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Abstract. While social living is considered to be an indispensable part of human life
in today’s ever-connected world, social distancing has recently received much public
attention on its importance since the outbreak of the coronavirus pandemic. In fact,
social distancing has long been practiced in nature among solitary species, and been
taken by human as an effective way of stopping or slowing down the spread of infec-
tious diseases. Here we consider a social distancing problem for how a population,
when in a world with a network of social sites, decides to visit or stay at some sites
while avoiding or closing down some others so that the social contacts across the net-
work can be minimized. We model this problem as a population game, where every
individual tries to find some network sites to visit or stay so that he/she can min-
imize all his/her social contacts. In the end, an optimal strategy can be found for
everyone, when the game reaches an equilibrium. We show that a large class of equi-
librium strategies can be obtained by selecting a set of social sites that forms a so-called
maximal r-regular subnetwork. The latter includes many well studied network types,
which are easy to identify or construct, and can be completely disconnected (with r=0)
for the most strict isolation, or allow certain degrees of connectivities (with r> 0) for
more flexible distancing. We derive the equilibrium conditions of these strategies, and
analyze their rigidity and flexibility on different types of r-regular subnetworks. We
also extend our model to weighted networks, when different contact values are as-
signed to different network sites.
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1 Introduction

Humans participate in all sorts of social activities, especially in modern societies. We
go to school, go to work, attend meetings, go shopping, go to restaurants, watch shows,
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movies, or sports, etc. The world is formed by a huge number of social sites that host
these activities. These sites are also closely connected for people to contact, meet, and
socialize across. The world is a well-connected network. People’s daily life is simply
a busy agenda of events at different event sites in this network, with different visiting
frequencies for different sites. As such, the world can be modeled as a social network,
with the nodes representing the social sites and the links the connections among the social
sites. The social life of an individual can be described by the frequencies of the individual
to visit these social sites, and the social behavior of the population can be described by
these frequencies averaged over the whole population.

Mathematically, we can represent a social network with a graph G=(V,E), where V=
{1,··· ,n} is a set of nodes corresponding to the social sites of the network, and E={(i, j) :
i and j connected} a set of links between the nodes representing the social connections
among the social sites. Let x∈Rn, x≥0, Σixi=1, be a vector describing the social behavior
of an individual on G, with xi being the frequency of the individual to visit or stay at
node i of G. Then, we can define a vector y∈ Rn, y≥ 0, Σiyi = 1, for the social behavior
of the whole population, with yi being the average frequency of the population to visit
or stay at node i of G. Let A be the adjacency matrix of G, Ai,j = 1 if (i, j) ∈ E, Ai,j = 0
if (i, j) 6∈ E, and Ai,i = α∈ [0,1] for all i= 1,··· ,n. Then, in a y-population, the amount of
social contacts an x-individual can make at node i must be xi Ai,i yi, the contacts with the
population on node i, plus xi Ai,j yj, the contacts with the population on other nodes j, all
together equal to Σjxi Ai,jyj. Across the network, the social contacts this individual can

make must be Σi Σjxi Ai,jyj = xT Ay.
Consider x as the social strategy of an individual, and y the social strategy of the

population. Consider π(x,y) = xT Ay as a payoff function. We can then define a pop-
ulation game where each individual of the population tries to maximize his/her social
payoff. The latter can be achieved when an optimal strategy x∗ is found for every indi-
vidual. The strategy for the population then becomes x∗ as well, and a Nash equilibrium
is reached. A Nash equilibrium of this game is thus a strategy x∗ such that

π(x∗,x∗)≥π(x,x∗), ∀x∈S,

where S={x∈Rn : Σixi=1, xi≥0, i=1,··· ,n} is the set of all possible social strategies. This
game is called a social networking game on network G, and has been discussed recently
in Wang et al. in 2019 [1]. For social networking, interactions across different social sites
are encouraged and the contacts among individuals in the same sites are discounted, and
therefore, Ai,i are set to zero for all i=1,··· ,n.

Different from social networking, social distancing is to reduce social contacts instead.
Therefore, for a given social network, social distancing can be considered as a problem
to find a set of social sites in the network where interactions within and between these
sites can be minimized. It can therefore be modeled as a population game where each
individual tries to minimize his/her social contacts π(x,y)= xT Ay. A Nash equilibrium
of this game is then a strategy x∗ such that

π(x∗,x∗)≤π(x,x∗), ∀x∈S.
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Figure 1: Social Distancing vs. Social Networking. The complement of network G = (V,E) is a network

Ḡ=(V̄,Ē), with V̄=V and Ē={(i, j) : (i, j) 6∈E}. (a) Network G with links colored in blue. (b) Network Ḡ with
links colored in blue. The links in gray are those in the complement of the corresponding network. A social
distancing game on G is a social networking game on Ḡ, and vice versa.

We call this game a social distancing game on network G. For social distancing, we also
count the contacts among individuals in the same sites, and therefore, set Ai,i = 1 for all
i=1,··· ,n. Let Ḡ=(V̄,Ē) be the complement of G, with V̄ =V and Ē= {(i, j) : (i, j) 6∈E}.
Then, it is easy to see that a social distancing game on network G is equivalent to a social
networking game on Ḡ, and vice versa (see Fig. 1).

While social living is considered to be an indispensable part of human life in today’s
ever-connected world, social distancing has recently received much public attention on
its importance since the outbreak of the coronavirus pandemic [2–7]. In fact, social dis-
tancing has long been practiced in nature among solitary animals, who always try to dis-
tance themselves from others, sometimes for more efficient foraging, sometimes for self-
protection from infightings, and sometimes for avoiding disease infections as well [8–10].
In human societies, social distancing has been recommended by health experts as a spe-
cial yet effective measure for mitigating the spread of diseases during epidemics or pan-
demics [11–14]. It can be as simple as just to keep distances from each other, or be more
cooperative to follow certain rules such as avoiding large gatherings, canceling events,
and closing schools, or to shut down places such as movie theaters, shopping centers,
and commercial areas [15, 16].

Much work has been done on modeling social distancing in the past [17–27] and espe-
cially in this year since the outbreak of the coronavirus pandemic [28–33], most focusing
on epidemiological models and predictions, with social distancing as a behavioral factor
affecting the spread of the diseases. The impacts of distancing behaviors on contact rates,
transmission rates, and hence the infectious rates have been investigated through statis-
tical estimation, dynamic simulation, and model prediction. Our work is focused more
on planning of social distancing for a population on how to separate, what to avoid,
and where to stay to minimize social contacts and mitigate the spread of the diseases.
More specifically, we consider a social distancing problem for how the individuals of a
given population, when in a world with a network of social sites, find some sites of the
network to visit or stay while avoiding or closing down some others so that the social



Z. Wu / CSIAM Trans. Appl. Math., 2 (2021), pp. 56-80 59

contacts among the individuals across the network can be minimized. This can be critical
as a personal decision to make, and perhaps more so as a public health policy to im-
plement. This problem can be modeled as a social distancing game as described above,
where every individual tries to find some network sites to visit or stay so that he/she
can minimize all his/her social contacts. In the end, an optimal strategy can be found for
everyone, when the game reaches an equilibrium. We show that a large class of equilib-
rium strategies can be obtained by selecting a set of network sites that forms a so-called
maximal r-regular subnetwork. A regular subnetwork is a subnetwork of all nodes of
equal degree. An r-regular subnetwork is a subnetwork of all nodes of degree r [34, 35]
(see Fig. 2). The latter includes many well studied network types, such as the maximal
independent set (r = 0), the maximal strong matching (r = 1), the maximal set of inde-
pendent cycles (r=2), etc. They are easy to identify or construct, and can be completely
disconnected (with r=0) for the most strict isolation, or allow certain degrees of connec-
tivities (with r>0) for more flexible distancing. We derive the equilibrium conditions of
these strategies, and analyze their rigidity and flexibility on different types of r-regular
subnetworks. We also extend our model to weighted networks, when different contact
values are assigned to different network sites.

