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Abstract. In this paper, a numerical method employing a finite difference tech-
nique is used for an investigation of viscous, incompressible fluid flow in a tube
with absorbing wall and slowly varying cross-section. The effect of fluid absorp-
tion through permeable wall is accounted by prescribing flux as a function of axial
distance. The method is not restricted by the parameters in the problem such as
wave number, permeability parameter, amplitude ratio and Reynolds number. The
effects of these parameters on the radial velocity and mean pressure drop is stud-
ied and the results are presented graphically. Comparison is also made between the
results obtained by perturbation method of solution and present approach.

AMS subject classifications: 76Z05, 92C10
Key words: Non-uniform tube, renal flow, Takabatake finite difference scheme.

1 Introduction

The process of reabsorption plays a major role during urine formation in kidneys
as 98 percent of glomerular filtrate gets reabsorbed during its passage through renal
tubules. Kidneys excrete most of the end products of body metabolism and they con-
trol concentrations of most of the constituents of body fluids. The basic functional unit
of kidney is nephron. Each kidney contains over a million tiny units (of nephrons), all
similar in structure and function. Each nephron functions independently and in most
instances it is sufficient to study the function of nephron to understand the mecha-
nism of kidney in terms of mathematical models. In nephrons, the portion after the
Bowman’s capsule is called proximal convoluted tubule, which is narrower than rest
of the tube and non-uniform in nature. It is the place where most of useful substances,
like water, glucose and electrolytes are reabsorbed back into the plasma and unwanted
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substances pass into urine. Thus it is of interest to study the flow in proximal tubule
using mathematical models.

Study of viscous fluid flow in channels of varying cross section with permeable
wall is significant because of its applications to both physiological and engineering
flow problems. The flow of fluid in a renal tubule has been studied by various au-
thors. Macey [1] formulated the problem as the flow of an incompressible viscous
fluid through a circular tube with linear rate of reabsorption at the wall. Whereas,
Kelman [2] found that the bulk flow in the proximal tubule decays exponentially with
the axial distance. Then, Macey [3] used this condition to solve the equations of mo-
tion and mentioned that the longitudinal velocity profile is parabolic and the drop in
mean pressure is proportional to the mean axial flow. Marshall and Trowbridge [4]
and Palatt et al. [5] used physical conditions existing at the rigid permeable tube in-
stead of prescribing the flux at the wall as a function of axial distance.

The representation of a proximal tubule as a uniform tube with constant wall per-
meability is obviously an idealization. Radhakrishnamacharya et al. [6] considered a
non-uniform geometry to model renal tubule while the previous studies considered it
uniform. They made an attempt to understand the flow through the renal tubule by
studying the hydrodynamical aspects of an incompressible viscous fluid in a circular
tube of exponentially varying cross-section with reabsorption at the wall. Following
similar approach, Chandra and Prasad [7] analyzed fluid flow in rigid tube of slowly
varying cross-section by considering different geometries. Also they investigated the
problem by considering fluid exchange across the permeable wall governed by Star-
ling’s hypothesis. Chaturani and Ranganatha [8] studied fluid flow through a diverg-
ing/converging tube with variable wall permeability. They obtained approximate an-
alytical solution for the case that the flux at the wall depends on wall permeability
and transboundary pressure drop. Recently, Muthu and Tesfahun [9] have studied the
fluid flow in nonuniform rigid wavy channel of varying cross section and presented
the effects of slope parameter, reabsorption coefficient on the transverse velocity and
mean pressure drop.

In all the above studies, the method used to solve the governing equations of the
fluid motion is perturbation method of solution by taking small nonuniform tube pa-
rameter/curvature parameter. As per the knowledge of the authors there is no nu-
merical study of the above problems reported in the literature.

Hence, in this paper, the Navier-Stokes equations governing the flow of an incom-
pressible viscous fluid through a wavy (rigid diverging/converging tube of varying
cross-section) non-uniform permeable tube are solved numerically by using the finite
difference technique related to the method of Takabatake-Ayukawa [10]. The effects of
wave number (δ), reabsorption coefficient (α), amplitude ratio (ϵ) and Reynolds num-
ber on the transverse velocity, stream function and mean pressure drop are studied
without restrictions on the parameters of the problem, in principle. Further, we com-
pared the results found by the current approach with that of perturbation method of
solution.

