 1.493498e− 7 —

(1, 1
2
, 0)

1/8 3.992396e− 5 3.98 4.039831e− 5 3.98

1/16 2.531920e− 6 4.12 2.562195e− 6 4.12

1/32 1.452536e− 7 — 1.471360e− 7 —

respectively. From this table, we can see that, as what is expected, the convergence
order of the finite difference scheme (34)-(38) in time is two. Besides, in order to
examine the convergence order in space, we choose a sufficiently small temporal
step size τ = 1/10000 and h is taken as 1/8, 1/16 and 1/32, respectively. Table 4
presents the computational results which are in accord with the theoretical ones we
proved in last section. It further illustrates the reliability of the difference scheme
(34)-(38).

From Examples 5.1 and 5.2, we can observe that whether the solution of the
differential equation satisfies the zero boundary value or not, the finite difference
scheme (34)-(38) we proposed can both reach the convergence order O(τ2 + h4) in
maximum norm, if the solution has the enough regularity, which is stronger than
our theoretical results in L2 norm.

6. Conclusion

In this paper, a class of the fourth-order time multi-term fractional sub-diffusion
equations with the first Dirichlet boundary conditions is numerically considered.
Firstly, the original problem is equivalently converted into a lower-order system
by introducing the intermediate function v(x, t). Then the system is considered
at some particular points and the first Dirichlet boundary conditions are specially
handled by the techniques different from the previous works in [24] and [25]. A
finite difference scheme with the global convergence order O(τ2+h4) is successfully
proposed. The stability and convergence of the proposed scheme were rigorously
proved by the energy method. Numerical results further validate our theoretical
analysis. Noticing that the finite difference scheme we proposed requires the stor-
age at all previous time steps, when the temporal step size is sufficiently small, the
computational work and the storage will be huge. In further research, a fast evalu-
ation method to deal with the Caputo fractional derivative in the current problem
will be investigated.

Acknowledgments

The authors thank the anonymous reviewers whose comments largely improve
this work. This research was supported by the Natural Science Foundation of
Jiangsu Province of China (No. BK20191375), NUPTSF (No. NY220037) and
1311 talent program from NJUPT.



118 G.H. GAO, R. TANG AND Q. YANG

References

[1] V.V. Uchaikin. On the fractional derivative model of the transport of cosmic rays in the
Galaxy. JETP Lett., 2010(91), 105-109.

[2] F. Xu, Y.Z. Lai, X.B. Shu. Chaos in integer order and fractional order financial systems and
their synchronization. Chaos Solitons Fractals, 2018(117), 125-136.

[3] A. Gokdogan, A. Yildirim, M. Merdan. Solving a fractional order model of HIV infection of
CD4(+) T cells. Math. Comput. Model., 2011(54), 2132-2138.

[4] F. Liu, V. Anh, I. Turner. Numerical solution of the space fractional Fokker-Planck equation.
J. Comput. Appl. Math., 2004(166), 209-219.

[5] Z.Z. Sun, X.N. Wu. A fully discrete difference scheme for a diffusion-wave system. Appl.
Numer. Math., 2006(56), 193-209.

[6] R. Du, W.R. Cao, Z.Z. Sun. A compact difference scheme for the fractional diffusion-wave
equation. Appl. Math. Model., 2010(34), 2998-3007.

[7] G.H. Gao, Z.Z. Sun. A compact finite difference scheme for the fractional sub-diffusion equa-

tion. J. Comput. Phys., 2011(230), 586-595.
[8] A.A. Alikhanov. A new difference scheme for the time fractional diffusion equation. J. Com-

put. Phys., 2015(280), 424-438
[9] S. Vong, P. Lyu. Unconditional convergence in maximum-norm of a second-order linearized

scheme for a time-fractional Burgers-type equation. J. Sci. Comput., 2018(76), 1252-1273.
[10] O.P. Agrawal. A general solution for a fourth-order fractional diffusion-wave equation defined

in a bounded domain. Comput. Struct., 2001(79), 1497-1501.
[11] X.L. Hu, L.M. Zhang. A compact finite difference scheme for the fourth-order fractional

diffusion-wave system. J. Comput. Phys., 2011(182), 1645-1650.
[12] X.L. Hu, L.M. Zhang. A new implicit compact difference scheme for the fourth-order fractional

diffusion-wave system. Int. J. Comput. Math., 2014(91), 2215-2231.
[13] L.L. Wei, Y.N. He. Analysis of a fully discrete local discontinuous Galerkin method for time-

fractional fourth-order problems. Appl. Math. Model., 2014(38), 1511-1522.
[14] Z.S. Yao, Z.B. Wang. A compact difference scheme for fourth-order fractional sub-diffusion

equations with Neumann boundary conditions. J. Appl. Anal. Comput., 2018(8), 1159-1169.

[15] N. Liu, Y. Liu, H. Li, J. Wang. Time second-order finite difference/finite element algorithm
for nonlinear time-fractional diffusion problem with fourth-order derivative term. Comput.
Math. Appl., 2018(75), 3521-3536.

[16] H. Jiang, F. Liu, I. Turner, K. Burrage. Analytical solutions for the multi-term time-fractional

diffusion-wave/diffusion equations in a finite domain. Comput. Math. Appl., 2012(64), 3377-
3388.

[17] F. Liu, M.M. Meerschaert, R.J. McGough, P.H. Zhuang, Q.X. Liu. Numerical methods
for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal.,

2013(16), 9-25.
[18] J.C. Ren, Z.Z. Sun. Efficient numerical solution of the multi-term time fractional diffusion-

wave equation. East Asian J. Appl. Math., 2015(5), 1-28.
[19] G.H. Gao, A.A. Alikhanov, Z.Z. Sun. The temporal second order difference schemes based

on the interpolation approximation for solving the time multi-term and distributed-order
fractional sub-diffusion equations. J. Sci. Comput., 2017(73), 93-121.

[20] L.L. Wei. Stability and convergence of a fully discrete local discontinuous Galerkin method
for multi-term time fractional diffusion equations. Numer. Algorithms, 2017(76), 695-707.

[21] C.S. Sin, G.I. Ri, M.C. Kim. Analytical solutions to multi-term time-space Caputo-Riesz
fractional diffusion equations on an infinite domain. Adv. Difference Equ., 2017, Art. No.
306.

[22] S.Y. Reutskiy. A new semi-analytical collocation method for solving multi-term fractional
partial differential equations with time variable coefficients. Appl. Math. Model., 2017(45),
238-254.

[23] M.A. Zaky. A Legendre spectral quadrature tau method for the multi-term time-fractional

diffusion equations. Comput. Appl. Math., 2018(37), 3525-3538.
[24] S. Vong, Z.B. Wang. Compact finite difference scheme for the fourth-order fractional sub-

diffusion system. Adv. Appl. Math. Mech., 2014(6), 419-435.
[25] C.C. Ji, Z.Z. Sun, Z.P. Hao. Numerical algorithms with high spatial accuracy for the fourth

order fractional sub-diffusion equations with the first Dirichlet boundary conditions. J. Sci.
Comput., 2016(66), 1148-1174.

[26] Z.Z. Sun. Compact difference schemes for heat equation with Neumann boundary conditions.
Numer. Methods Partial Differential Equations, 2009(25), 1320-1341.



DS FOR TIME MULTI-TERM FRACTIONAL SUB-DIFFUSION EQS 119

College of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P.R.
China

E-mail : gaogh@njupt.edu.cn & 1018081717@njupt.edu.cn & 861724730@qq.com