Our work do share some important features with other previous studies. For exam-
ple, Reluga and co-workers [24, 27, 36, 37] have also applied a game dynamic approach
to the study of social distancing. Their game involves the investment on social distanc-
ing and its effect on the dynamics of SIR populations. Our game is instead for choosing
locations for social distancing in a given network of social sites. Eubank et al. [17, 38–41]
have started investigating network based models in early 2000, and analyzed and sim-
ulated large social networks and their impacts on epidemics. Meyers et al. [20, 42–45]
have led multiple efforts on contact network based epidemic modeling, mostly concern-
ing networks of person-to-person contacts. The networks studied in our work can be
considered as a special type of contact networks, where the nodes are locations, and the
contacts are made through access to the connected locations.

2 Optimal distancing strategies

In the social distancing game on a network, every individual wants to find a network
site to distance himself/herself from others. In an attempt, a site with a small number
of connections would be a good choice. However, if everyone chooses this site, no one
will benefit. Therefore, a strategy is needed to select a set of sites to visit or stay with a
certain frequency at each. Let x∗ ∈ S be a strategy everyone would like to take, with x∗j
being the frequency of visiting or staying at site j. In effect, the population will distribute
on the network also as x∗, with x∗j being the probable fraction on site j. With the pop-

ulation distributed as such, the social contacts an individual at site i can make with the
population at site j will be Ai,jx

∗
j . If there is a link between i and j, i.e., Ai,j=1, Ai,jx

∗
j =x∗j ;

otherwise, Ai,jx
∗
j =0. In total, the social contacts this individual can make, if at site i, will
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Figure 2: Regular Networks. A regular network is a network of all nodes of equal degree. An r-regular network
is a network of all nodes of degree r. (a) A 0-regular network. (b) A 1-regular network. (c) A 2-regular network.
(d) A 3-regular network.

be pi(x∗)=Σj Ai,jx
∗
j . The competition among all the sites is then balanced if pi(x∗) are the

same, say equal to λ
∗, for all i such that x∗i >0, i.e., for all the sites selected to visit or stay.

In addition, λ
∗ must be smaller than or equal to pi(x∗) for all i such that x∗i = 0, i.e., for

all the sites not selected, for otherwise, by selecting such a site i such that pi(x∗)<λ
∗, the

individual will be able to reduce the social contacts further. When all these conditions
are satisfied, every individual with a strategy x∗ minimizes all his/her social contacts to
Σix

∗
i pi(x∗)=λ

∗, no more, no less, and an equilibrium is reached.
Based on the evolutionary game theory [46, 47], we can prove that the above condi-

tions are in fact necessary and sufficient for a strategy x∗ to be a Nash equilibrium of the
social distancing game on a network. We state this property in the following theorem.

Theorem 2.1. Let A be the adjacency matrix of network G. Then, a strategy x∗ ∈ S is a Nash
equilibrium of the social distancing game on G if and only if there is a scalar λ

∗ such that pi(x∗)=
λ
∗ for all i such that x∗i >0 and pi(x∗)≥λ

∗ for all i such that x∗i =0, where pi(x∗)=Σj Ai,jx
∗
j .

Proof. (⇐): Assume that there is a scalar λ
∗ such that pi(x∗)=λ

∗ for all i such that x∗i >0
and pi(x∗i )≥λ

∗ for all i such that x∗i = 0. Then, π(x∗,x∗)=Σix
∗
i pi(x∗)=λ

∗. Let x∈S be
any strategy. Since pi(x∗)≥λ

∗ for all i, π(x,x∗)=Σixi pi(x∗)≥λ
∗. Therefore, x∗ is a Nash

equilibrium.
(⇒): Assume that x∗ is a Nash equilibrium. Then, π(x,x∗)≥π(x∗,x∗) for all x ∈ S.

Let λ
∗=π(x∗,x∗). Then, π(ei,x

∗)≥ λ
∗ for all i, i.e., pi(x∗)≥ λ

∗ for all i. It follows that
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pi(x∗)≥ λ
∗ for all i such that x∗i = 0. If pi(x∗)> λ

∗ for some i such that x∗i > 0, then
π(x∗,x∗)=Σix

∗
i pi(x∗)>λ

∗. Therefore, pi(x∗)=λ
∗ for all i such that x∗i >0.

Let V∗ be the set of nodes in G selected by a strategy x∗, i.e., V∗ = {i ∈V : x∗i > 0}.
Let E∗ be the set of links between the nodes in V∗, i.e., E∗= {(i, j)∈ E : i, j∈V∗}. Then,
G∗=(V∗,E∗) is an induced subnetwork of G, and is called the supporting subnetwork for
x∗. For an individual, an equilibrium strategy x∗ on G∗ then means to visit or stay only
at the nodes of G∗, with a nonzero frequency x∗i at node i of G∗, while for the population,
it implies to spread only on the nodes of G∗, with a nonzero probable fraction x∗i on node
i of G∗. In either view, strategy x∗ with a choice of nodes in G∗ maximizes the social
distances and minimizes the social contacts among all the individuals of the population,
if a link between two nodes is counted as a contact while no link as a distance.

The equilibrium strategy for the social distancing game on a network is not necessar-
ily unique. Different equilibrium strategies may have different minimal social contacts.
In general, the fewer connections in the supporting subnetwork G∗, the smaller amount
of social contacts at equilibrium. Therefore, an equilibrium strategy without connections
in G∗ can be a first choice for distancing. Such a G∗ is called an independent set of G. It is
easy to verify that the larger the independent set, the better the corresponding strategy,
when a larger amount of social contacts is minimized. The largest possible independent
set that is not contained in another independent set is called a maximal independent set.
In fact, a distancing strategy on an independent set of G is not necessarily a Nash equi-
librium, but it always is if it is on a maximal independent set of G.

Theorem 2.2. Let x∗ ∈S be a strategy for the social distancing game on a network G=(V,E).
Let G∗= (V∗,E∗) be the supporting subnetwork for x∗. Then, if G∗ is a maximal independent
set of G, x∗ is a Nash equilibrium for the game, with x∗i = 1/k for all i∈V∗ and x∗i = 0 for all
i∈V\V∗, where k is the size of V∗.

Proof. Assume without loss of generality that G∗ = (V∗,E∗) with V∗ = {1,··· ,k}. Then,
Ai,j =0 for all i, j=1,··· ,k, i 6= j and Ai,i =1 for all i=1,··· ,k. Since G∗ supports x∗, x∗i >0
for all i ∈V∗ and x∗i = 0 for all i ∈V\V∗. Let pi(x∗) =Σj Ai,jx

∗
j = λ

∗ for all i ∈V∗. Then,

x∗i =λ
∗ for all i∈V∗. Since Σix

∗
i = 1, λ

∗= 1/k. It follows that x∗i =λ
∗ with x∗i = 1/k for

all i∈V∗. Since G∗ is a maximal independent set, for any i∈V\V∗, there must be l∈V∗

such that i and l are connected, i.e., (i,l) ∈ E and Ai,l = 1. Therefore, for any i ∈V\V∗,
pi(x∗)=Σj Ai,jx

∗
j ≥ x∗l =λ

∗. By Theorem 2.1, x∗ is a Nash equilibrium.