The boundary of the tube wall vary with x. It is taken as
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η(x) = d + k1x + a sin
(2πx

λ

)
, (1.1)

where d is the radius of the tube at the inlet (at x = 0). k1 is a constant whose magni-
tude depends on the length of the tube exit and inlet dimensions, a is the amplitude
and λ is the wave length (see Fig. 1). Here, we assume k1 ≪ 1 to model the slowly
varying slope.

λ
a

d
o

r

x

Figure 1: Geometry of the problem.

2 Mathematical formulation

Consider an incompressible fluid flow through a tube with slowly varying cross-
section as given by Eq. (1.1). The motion of the fluid is assumed to be laminar, steady
and symmetric. The tube is long enough to neglect the initial and end effects. The
governing equations of such fluid motion are given by [6],

∂u
∂x

+
1
r

∂(rv)
∂r

= 0, (2.1a)

u
∂u
∂x

+ v
∂u
∂r

= −1
ρ

∂p
∂x

+ ν
(∂2u

∂x2 +
∂2u
∂r2 +

1
r

∂u
∂r

)
, (2.1b)

u
∂v
∂x

+ v
∂v
∂r

= −1
ρ

∂p
∂r

+ ν
[ ∂2v

∂x2 +
∂2v
∂r2 +

∂

∂r

(v
r

)]
, (2.1c)

where u and v are the velocity components along the x and r axes respectively, p is the
pressure, ρ density of the fluid and ν = µ/ρ is kinematic viscosity.

The equations of motion are subjected to the boundary conditions:
(a) The tangential velocity at the wall is zero. That is,

u +
dη

dx
v = 0, at r = η(x). (2.2)

(b) The regularity condition requires

v = 0 and
∂u
∂r

= 0, at r = 0. (2.3)
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(c) The reabsorption has been accounted for by considering the bulk flow as a
decreasing function of x. That is, the flux across a cross-section is given as

Q(x) =
∫ η(x)

0
2πru(x, r)dr = Q0F(αx), (2.4)

where F(αx) = 1, when α = 0 and decreases with x, α ≥ 0 is the reabsorption coeffi-
cient and is a constant, and Q0 is the flux across the cross-section at x = 0.

Introducing stream function ψ, the vorticity ω and ζ (introduced to simplify the
discussion of the numerical method) by

u =
1
r

∂ψ

∂r
, v = −1

r
∂ψ

∂x
, ω =

∂v
∂x

− ∂u
∂r

and ζ = rω, (2.5)

and the following non-dimensional quantities

x′ =
x
λ

, r′ =
r
d

, η′ =
η

d
,

ψ′ =
2πψ

Q0
, α′ = αλ, ζ ′ =

2πd2

Q0
ζ,

the above governing equations together with boundary conditions in the dimension-
less form are given by (after dropping the primes)

δ2 ∂2ψ

∂x2 − 1
r

∂ψ

∂r
+

∂2ψ

∂r2 = −ζ, (2.6a)

δ2 ∂2ζ

∂x2 − 1
r

∂ζ

∂r
+

∂2ζ

∂r2 =
δRe

2

(∂ψ

∂r
∂ζ

∂x
+

2
r2

∂ψ

∂x
ζ − ∂ψ

∂x
∂ζ

∂r

)
. (2.6b)

The boundary conditions are:

∂ψ

∂r
= δ

(
k1 + A cos(2πx)

)∂ψ

∂x
, at r = η(x) = 1 + kx + ϵ sin(2πx), (2.7a)

ψ = 0 and − 1
r2

∂ψ

∂r
+

1
r

∂2ψ

∂r2 = 0, at r = 0, (2.7b)

ψ = F(αx), at r = η(x) = 1 + kx + ϵ sin(2πx), (2.7c)

where

δ =
d
λ

, Re =
Q0

πdν
, A =

2πa
λ

, ϵ =
a
d

, k =
k1λ

d
.

The parameter Re is the Reynolds number and δ is the wave-number (the ratio of inlet
radius to the wavelength). ϵ is amplitude ratio (the ratio of amplitude to the inlet
radius) and k is slope parameter. In this problem, we consider exponentially decaying
bulk flow, that is, in Eq. (2.7c), F is taken as

F(αx) = e−αx, for 0 ≤ x ≤ 1. (2.8)
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3 Numerical analysis

In the present analysis, the governing equations (2.6a) and (2.6b) together with the
boundary conditions (2.7a)-(2.7c) are solved numerically in the finite region ABCD
(Fig. 2). Although the boundary conditions for the infinite tube have been given, the
present numerical method requires furthermore the conditions on the entrance section
AD and the exit section BC because the numerical analysis is carried out for the finite
region ABCD as discussed by [10] and [13]. Due to this, the following conditions shall
be introduced:

a) The r-directional component of the flow velocity vanishes. That is, v = 0.
b) The profile of the stream function ψ is given by the prescribed functions f (r)

and g(r) at AD and BC respectively.
Therefore, the boundary conditions used in the analysis can be rearranged as fol-

lows:

ψ = 0, − 1
r2

∂ψ

∂r
+

1
r

∂2ψ

∂r2 = 0, on AB, (3.1a)

ψ = f (r),
∂ψ

∂x
= 0, on AD (inflow), (3.1b)

ψ = Q0e−αx,
∂ψ

∂r
= δ

(
k1 + A cos(2πx)

)∂ψ

∂x
, on CD, (3.1c)

ψ = g(r),
∂ψ

∂x
= 0, on BC (outflow), (3.1d)

where f (r) and g(r) are functions of r, such that u is parabolic at AD and BC sections.
We assume that these functions satisfy the boundary conditions so that the solution is
free from discontinuities.

The finite region ABCD is divided by an integral number of meshes N in the x-
direction and by an integral number of meshes M in the r-direction, thus the lattice
points are numbered i and j. Then the mesh sizes in x and r-direction are given re-
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N N+1
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M

D
M+1

Figure 2: Calculating region of the problem.
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spectively by

k =
1
N

, hi =
η(xi)

M
, with η(xi) = 1 + kxi + ϵ sin(2πxi). (3.2)

3.1 Finite difference approximation of the governing equations

Consider six lattice points (x, r), (x + k, r + δi,j), (x, r + hi), (x − k, r − δi−1,j), (x, r −
hi), (x − k, r − hi−1 − δi−1,j) numbered 0, 1, 2, 3, 4, 5 respectively in Fig. 3, and try to
determine the coefficients αn so that the following difference equation is satisfied:(

δ2 ∂2ψ

∂x2 − 1
r

∂ψ

∂r
+

∂2ψ

∂r2

)∣∣∣
0
= α0ψ0 + α1ψ1 + α2ψ2 + α3ψ3 + α4ψ4 + α5ψ5, (3.3)

where ψn represents the value of function ψ at the point numbered n.
By expanding each ψn in Eq. (3.3) by Taylor series about the point numbered 0 and

equating the coefficients of ψn, we get a set of equations for the unknown terms αn.
Then substituting Eq. (3.3) into Eq. (2.6a) yields the following ψ difference equation
with a second order accuracy o(h2, k2) when centred differences are used, which is
based on Eq. (2.6a), can be written as

α0ψi,j + α1ψi+1,j + α2ψi,j+1 + α3ψi−1,j + α4ψi,j−1 + α5ψi−1,j−1 + ζi,j = 0, (3.4)

where

α0 =
−2
h2

i
− δ2

k2 (2 + Di,j), α1 =
δ2

k2 ,

α2 =
1
h2

i
− 1

2ri,jhi
+

δ2

2k2 (Di,j − 2Ki,j), α3 =
δ2

k2 (1 + Ri,j),

α4 =
1
h2

i
+

1
2ri,jhi

+
δ2

2k2 (Di,j + 2Ki,j), α5 = − δ2

k2 Ri,j,

Di,j = S2
i,j +

hi−1

hi
Si,j − 2K2

i,j, Si,j =
δi,j + δi−1,j

hi
,

Ki,j =
δi,j

hi
, Ri,j =

δi,j + δi−1,j

hi−1
.

hi−1

hi

δ i−1,j

δ i,j

i−1
i

i+1

j

j−1

j+1
0

1

2

3

45

Figure 3: Lattice points on the interior region.
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Substituting Eq. (3.3) into Eq. (2.6b), we obtain a difference equation with respect to ζ.
The approximations to the derivatives ∂ζ/∂x and ∂ζ/∂r are carried out by applying
the up-wind difference technique, which is superior in stability for non-linear terms
and is fast in convergence of the calculation [10]. We set