Note that if G∗ is an independent set of G but not a maximal one, there will be i∈V\V∗

not connected with any j∈V∗ and pi(x∗)=Σj Ai,jx
∗
j =0<λ

∗. Then, x∗ cannot be a Nash

equilibrium. Theorem 2.2 suggests that if a maximal independent set of nodes is found
in the network, an optimal distancing strategy can then be obtained for an individual
by choosing only this set of nodes to visit or stay with an equal frequency 1/k for each
node, where k is the size of the set. As a result, the population will then be distributed
only on this set of nodes as well with an equally probable fraction 1/k on each node.
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Figure 3: Social Distancing on Independent Sets. In the network shown in this figure, the network sites
{3,5,9} form a maximal independent set. An equilibrium strategy x∗ can be reached on this set of sites, with
x∗3 = x∗5 = x∗9 = 1/3 and all other elements x∗j = 0, and a minimal social contact λ

∗= 1/3. However, the sites

{6,7,8,9,10} form another maximal independent set. An equilibrium strategy x∗ can be reached on this set of
sites, with x∗6 = x∗7 = x∗8 = x∗9 = x∗10 =1/5 and all other elements x∗j =0, and a minimal social contact λ

∗=1/5.

The latter is an even better strategy than the former.

At equilibrium, every individual minimizes his/her total amount of social contacts to
λ
∗=1/k. Therefore, the larger the maximal independent set, the better for minimizing the

social contacts, and the strategy on a maximum independent set will be the best among
all those supported by a maximal independent set.

Fig. 3 shows an example network, representing a world of 10 connected social sites.
The inside 5 sites, {1,2,3,4,5}, may be town centers, well connected. The outside 5 sites,
{6,7,8,9,10}, may be residential areas, each having access to some of the town centers. In
this network, the sites {3,5,9} form a maximal independent set. An equilibrium strategy
x∗ can be reached on this set of sites, with x∗3 =x∗5=x∗9 =1/3 and all other elements x∗j =0,

and a minimal social contact λ
∗ = 1/3. However, the sites {6,7,8,9,10} form another

maximal independent set. An equilibrium strategy x∗ can be reached on this set of sites,
with x∗6 = x∗7 = x∗8 = x∗9 = x∗10 = 1/5 and all other elements x∗j = 0, and a minimal social

contact λ
∗=1/5. The latter is an even better strategy than the former.

An equilibrium strategy may as well be supported by a subnetwork where there are
some connections among the nodes. A general class of subnetworks that may be selected
by an equilibrium strategy is the regular networks. In a regular network, all nodes have
the same number of connections with other nodes. In other words, all the nodes of a
regular network have the same degree. If the degree is r, the network is called an r-
regular network. Thus, a maximal independent set of a given network is a 0-regular
network. A 1-regular network is where each node is connected only to another one; a
2-regular network is where each node is connected to two other nodes; and so on and so
forth (see Fig. 2).
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A regular network can be connected or disconnected. In the latter case, it consists of
a number of separated components, each being a connected regular network itself. For
an r-regular subnetwork of G, the larger the subnetwork, the sparser the connectivity,
and the better for social distancing. The largest possible r-regular subnetwork that is not
contained in another r-regular subnetwork is called a maximal r-regular subnetwork. A
distancing strategy on an r-regular subnetwork may not necessarily be an equilibrium
strategy, but it always is if it is on a maximal r-regular subnetwork and if there is no less
than r+1 connections to the subnetwork from an outside node.

Theorem 2.3. Let x∗∈S be a strategy for the social distancing game on a network G=(V,E). Let
G∗=(V∗,E∗) be the supporting subnetwork for x∗. Then, if G∗ is a maximal r-regular subnetwork
and if there is no less than r+1 links to G∗ from a node i∈V\V∗, x∗ is a Nash equilibrium for
the game, with x∗i =1/k for all i∈V∗ and x∗i =0 for all i∈V\V∗, where k is the size of V∗.

Proof. Assume without loss of generality that V∗={1,··· ,k}. Then, A∗={Ai,j, i, j=1,··· ,k}
is the adjacency matrix of G∗, and each of its rows and columns has exactly r+1 elements
equal to 1. Since G∗ supports x∗, x∗i > 0 for all i∈V∗ and x∗i = 0 for all i∈V\V∗. Then,
pi(x∗) = Σj Ai,jx

∗
j = Σj∈V∗ Ai,jx

∗
j for all i ∈ V. Let pi(x∗) = Σj∈V∗ Ai,jx

∗
j = λ

∗ for all i ∈ V∗.

By adding all these equations, we obtain r+1= kλ
∗ , and λ

∗= (r+1)/k. It follows that
Σj∈V∗ Ai,jx

∗
j =λ

∗ for all i∈V∗ with x∗j =1/k for all j∈V∗. Since there is no less than r+1

links to G∗ from a node i∈V\V∗, pi(x∗)=Σj∈V∗ Ai,jx
∗
j ≥ (r+1)/k=λ

∗ for any i∈V\V∗ .

By Theorem 2.1, x∗ is a Nash equilibrium.

Theorem 2.3 suggests that if a maximal r-regular subnetwork is found in the network,
an optimal distancing strategy can then be obtained for an individual by choosing only
this subnetwork to visit or stay with an equal frequency 1/k for each node of the subnet-
work, where k is the number of the nodes in the subnetwork. As a result, the population
will then be distributed only on this subnetwork as well with an equally probable frac-
tion 1/k on each node of the subnetwork. At equilibrium, every individual minimizes
his/her total amount of social contacts to λ

∗=(r+1)/k. Therefore, the larger the regular
subnetwork or the smaller the r value, the better for minimizing the social contacts.

Of particular interest among maximal r-regular subnetworks are those with r>0 and
with a large number of separated components. For example, a maximal 1-regular sub-
network is just a set of separated 1-regular subnetworks of size 2; a maximal 2-regular
subnetwork can be a large number of separated 2-regular subnetworks of size 3; etc. An
equilibrium strategy on such a subnetwork means that the population can spread on a
large number of independent locations, where at each location, there is a group of social
sites with a low degree of connectivity. Such a strategy allows certain degrees of local
contacts yet keeps maximal possible distances among individuals, and can therefore be
considered as a more flexible strategy for social distancing than those on maximal inde-
pendent sets.

Fig. 4 shows a network similar to the one in Fig. 3 except for some changes in contact
connections. In this network, the sites {1,2,3,4,5} form a 2-regular subnetwork. How-
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Figure 4: Social Distancing on Regular Subnetworks. In the network shown in this figure, the network sites
{1,2,3,4,5} form a 2-regular subnetwork. However, a strategy on this subnetwork may not be an equilibrium
strategy because there are nodes outside of the subnetwork, say node 6, with less than 3 connections to the
nodes in the subnetwork. For the same reason, a strategy on the 2-regular subnetwork formed by the sites
{6,7,8,9,10} may not be an equilibrium strategy either. On the other hand, the network itself is a 3-regular
network. An equilibrium strategy x∗ can be reached on the whole network with x∗i =1/10 for i=1,··· ,10 and a

minimal social contact λ
∗=2/5.

ever, a strategy on this subnetwork may not be an equilibrium strategy because there are
nodes outside the subnetwork, say node 6, with less than 3 connections to the nodes in
the subnetwork. For the same reason, a strategy on the 2-regular subnetwork formed by
the sites {6,7,8,9,10} may not be an equilibrium strategy, either. On the other hand, the
whole network itself is a 3-regular network. An equilibrium strategy x∗ can be reached
on the whole network with x∗i = 1/10 for all i = 1,··· ,10, and a minimal social contact
λ
∗=2/5.

In the network in Fig. 4, there are also equilibrium strategies supported by other
regular subnetworks. For example, the sites {1,2,4,8,9,10} form a 1-regular subnet-
work of size 6. An equilibrium strategy x∗ can be reached on this subnetwork with
x∗1 = x∗2 = x∗4 = x∗8 = x∗9 = x∗10 = 1/6 and all other elements x∗j = 0, and a minimal social

contact λ
∗ = 1/3. There are total 5 such equilibrium strategies on this network. Fur-

thermore, the sites {3,5,6,7} form a maximal independent set of sites or in other words,
a 0-regular subnetwork. An equilibrium strategy x∗ can be reached on this set of sites
with x∗3 = x∗5 = x∗6 = x∗7 = 1/4 and all other elements x∗j = 0, and a minimal social contact

λ
∗=1/4. There are total 4 such equilibrium strategies on this network. In terms of mini-

mal social contact, among these strategies, the one on the maximal independent set, i.e.,
on a 0-regular subnetwork, is the best, because its social contact is the lowest. However,
it is also the most strict strategy, for it does not allow any contacts across different sites.
The strategy on the whole network, i.e., on a 3-regular network, has the highest social
contact, but it is the most flexible strategy, allowing certain degrees of contacts across
different sites.
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3 Rigidity and flexibility of social distancing

Once an equilibrium is reached, i.e., a distancing rule is established, can we make some
small changes or adjustments on the strategy? This is a question of legitimate concern
in practice, for we may not be able to commit to a rule all the time. The answer to the
question is that it depends on whether the social contact is changed: if the contact is
increased with small changes in the strategy, the rule needs to be enforced, and we say
the strategy is rigid; if the contact is not changed, the rule is not strict, and we say the
strategy is flexible; if the contact is decreased, the rule is broken, and we say the strategy
is fragile. In order to further address this issue, we give a formal definition for rigidity,
flexibility, and fragility for a distancing strategy in the following. We then analyze the
strategies on maximal r-regular subnetworks with these properties.

Let x∗∈S be an equilibrium strategy for the social distancing game on network G. Let
G∗ be the subnetwork supporting x∗. Let S∗={x∈S : xi>0 if and only if x∗i >0 for all i=
1,··· ,n}. Then, S∗ is the set of strategies all supported by G∗. We define rigidity, flexibility,
and fragility of x∗ only for small changes of x∗ in S∗. Let D∗= {d∈ Rn : d= x−x∗, x ∈
S∗, x 6= x∗}. Then, d∈ D∗ is a direction such that x∗+ǫd, a small change of x∗ along d,
remains in S∗ for all ǫ>0 sufficiently small.

Definition 3.1. Let x∗∈S be an equilibrium strategy for the social distancing game on network
G supported by subnetwork G∗. Then, x∗ is said to be strongly rigid on G∗ if for any d ∈ D∗,
π(x∗+ǫd,x∗+ǫd)>π(x∗,x∗) for all ǫ>0 sufficiently small.

Definition 3.2. Let x∗∈S be an equilibrium strategy for the social distancing game on network
G supported by subnetwork G∗. Then, x∗ is said to be weakly rigid on G∗ if for any d ∈ D∗,
π(x∗+ǫd,x∗+ǫd)≥π(x∗,x∗) for all ǫ>0 sufficiently small.

Definition 3.3. Let x∗∈S be an equilibrium strategy for the social distancing game on network
G supported by subnetwork G∗. Then, x∗ is said to be flexible on G∗ if there is d∈D∗ such that
π(x∗+ǫd,x∗+ǫd)=π(x∗,x∗) for all ǫ>0 sufficiently small.

Definition 3.4. Let x∗∈S be an equilibrium strategy for the social distancing game on network
G supported by subnetwork G∗. Then, x∗ is said to be fragile on G∗ if there is d∈D∗ such that
π(x∗+ǫd,x∗+ǫd)<π(x∗,x∗) for all ǫ>0 sufficiently small.

Recall that π(x,x) is the social contact of the population of strategy x. Therefore,
the definition of rigidity basically implies that an equilibrium strategy x∗ is strongly (or
weakly) rigid if it is a strict (or non-strict) local minimizer of the social contact π(x,x) in
S∗. In this sense, the strong (or weak) rigidity can be considered as a weaker version of
strong (or weak) evolutionary stability for general evolutionary games [46,47]. Nonethe-
less, we call this property rigidity instead of stability because the corresponding strategy
is considered as a rigid distancing rule in the context of social distancing. Note that based
on the above definitions, if an equilibrium strategy is weakly (not strongly) rigid, it must



66 Z. Wu / CSIAM Trans. Appl. Math., 2 (2021), pp. 56-80

be flexible; however, if it is flexible, it may not necessarily be weakly rigid; It could be
fragile.

We now investigate these properties for strategies on maximal r-regular subnetworks.
First, it is easy to justify that the equilibrium strategies on a maximal independent set
are all strongly rigid: Small changes on such strategies always increase the amount of
social contacts. In other words, there will be penalties for any changes on such strategies.
On the other hand, the equilibrium strategies on any maximal r-regular subnetworks
with r > 0 are always flexible: In this case, we can find some connected nodes in the
subnetworks. By increasing the frequencies on some of these nodes while decreasing on
others, we can make some small changes on the strategy without changing the original
amount of social contacts. Of these flexible strategies, some may be weakly rigid, but
others may be fragile.

Theorem 3.1. Let x∗ ∈ S be an equilibrium strategy for the social distancing game on network
G=(V,E). If x∗ is supported by a maximal independent set G∗=(V∗,E∗), then x∗ is strongly
rigid on G∗.

Proof. Let x∗+ǫd be a change from x∗ for any d∈D∗ and ǫ>0 sufficiently small. Then,

π(x∗+ǫd,x∗+ǫd)=(x∗+ǫd)T A(x∗+ǫd)

= x∗T Ax∗+2ǫdT Ax∗+ǫ
2dT Ad.

Note that d= x−x∗ for some x∈S∗, x 6= x∗. Therefore, d 6=0, but di =0 for i∈V\V∗, and
Σi∈V∗di=0. Note also that (Ax∗)i=λ

∗ for all i∈V∗ and therefore, dT Ax∗=Σi∈V∗di(Ax∗)i=
0. In addition, since G∗ is a maximal independent set, {Ai,j, i, j∈V∗}, the adjacency matrix

of G∗, is an identity matrix. Therefore, dT Ad=Σi,j∈V∗di Ai,jdj=Σi∈V∗d2
i >0. It follows that

π(x∗+ǫd,x∗+ǫd)= x∗T Ax∗+ǫ
2dT Ad

> x∗T Ax∗=π(x∗,x∗).

By Definition 3.1, x∗ is strongly rigid on G∗.

Theorem 3.2. Let x∗ ∈ S be an equilibrium strategy for the social distancing game on network
G=(V,E). If x∗ is supported by a maximal r-regular subnetwork G∗=(V∗,E∗) with r>0, then
x∗ is flexible on G∗.

Proof. Since G∗ is an r-regular subnetwork with r > 0, there must be i, j ∈ V∗ such that
(i, j)∈E∗ and Ai,j =1. Let d be a vector such that di =−dj = δ with 0< δ<min{1−x∗i ,x∗j }

and dl = 0 for all l 6= i, j. Then, d∈ D∗. Let x∗+ǫd be a change from x∗ along d for ǫ> 0
sufficiently small. Then,

π(x∗+ǫd,x∗+ǫd)=(x∗+ǫd)T A(x∗+ǫd)

= x∗T Ax∗+2ǫdT Ax∗+ǫ
2dT Ad.
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Since (Ax∗)k =λ
∗ for all k∈V∗, dT Ax∗=(di+dj)λ

∗= 0. Also, dT Ad= Ai,id
2
i +2Ai,jdidj+

Aj,jd
2
j =0. It follows that

π(x∗+ǫd,x∗+ǫd)=(x∗+ǫd)T A(x∗+ǫd)

= x∗T Ax∗=π(x∗,x∗).

By Definition 3.3, x∗ is flexible on G∗.

Based on Theorems 3.1 and 3.2, for the example distancing problem shown in Fig. 4,
the equilibrium strategy on a maximal independent set such as {3,5,6,7} is strongly rigid,
and the one on a maximal 1-regular subnetwork such as {1,2,4,8,9,10} is flexible. The
equilibrium strategy on the whole network, which is a 3-regular network, is also flexible.
Therefore, as described in the proof for Theorem 3.2, for this strategy, the frequencies can
be exchanged between any two connected nodes, say nodes 1 and 2, by moving a small
amount from one node to the other. For example, by moving 1/20 from node 1 to node 2,
the frequency on node 1 decreases to 1/20 from 1/10 while on node 2 increases to 3/20
from 1/10, yet the minimal social contact for every individual remains to be 2/5.