β = ψ1 − ψ3, γ = ψ2 − ψ4,

and decide the stream direction from signs of β and γ. Then, to assure the dominance
of the coefficient of ω0, the center point numbered 0 and the points in the up-stream
are used in the difference approximations to ∂ζ/∂x and ∂ζ/∂r. Then we obtain

∂ζ

∂x

∣∣∣
0
=

1
k

(
ζ0 − ζ3 − (ζ2 − ζ0)

δi−1,j

hi

)
,

∂ζ

∂r

∣∣∣
0
=

ζ2 − ζ0

hi
, β ≥ 0, γ ≥ 0,

∂ζ

∂x

∣∣∣
0
=

1
k

(
ζ1 − ζ0 − (ζ2 − ζ0)Ki,j

)
,

∂ζ

∂r

∣∣∣
0
=

ζ2 − ζ0

hi
, β ≥ 0, γ < 0,

∂ζ

∂x

∣∣∣
0
=

1
k

(
ζ0 − ζ3 − (ζ0 − ζ4)

δi−1,j

hi

)
,

∂ζ

∂r

∣∣∣
0
=

ζ0 − ζ4

hi
, β < 0, γ ≥ 0,

∂ζ

∂x

∣∣∣
0
=

1
k

(
ζ1 − ζ0 − (ζ0 − ζ4)Ki,j

)
,

∂ζ

∂r

∣∣∣
0
=

ζ0 − ζ4

hi
, β < 0, γ < 0.

Consequently, the ζ difference equations are obtained as follows:

β0ζi,j + β1ζi+1,j + β2ζi,j+1 + β3ζi−1,j + β4ζi,j−1 + β5ζi−1,j−1 = 0, (3.5)

where

β0 = ri,jα0 +
δRe

4khi

(
− |β| − |γ|+ sgn(β)sgn(γ)

1
2

γTi,j −
2hi
ri,j

(
β − γ

1
2

Si,j

))
,

β1 = ri,jα1 +
δRe

4khi
γ
(

H(γ)− 1
)
,

β2 = ri,jα2 +
δRe

4khi

(
|β| − sgn(β)sgn(γ)

1
2

γTi,j

)
H(β),

β3 = ri,jα3 +
δRe

4khi
γH(γ),

β4 = ri,jα4 +
δRe

4khi

(
− |β|+ sgn(β)sgn(γ)

1
2

γTi,j

)
(H(β)− 1),

β5 = ri,jα5,

H(x) =

{
1, if x ≥ 0,
0, if x < 0,

sgn(x) =


1, if x > 0,
0, if x = 0,
−1, if x < 0,

and Ti,j =
δi,j − δi−1,j

hi
.

3.2 Finite difference approximation on the boundaries

In this section, we develop difference approximations to Eq. (2.6a) on the boundaries.
We consider the four points on and near the boundary AB, numbered 0, 1, 2, 3 respec-
tively, as shown in Fig. 4, and try to determine the coefficients an,(

δ2 ∂2ψ

∂x2 − 1
r

∂ψ

∂r
+

∂2ψ

∂r2

)∣∣∣
0
= a0ψ0 + a1ψ1 + a2ψ2 + a3ψ3 + a4

(
− 1

r2
∂ψ

∂r
+

1
r

∂2ψ

∂r2

)∣∣∣
0
. (3.6)
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Figure 4: Lattice points on the boundaries.

Similar to the method used to find αn, we can easily obtain a difference equation on
the boundary AB. Applying the boundary equation (3.1) to this difference equation
ζi,j on AB is found as

ζi,j = 0, on AB (i = 2, · · · , N, j = 1). (3.7)

Similarly on and near the boundaries BC, CD, AD, we consider the five points shown
in Fig. 4. Then the difference equations are approximated by using ψ at these five
points and ∂ψ/∂x or ∂ψ/∂r at the point numbered 0. At the points A, B, C, D, we con-
sider the four points shown in Fig. 4. Then the difference equations are approximated
by using ψ at these four points and ∂ψ/∂x and −r−2∂ψ/∂r + r−1∂2ψ/∂r2 at the point
numbered 0. By applying the boundary conditions (3.1) to these difference equations,
ζi,j on each boundary can be expressed as