Note that an r-regular network must have at least r+1 nodes. We call an r-regular
network of size r+1 a minimal r-regular network. A minimal r-regular network must be
a complete network, i.e., each node is connected with all others in the network. It turns
out that an equilibrium strategy for the social distancing game on a network is always
weakly rigid if it is supported by a maximal r-regular subnetwork whose components
are all minimal r-regular subnetworks with r>0:

Theorem 3.3. Let x∗ ∈ S be an equilibrium strategy for the social distancing game on network
G=(V,E). Then, x∗ is weakly rigid if it is supported by a maximal r-regular subnetwork G∗=
(V∗,E∗) whose components are all minimal r-regular subnetworks with r>0.

Proof. Let G∗
i =(V∗

i ,E∗
i ) be the ith component of G∗ and A(i) the adjacency matrix of G∗

i ,

i=1,··· ,m. Then, A(i) is a matrix of all 1’s. Let x∗+ǫd be a change from x∗ for any d∈D∗

and ǫ>0 sufficiently small.

π(x∗+ǫd,x∗+ǫd)=(x∗+ǫd)T A(x∗+ǫd)

= x∗T Ax∗+2ǫdT Ax∗+ǫ
2dT Ad.

Note that d= x−x∗ for some x∈S∗, x 6= x∗. Therefore, d 6=0, but di =0 for i∈V\V∗, and
Σi∈V∗di=0. Note also that (Ax∗)i=λ

∗ for all i∈V∗ and therefore, dT Ax∗=Σi∈V∗di(Ax∗)i=
0. Let ci={dj : j∈V∗

i }. Then,

dT Ad=Σi=1:mcT
i A(i)ci =Σi=1:m(Σj∈V∗

i
dj)

2≥0.

It follows that

π(x∗+ǫd,x∗+ǫd)=(x∗+ǫd)T A(x∗+ǫd)

= x∗T Ax∗+ǫ
2dT Ad≥ x∗T Ax∗=π(x∗,x∗).

By Definition 3.2, x∗ is weakly rigid on G∗.
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Figure 5: Rigidity and Flexibility of Distancing Strategies. The social distancing game on this network has
at least three equilibrium strategies: one on the maximal 0-regular subnetwork or in other words, the maximal
independent set {5,6,7,8} with the minimal social contact equal to 1/4; one on the maximal 1-regular subnetwork
{9,10,11,12,13,14,15,16} with the minimal social contact equal to 1/4; and one on the maximal 2-regular
subnetwork {5,6,7,8,9,10,11,12,13,14,15,16} with the minimal social contact equal to 1/4. The first one is
strongly rigid. The second and third are flexible but weakly rigid.

From the above proof, we see that if we update x∗ with a vector d such that Σj∈V∗
i

dj=0

for all i= 1,··· ,m, we will have dT Ad= 0, and hence (x∗+ǫd)T A(x∗+ǫd)= x∗T Ax∗, i.e.,
the minimal amount of social contacts will remain to be the same. This means that we
can make such small changes in frequencies on the subnetwork components indepen-
dently without changing the original amount of social contacts across the network. In
fact, we can make such changes on any group of supporting components as long as they
are minimal regular subnetworks.

Fig. 5 shows an example network with 16 social sites. It is structured like a small
town, with 4 connected town centers in the middle and 4 separated residential areas
outside around. Every residential area consists of 3 well-connected activity sites, each
having access to one of the town centers. The social distancing game on this network
has at least three equilibrium strategies: one on the maximal 0-regular subnetwork or
in other words, the maximal independent set {5,6,7,8} with the minimal social contact
equal to 1/4; one on the maximal 1-regular subnetwork {9,10,11,12,13,14,15,16} with
the minimal social contact equal to 1/4; and one on the maximal 2-regular subnetwork
{5,6,7,8,9,10,11,12,13,14,15,16} with the minimal social contact equal to 1/4. The min-
imal social contacts of the three strategies are all the same. However, based on Theo-
rems 3.1, 3.2, and 3.3, the first one is strongly rigid; the second and third are flexible but
weakly rigid. In addition, the supporting subnetworks for the second and third strate-
gies consist of separated minimal regular subnetworks. The frequencies on those mini-
mal subnetworks can be adjusted independently without affecting the social contacts of
the individuals. For example, for the third strategy, for any minimal 2-regular subnet-
work component, say the subnetwork {5,9,10}, a small fraction 1/24 can be moved from
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each of the outer most two sites, say the sites 9 and 10, to the inner site, say the site 5.
The fractions on the outer sites are then decreased from 1/12 to 1/24 while on the inner
site is increased from 1/12 to 4/24. However, such changes will not affect the original
minimized social contact of the population.

Finally, if a maximal r-regular subnetwork is connected but not minimal, or discon-
nected but at least one of the components is not minimal, then an equilibrium strategy
supported by such a subnetwork will not be weakly rigid though still flexible. It will in
fact be fragile, i.e., there will be some way to update the strategy on the subnetwork to
decrease the social contacts among the individuals. Such changes will make the popula-
tion to break away from the current equilibrium state. An example fragile strategy is the
one on the whole network for the game shown in Fig. 4. The whole network is a 3-regular
network, but it is not minimal.

Theorem 3.4. Let x∗∈S be an equilibrium strategy for the social distancing game on a network
G=(V,E) supported by a maximal r-regular subnetwork G∗=(V∗,E∗), r>0. If G∗ is connected
but not minimal, or disconnected but at least one of its components is not minimal, then x∗ is
fragile on G∗.

Proof. Without loss of generality, we consider only the case where G∗ is connected. If G∗ is
not a minimal r-regular subnetwork, there must be three nodes i, j,l such that (i,l),(j,l)∈
E∗, but (i, j) 6∈ E∗. Let d be a vector such that dk = 0 for all k 6= i, j,l, di = dj = δ, with
0< δ<min{1−x∗i ,1−x∗j ,x∗l /2}, and di+dj+dl =0. Then, d∈D∗. Let x∗+ǫd be a change

from x∗ along d∈D∗ for ǫ>0 sufficiently small. Then,

π(x∗+ǫd,x∗+ǫd)=(x∗+ǫd)T A(x∗+ǫd)

= x∗T Ax∗+2ǫdT Ax∗+ǫ
2dT Ad.

Note that (Ax∗)k =λ
∗ for all k∈V∗, and therefore,

dT Ax∗=λ
∗
Σk∈V∗dk =di+dj+dl =0.

Note also,

dT Ad=d2
i +d2

j +d2
l +2didl+2djdl

=(di+dj+dl)
2−2didj =−2didj <0.

Therefore,

π(x∗+ǫd,x∗+ǫd)=(x∗+ǫd)T A(x∗+ǫd)

= x∗T Ax∗+ǫ
2dT Ad

< x∗T Ax∗=π(x∗,x∗).

By Definition 3.4, x∗ is fragile on G∗.
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4 Extension to weighted networks

So far, in all our discussions, we have assumed that the social sites are all the same for
making social contacts. However, in real situation, different sites may have different
sizes, different population densities, different activities, and hence different contact rates.
Therefore, a more realistic model for a given world of social sites would be a weighted
network of social sites, with each site assigned a contact value. The total amount of social
contacts an individual can make will then be those made within each site and through
connected sites, all weighted by the contact values of the sites. We show that for such a
weighted network of social sites, we can define a similar social distancing game as we
have discussed in previous sections, and have similar distancing strategies and related
rigidity and flexibility properties.

Let A be the adjacency matrix of a given network G. Suppose for each social site i,
we assign a contact value wi ≥1. Then, in a population of strategy y, the total amount of
social contacts an individual can make at social site i will be pi(y)=Σj Ãi,jyj, where Ãi,j

is a value dependent of wi and wj. We consider two methods to define Ãi,j: (a) with an

additive weight, Ãi,j=(wiAi,j+Ai,jwj)/2, i.e., if Ai,j=1, Ãi,j is the average of the weights

of sites i and j; and (b) with a multiplicative weight, Ãi,j=wi Ai,jwj, i.e., if Ai,j=1, Ãi,j is the
multiplication of the weights of sites i and j. Then, if an individual takes a strategy x to
visit all the social sites, the total amount of social contacts the individual can make will be
Σixi pi(y)=ΣiΣjxi Ãi,jyj=xT Ãy, where Ã={Ãi,j}. Let w=(w1,··· ,wn)T, and W=diag[w],

i.e., the diagonal matrix with w as its diagonal vector. Then, Ã is a matrix with the same
nonzero entries of A, but weighted by W, and with additive weights, Ã=(WA+AW)/2,
and with multiplicative weights, Ã=WAW.

By considering Ã as a weighted adjacency matrix of network G, and π(x,y)= xT Ãy
as a payoff function, we can then define a social distancing game, where each individual
tries to minimize his/her weighted social contacts π(x,y)= xT Ãy. A Nash equilibrium
of this game is then a strategy x∗ such that

π(x∗,x∗)≤π(x,x∗), ∀x∈S.

We call this game a weighted social distancing game on network G. Recall for social
distancing, we count the contacts among individuals in the same sites, and therefore
Ai,i=1 for all i=1,··· ,n. It follows that Ãi,i are nonzero, and Ãi,i=wi for additive weights,
and Ãi,i=w2

i for multiplicative weights for all i=1,··· ,n.
The conditions for a given strategy to be a Nash equilibrium for the above weighted

social distancing game are the same as those for the social distancing game on an un-
weighted network as given in Theorem 2.1, except that the adjacency matrix A is replaced
by the weighted adjacency matrix Ã. We state these conditions in the following theorem
as a reference without repeating the proof.

Theorem 4.1. Let Ã be the weighted adjacency matrix of network G. Then, a strategy x∗∈S is
a Nash equilibrium of the weighted social distancing game on G if and only if there is a scalar λ

∗
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such that pi(x∗)=λ
∗ for all i such that x∗i >0 and pi(x∗)≥λ

∗ for all i such that x∗i =0, where
pi(x∗)=Σj Ãi,jx

∗
j .

Note that the first set of conditions, which we call the equality conditions, requires
the social contacts on all selected nodes to be equal; and the second set, which we call the
inequality conditions, requires the social contacts on the unselected nodes to be no less
than those on the selected ones; and in either case, the social contacts are weighted by the
weights on the corresponding network sites.

In a weighted network, an optimal distancing strategy can also be obtained by dis-
tancing on a maximal independent set of social sites, i.e., with a maximal independent
set as the supporting subnetwork. However, the distribution of the frequencies over the
selected sites is not necessarily uniform any more, for the social sites are now weighted
by the contact values. Also, the inequality conditions for the strategy are not necessarily
satisfied automatically, either:

Theorem 4.2. Let x∗ ∈ S be a strategy for the weighted social distancing game on G= (V,E),
with Ã=(AW+WA)/2. Let G∗=(V∗,E∗) be the supporting subnetwork for x∗. Then, if G∗ is
a maximal independent set of G and if for any i∈V\V∗, there is j∈V∗ such that (i, j)∈E and
wi ≥wj, x∗ is a Nash equilibrium for the game, with x∗i = w̄/wi for all i∈V∗ and x∗i =0 for all
i∈V\V∗, where 1/w̄=Σi∈V∗1/wi.

Proof. Since G∗ supports x∗, x∗i >0 for all i∈V∗ and x∗i =0 for all i∈V\V∗. Also, Ãi,i=wi

for all i∈V∗, and Ãi,j =0 for all i, j∈V∗, i 6= j. Let pi(x∗)=Σj∈V∗ Ãi,jx
∗
j =λ

∗ for all i∈V∗.

Then, Ãi,ix
∗
i =λ

∗, i.e., wix
∗
i =λ

∗, for all i∈V∗. Since Σi∈V∗x∗i = 1, λ
∗= w̄. It follows that

wix
∗
i =λ

∗ with x∗i = w̄/wi for all i∈V∗. Since for any i∈V\V∗, there is l ∈V∗ such that
(i,l)∈E and wi≥wl, Ãi,l =(wi+wl)/2≥wl. Therefore, for any i∈V\V∗,

pi(x∗)=Σj∈V∗ Ãi,jx
∗
j

=Σj∈V∗ ,(i,j)∈E(wi+wj)x∗j /2

≥ (wi+wl)x∗l /2≥wl x
∗
l

= w̄=λ
∗.

By Theorem 4.1, x∗ is a Nash equilibrium.

Theorem 4.3. Let x∗ ∈ S be a strategy for the weighted social distancing game on G= (V,E),
with Ã=WAW. Let G∗=(V∗,E∗) be the supporting subnetwork for x∗. Then, if G∗ is a maximal
independent set of G and if for any i∈V\V∗, there is j∈V∗ such that (i, j)∈E and wi ≥wj, x∗

is a Nash equilibrium for the game, with x∗i = w̃2/w2
i for all i∈V∗ and x∗i =0 for all i∈V\V∗ ,

where 1/w̃2=Σi∈V∗1/w2
i .

Proof. Since G∗ supports x∗, x∗i >0 for all i∈V∗ and x∗i =0 for all i∈V\V∗. Also, Ãi,i=w2
i

for all i∈V∗, and Ãi,j =0 for all i, j∈V∗, i 6= j. Let pi(x∗)=Σj∈V∗ Ãi,jx
∗
j =λ

∗ for all i∈V∗.

Then, Ãi,ix
∗
i =λ

∗, i.e., w2
i x∗i =λ

∗, for all i∈V∗. Since Σi∈V∗x∗i =1, λ
∗= w̃2. It follows that
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w2
i x∗i =λ

∗ with x∗i = w̃2/w2
i for all i∈V∗. Since for any i∈V\V∗, there is l∈V∗ such that

(i,l)∈E and wi≥wl, Ãi,l =wiwl ≥w2
l . Therefore, for any i∈V\V∗,

pi(x∗)=Σj∈V∗ Ãi,jx
∗
j

=Σj∈V∗ ,(i,j)∈E wiwjx
∗
j

≥wiwlx
∗
l ≥w2

l x∗l

= w̃2=λ
∗.

By Theorem 4.1, x∗ is a Nash equilibrium.

Note that the above two theorems show that an optimal strategy x∗ supported by a
maximal independent set has x∗i = w̄/wi for networks with additive weights and x∗i =
w̃2/w2

i for networks with multiplicative weights. In either case, x∗i , the frequency of
visiting or staying at social site i, is inversely proportional to wi or w2

i , i.e., the contact
value of social site i or its square. This implies that the larger the contact value at a
given social site, the smaller the corresponding visiting frequency and hence the probable
fraction of the population at the site. In addition, the total amount of social contacts every
individual can make at equilibrium is given by the parameter λ

∗, which is equal to w̄ for
networks with additive weights and to w̃2 for networks with multiplicative weights. In
either case, the larger the number of nodes in the supporting subnetwork or the lighter
the assigned weights, the smaller the λ

∗ value, i.e., the minimal amount of social contacts
at equilibrium.