ζi,j = b0ψi,j + b1ψi,j−1 + b2ψi+1,j + b3ψi+2,j + b4ψi,j+1, on AD (i = 1, j = 2, · · · , M), (3.8)

where

b0 =
2
h2

1
+

δ2

k2

[S2,j + K2,j

T2,j
+ K1,jR2,j

]
, b2 = −2

δ2

k2

S2,j

T2,j
, (3.9a)

b1 =
−1
h2

1
− 1

2r1,jh1
− δ2

2k2 K1,jR2,j

[ h1

h2

1
T2,j

+ 1
]
, b3 =

δ2

k2
h1

h2

K1,j

T2,j
, (3.9b)

b4 =
−1
h2

1
+

1
2r1,jh1

− δ2

2k2 K1,jR2,j

[
1 − h1

h2

1
T2,j

]
, (3.9c)

ζi,j = c0ψi,j + c1ψi,j+1 + c2ψi−1,j + c3ψi−2,j

+ c4ψi,j−1, on BC (i = N + 1, j = 2, · · · , M), (3.9d)

where

c0 =
2

h2
N+1

+
δ2

k2

[
− hN−1

hN

(RN,j + KN−1,j

TN,j

)
+

( hN
hN+1

)2
KN,jSN,j

]
, (3.10a)

c1 =
−1

h2
N+1

+
1

2rN+1,jhN+1
− δ2

2k2
hN

hN+1
KN,jSN,j

[ hN
hN+1

− 1
TN

]
, (3.10b)
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c2 = 2
δ2

k2

SN,j

TN,j
, c3 = − δ2

k2

KN,j

TN,j
, (3.10c)

c4 =
−1

h2
N+1

− 1
2rN+1,jhN+1

− δ2

2k2
hN

hN+1
KN,jSN,j

[ hN
hN+1

+
1

TN

]
, (3.10d)

ζi,j = e1ψi,j + e2ψi−1,j + e3ψi−1,j−1 + e4ψi,j−1

+ e5ψi+1,j, on CD (i = 2, · · · , N, j = M + 1), (3.10e)

where

e1 =
2
h2

i
+

δ2

k2 (2 + Di,M+1) +
2δ

hik
− δ

ri,jk
+

δ3

k3

(
hiDi,M+1 − 2δi,M+1

)(
k1

+ A cos(2πx)
) δi,M+1 + δi−1,M+1

δi−1,M+1 − δi,M+1
,

e2 = − δ2

k2 (1 + Ri,M+1)−
2δ

hik
+

δ

ri,jk
− δ3

k3 (hiDi,M+1 − 2δi,M+1)
(
k1

+ A cos(2πx)
) δi,M+1

δi−1,M+1 − δi,M+1
,

e3 =
δ2

k2 Ri,M+1, e4 = − 2
h2

i
− δ2

k2 Di,M+1,

e5 = − δ2

k2 − 2δ

hik
+

δ

ri,jk
− δ3

k3 (hiDi,M+1 − 2δi,M+1)
(
k1

+ A cos(2πx)
) δi−1,M+1

δi−1,M+1 − δi,M+1
.

At the corner points

ζi,j = 0, on A (i = 1, j = 1), (3.11a)

ζi,j = 0, on B (i = N + 1, j = 1), (3.11b)

ζi,j = d0ψi,j + d1ψi,j−1 + d2ψi+1,j−1 + d3ψi+1,j, on D (i = 1, j = M + 1), (3.11c)

where

d0 =
2
h2

i
+ 2

δ2

k2

(
1 − h2

h1
K1,M+1 + K2

1,M+1

)
, d1 =

−2
h2

i
− 2

δ2

k2 K1,M+1

(
K1,M+1 −

h2

h1

)
, (3.12a)

d2 = −2
δ2

k2
h1

h2
K1,M+1, d3 = 2

δ2

k2

(
K1,M+1

h1

h2
− 1

)
, (3.12b)

ζi,j = f1ψi,j + f2ψi,j−1 + f3ψi−1,j−1 + f4ψi−1,j, on C (i = N + 1, j = M + 1), (3.12c)

where

f1 =
2

h2
N+1

+ 2
δ2

k2

(
1 +

h2
N

h2
N+1

KN,M+1(1 + KN,M+1)
)

, f3 = 2
δ2

k2 KN,M+1,

f2 = − 2
h2

N+1
− 2

δ2

k2
h2

N
h2

N+1
KN,M+1

(
1 + KN,M+1

)
, f4 = −2

δ2

k2 (1 + KN,M+1).
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Figure 5: Lattice points on the boundaries.