As an example, consider the network in Fig. 4. Assume that the nodes in {1,2,3,4,5}
are all assigned a weight 2, i.e., w1=w2=w3=w4=w5=2, and the nodes in {6,7,8,9,10}
are all assigned a weight 1, i.e., w6 = w7 = w8 = w9 = w10 = 1. Consider three maximal
independent sets of the network, {3,5,9}, {4,6,7}, and {3,5,6,7}. Assume that the addi-
tive weights are used for the calculation of the social contacts. First, for {3,5,9}, λ

∗= w̄=
1/(1/w3+1/w5+1/w9)=1/(1/2+1/2+1)=1/2. Let x∗3 =w̄/w3=1/4, x∗5=w̄/w5=1/4,
x∗9 = w̄/w9 = 2/4, and x∗i = 0 for all i 6= 3,5,9. Then, x∗ satisfies the equality conditions
in Theorem 4.1. However, for i = 8, pi(x∗) = (w8+w3)x∗3/2= 3/8 < 1/2 = λ

∗. Then, x∗

violates the inequality conditions in Theorem 4.1, and therefore cannot be a Nash equi-
librium. Second, for {4,6,7}, λ

∗ = w̄= 1/(1/w4+1/w6+1/w7) = 1/(1/2+1+1) = 2/5.
Let x∗4 = w̄/w4 = 1/5, x∗6 = w̄/w6 = 2/5, x∗7 = w̄/w7 = 2/5, and x∗i = 0 for i 6= 4,6,7. Also,
for any i 6= 4,6,7, there is a node l ∈{4,6,7} such that i and l are connected and wi ≥wl.
Therefore, by Theorem 4.2, x∗ is a Nash equilibrium, with the total amount of social con-
tacts minimized to λ

∗=2/5. Third, for {3,5,6,7}, λ
∗=w̄=1/(1/w3+w5+1/w6+1/w7)=

1/(1/2+1/2+1+1) = 1/3. Let x∗3 = w̄/w3 = 1/6, x∗5 = w̄/w5 = 1/6, x∗6 = w̄/w6 = 2/6,
x∗7 = w̄/w7 = 2/6, and x∗i = 0 for i 6= 3,5,6,7. Also, for any i 6= 3,5,6,7, there is a node
l∈{3,5,6,7} such that i and l are connected and wi≥wl. Therefore, by Theorem 4.2, x∗ is
a Nash equilibrium, with the total amount of social contacts minimized to λ

∗=1/3.
The strategies on a general maximal r-regular subnetwork are more complicated if

the subnetwork has arbitrary weights assigned. However, they can still be determined
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easily, if the weights are the same for all the nodes in each component of the subnetwork.
For the following two theorems, we therefore assume that the supporting subnetwork G∗

is a maximal r-regular subnetwork and consists of m separated components G∗
1 ,··· ,G∗

m.
For each component G∗

k , a weight w′
k is assigned to all its nodes.

Theorem 4.4. Let x∗ ∈ S be a strategy for the weighted social distancing game on G= (V,E),
with Ã=(AW+WA)/2. Let G∗=(V∗,E∗) be the supporting subnetwork for x∗. Assume that
G∗ consists of m separated components G∗

k =(V∗
k ,E∗

k ), each assigned a weight w′
k, k= 1,··· ,m.

Then, if G∗ is a maximal r-regular subnetwork and if for any node i ∈V\V∗, there are at least
r+1 nodes j∈V∗ such that (i, j)∈ E and wi ≥wj, x∗ is a Nash equilibrium for the game, with
x∗i = w̄/w′

k for all i∈V∗
k , k=1,··· ,m, and x∗i =0 for all i∈V\V∗, where 1/w̄=Σkmk/w′

k, with
mk being the size of V∗

k .

Proof. Since G∗ supports x∗, x∗i >0 for all i∈V∗ and x∗i =0 for all i∈V\V∗ . Then pi(x∗)=
Σj Ãi,jx

∗
j =Σj∈V∗

k
Ãi,jx

∗
j =w′

kΣ(i,j)∈E∗
k
x∗j for all i∈V∗

k . Let w′
kΣ(i,j)∈E∗

k
x∗j =λ

∗ for all i∈V∗
k . By

adding the equations for all i ∈ V∗
k , we obtain w′

k(r+1)Σj∈V∗
k

x∗j = mkλ
∗. By adding the

latter equations for all k, we then obtain λ
∗=(r+1)w̄. It follows that w′

kΣ(i,j)∈E∗
k
x∗j =λ

∗

for all i∈V∗
k with x∗j = w̄/w′

k for all j∈V∗
k . Note that for any node i∈V\V∗,

pi(x∗)=Σj Ãi,jx
∗
j =ΣkΣj∈V∗

k
Ãi,jx

∗
j

=ΣkΣj∈V∗
k ,(i,j)∈E (wi+wj)x∗j /2.

Since there are at least r+1 nodes l∈V∗ such that (i,l)∈E and wi≥wl,

pi(x∗)≥ΣkΣl∈V∗
k ,(i,l)∈E (wi+wl)x∗l /2

≥ΣkΣl∈V∗
k ,(i,l)∈E wl x∗l

=ΣkΣl∈V∗
k ,(i,l)∈E w̄

≥ (r+1)w̄=λ
∗.

By Theorem 4.1, x∗ is a Nash equilibrium.

Theorem 4.5. Let x∗ ∈ S be a strategy for the weighted social distancing game on G= (V,E),
with Ã=WAW. Let G∗=(V∗,E∗) be the supporting subnetwork for x∗. Assume that G∗ consists
of m separated components G∗

k =(V∗
k ,E∗

k ), each assigned a weight w′
k, k=1,··· ,m. Then, if G∗ is

a maximal r-regular subnetwork and if for any node i∈V\V∗, there are at least r+1 nodes j∈V∗

such that (i, j)∈E and wi ≥wj, x∗ is a Nash equilibrium for the game, with x∗i = w̃2/w′2
k for all

i∈V∗
k , k=1,··· ,m, and x∗i =0 for all i∈V\V∗, where 1/w̃2=Σkmk/w′2

k , with mk being the size
of V∗

k .

Proof. Since G∗ supports x∗, x∗i >0 for all i∈V∗ and x∗i =0 for all i∈V\V∗ . Then pi(x∗)=
Σj Ãi,jx

∗
j =Σj∈V∗

k
Ãi,jx

∗
j =w′2

k Σ(i,j)∈E∗
k
x∗j for all i ∈V∗

k . Let w′2
k Σ(i,j)∈E∗

k
x∗j = λ

∗ for all i ∈V∗
k .

By adding the equations for all i∈V∗
k , we obtain w′2

k (r+1)Σj∈V∗
k

x∗j =mkλ
∗. By adding the
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latter equations for all k, we then obtain λ
∗=(r+1)w̃2. It follows that w′2

k Σ(i,j)∈E∗
k
x∗j =λ

∗

for all i∈V∗
k with x∗j = w̃2/w′2

k for all j∈V∗
k . Note that for any node i∈V\V∗,

pi(x∗)=Σj Ãi,jx
∗
j =ΣkΣj∈V∗

k
Ãi,jx

∗
j

=ΣkΣj∈V∗
k ,(i,j)∈E wiwj x∗j .

Since there are at least r+1 nodes l∈V∗ such that (i,l)∈E and wi≥wl,

pi(x∗)≥ΣkΣl∈V∗
k ,(i,l)∈E wiwl x∗l

≥ΣkΣl∈V∗
k ,(i,l)∈E w2

l x∗l

=ΣkΣl∈V∗
k ,(i,l)∈E w̃2

≥ (r+1)w̃2=λ
∗.

By Theorem 4.1, x∗ is a Nash equilibrium.

Note that in Theorems 4.2, 4.3, 4.4, 4.5, the conditions that for any node i∈V\V∗, there
must be at least r+1 nodes j∈V∗ such that (i, j)∈E and wi≥wj are sufficient but not nec-
essary. In general, the inequality conditions in Theorem 4.1 may need to be tested. In any
case, as an example, consider the network in Fig. 5. Assume that the nodes in {1,2,3,4}
are assigned a weight w′

1=3, {5,9,10} assigned w′
2=2, {7,13,14} assigned w′

3=2, {6,11,12}
assigned w′

4=1, and {8,15,16} assigned w′
5=1. Assume that additive weights are used for

the calculation of the social contacts. Consider the maximal 2-regular subnetwork formed
by {5,6,7,8,9,10,11,12,13,14,15,16}. Then, w̄=1/(3/w′

2+3/w′
3+3/w′

4+3/w′
5)=1/9. Let

x∗1 =x∗2 =x∗3 =x∗4 =0, x∗5 =x∗9 =x∗10= w̄/w′
2=1/18, x∗7 =x∗13=x∗14= w̄/w′

3=1/18, x∗6 =x∗11=
x∗12 = w̄/w′

4 = 2/18, and x∗8 = x∗15 = x∗16 = w̄/w′
5 = 2/18. Then, for any node i∈{1,2,3,4},

there are 3 nodes j∈{5,6,7,8,9,10,11,12,13,14,15,16} such that i and j are connected and
wi≥wj since wi=3 while wj=1 or 2. Therefore, by Theorem 4.4, x∗ is a Nash equilibrium,
with the total amount of social contacts minimized to λ

∗=(r+1)w̄=1/3.
In previous sections, we have discussed the rigidity, flexibility, and fragility of dis-

tancing strategies for social distancing games. These properties all depend on the struc-
tures of the supporting subnetworks. Therefore, Theorems 3.1, 3.2, 3.3, and 3.4 can all
be extended straightforwardly to the equilibrium strategies for weighted social distanc-
ing games since the weighting schemes we have considered do not change the network
structures. In particular, for a supporting subnetwork, if the same weight is assigned to
the nodes of each component of the subnetwork, as we have assumed in the above dis-
cussion, we can show that (a) an equilibrium strategy of the weighted game, with either
additive or multiplicative weights, must be strongly rigid if its supporting subnetwork
is a maximal independent set; (b) it is flexible if its supporting subnetwork is a maximal
r-regular subnetwork, r>0; (c) it is weakly rigid if its supporting network is a maximal
r-regular subnetwork whose components are all minimal r-regular subnetworks, r > 0;
and (d) it is fragile if its supporting subnetwork is an r-regular subnetwork, r>0, which
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is connected but not minimal, or disconnected but at least one of its components is not
minimal. The proofs follow almost the same steps as in the proofs for Theorems 3.1, 3.2,
3.3, and 3.4. We will not elaborate further.

5 Concluding remarks

Much work has been done in the past on social distancing as a behavioral factor affecting
the development of an infectious disease, but research on how to effectively practice and
manage social distancing is lacking. The latter can in fact be an even more important
research subject, for the effectiveness of social distancing would be greatly undermined
if without effective practicing. We have considered a social distancing problem for how
a population, when in a world with a network of social sites, chooses some sites to visit
or stay while avoiding or closing down some others so that the social contacts of the
population across the network can be minimized. We have modeled this problem as a
population game with the Nash equilibrium of the game corresponding to an optimal
strategy for choosing among given social sites for social distancing. The social sites that
are selected at equilibrium form a subnetwork, which we have recognized as a structural
support for the equilibrium strategy.

We have shown that a large class of equilibrium strategies can be supported by a max-
imal r-regular subnetwork. The latter includes many well studied network types, which
are easy to identify or construct, and can be completely disconnected for the most strict
isolation (with r=0) or allow certain degrees of connectivity for more flexible distancing
(with r>0). We have derived the equilibrium strategies on (a) maximal 0-regular subnet-
works known as maximal independent sets; and (b) maximal r-regular subnetworks for
r>0. We have also extended these results to weighted networks and derived equilibrium
strategies with additive and multiplicative weights on (c) maximal weighted 0-regular
subnetworks; and (d) maximal weighted r-regular subnetworks for r>0.

We have introduced the concepts of rigidity, flexibility, and fragility of a social distanc-
ing strategy, and analyzed these properties for strategies on different types of r-regular
subnetworks. We have shown that (a) strategies on maximal 0-regular subnetworks are
strongly rigid; (b) strategies on maximal r-regular subnetworks are flexible for all r>0; (c)
strategies on maximal r-regular subnetworks whose components are minimal r-regular
subnetworks are weakly rigid for all r>0; and (d) strategies on maximal r-regular subnet-
works with at least one non-minimal r-regular component are fragile for all r>0. These
results apply to both weighted and unweighted networks.

Our work is a step towards developing a general theoretical and computational frame-
work for the study of social distancing in networked social environments. It is however
open for many further research efforts. First of all, new dynamic epidemic models can be
built for populations distributed over social networks as determined by the equilibrium
strategies for the social distancing games. Different from those for arbitrarily mixed pop-
ulations, such models may provide more realistic estimates on various epidemic proper-



76 Z. Wu / CSIAM Trans. Appl. Math., 2 (2021), pp. 56-80

ties such as contact rates, transmission rates, and hence the infectious rates, etc. Dynamic
models on structured populations are always preferred because populations are always
heterogeneous in terms of physical or social proximities [50].

The types of supporting subnetworks we have discussed are r-regular networks be-
cause they are easy to identify or construct, yet cover a broad range of networks with
varying degrees of connectivities. However, in reality, the supporting subnetworks may
not always be so “regular”. The population may prefer other types of network structures
such as spanning trees, extended stars, or small-world networks, all with low degrees of
connectivities [51]. It would be interesting to find the equilibrium conditions for distanc-
ing strategies on such networks, including related distancing properties such as rigidity,
flexibility, and fragility of the strategies.

When defining social distancing games, we have assumed that the population is ho-
mogeneous, and all the individuals can therefore take the same optimal strategy at equi-
librium. However, in reality, the population is more likely to be heterogeneous, with
possible subpopulations divided either geographically or demographically and hence
different in distancing preferences. For example, populations in different geographic lo-
cations may prefer going to social sites close to their own regions; different age groups
may have different social activities and hence different social sites to visit. The current
model may be extended to such populations by defining a more general multi-player
population game with the individuals in different subpopulations as different players
against the population.

Social distancing brings economic costs or social sacrifices. Different distancing strate-
gies may have different social or economic consequences [2, 6, 7, 13]. Reducing social
contacts is a main goal as far as fighting a pandemic is concerned, but keeping certain
levels of social or economic activities can be important as well especially during a possi-
bly long period of recovery from the pandemic [3–5]. Therefore, there must be a tradeoff
between choosing rigid and flexible distancing strategies. A cost-benefit function may be
defined as a function of the amount of social contacts of any distancing strategy. The so-
cial distancing game can then be generalized to find an optimal distancing strategy that
maximizes distancing benefits at lowest possible social or economic costs.

In this paper, we have focused on distancing strategies on maximal r-regular sub-
networks, which are supposed to be easy to identify or construct [52, 53]. Still, when a
large network is given, it takes time to find such a subnetwork. It is well known that
the problem to find a maximum 0-regular induced subgraph of a given graph, i.e., a
maximum independent set, is NP-hard [54]. The problem to find a maximum 1-regular
induced subgraph of a given graph, known as the maximum strong matching problem,
is also NP-hard [55, 56]. In fact, it has been proved that the problem to find a maximum
r-regular induced subgraph of a given graph is NP-hard for any r≥0 [57,58]. Fortunately,
for our purpose, we do not have to find a maximum r-regular subnetwork. A maximal
r-regular subnetwork would be sufficient to support an equilibrium distancing strategy,
which is relatively easier to find than a maximum one.

Finally, we would also like to point out that the social networking game as described
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in the first section of the paper has been studied previously as a population game [1]. It
becomes relevant when social distancing comes into play, for the latter can be considered
exactly as a complementary game to the former. The social networking game has been
formulated in different forms and for different purposes in the past. It has been used
for the solution of the maximum clique problem, since the maximum cliques of a given
network correspond to the maximum payoff equilibria of the social networking game
on this network [59]. It has also been used for modeling the evolution of allele selection
in genetic research as an evolutionary game on genetic selection graphs [60]. The work
on the social distancing game on a network in this paper benefits from many ideas and
results coming out from these previous studies.
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