Finally, when we consider the three points on and near the boundary AB shown by
Fig. 5, the derivatives of ψ can be approximated by

− 1
r2

∂ψ

∂r
+

1
r

∂2ψ

∂r2 =
1

2hir2 (ψ2 − 4ψ1 + 3ψ0).

Then, by using the boundary condition (3.1), we obtain

ψi,j =
1
4

ψi,j+1, on AB (i = 2, · · · , N, j = 2). (3.13)

Similarly the following formulas are obtained for other boundaries.

ψi,j =
δi,jψi−1,j + δi−1,jψi+1,j

δi−1,j + δi,j
, on AD (i = 2, j = 2, · · · , M), (3.14a)

ψi,j =
δN,jψi−1,j + δN−1,jψi+1,j

δN−1,j + δN,j
, on BC (i = N, j = 2, · · · , M), (3.14b)

ψi,j =
1
4
(
3ψi,j+1 + ψi,j−1 − 2hiδ(k1

+ A cos(2πx)) f0
)
, on DC (i = 2, · · · , N, j = M), (3.14c)

where

f0 =

(
(δi,M+1 + δi−1,M+1)ψi,j+1 − δi,M+1ψi−1,j+1 − δi−1,M+1ψi+1,j+1

)
k(δi,M+1 − δi−1,M+1)

.

The computational procedure to calculate ψ and ζ on the region ABCD and the values
of parameters related to SOR method are similar to the one given by Takabatake and
Ayukawa [10].

Now, the nondimensional pressure p(x, r) can be obtained by using Eq. (2.1b) and
ψ which is found by difference approximation. It is given as

p(x, r) = δ
∂u
∂x

+
1
δ

∫
∂2u
∂r2 dx +

1
δ

∫ 1
r

∂u
∂r

dx − Re

2

( ∫
u

∂u
∂x

dx +
∫

v
∂u
∂y

dx
)

. (3.15)

The mean pressure is given as

p̄(x) =
1

πη2(x)

∫ η(x)

0
2πrp(x, r)dr. (3.16)
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Further, the mean pressure drop between x = 0 and x = x0 is calculated using

∆ p̄(x0) = p̄(0)− p̄(x0). (3.17)

4 Results and discussion

In the present calculation, the integral numbers of meshes are set as M = N = 15.
First, we performed the calculation for the velocity profile and compared with the
analytical results based upon the perturbation method. They were in good agreement
and are given in Fig. 6(a) and (b). It is found that the maximum difference between
the two approaches is 2.2 × 10−1.

In order to assess the effects of grid dependence on the numerical solution, compu-
tations are conducted on two sets of grids, i.e., 15 × 15 and 16 × 16 cell meshes. Fig. 7
compares the computed mean pressure drop variation in the axial direction obtained
by using the numerical method on these grids and shows the effect of grid size on the
computed results. As the differences are negligible most of the computations reported
from this point onwards are done using the 15 × 15 grid size.

The objective of this analysis is to study the behavior of an incompressible fluid
flow through a tube of converging/diverging and slowly varying cross-section with
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Figure 6: (a) Comparison of transverse velocity between Analytical method and numerical approach (α =
2.0); (b) Comparison of transverse velocity for between Analytical method and numerical approach (α = 1.5).
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Figure 7: Grid dependence studies on two set of grids.
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absorbing walls by numerical approach. It may be recalled that k characterize the
slope of the converging/diverging wavy walls. k = 1.0 represents a diverging tube,
k = 0 represents a normal (sinusoidal) tube and k = −1.0 represents a converging
tube. ϵ and α represents amplitude and reabsorption coefficient of wavy walls.

We discuss the effects of these parameters on the radial velocity (v(x, r)), mean
pressure drop (∆ p̄(x)) and stream function ψ(x, r). In all our numerical calculations,
the following parameters are fixed as A = 0.0628, δ = 0.1 and ϵ = 0.1.

4.1 The velocity v

The velocity field can be obtained from difference approximation of the stream func-
tion. In this section, we discuss the effects of the slope parameter (k), reabsorption
coefficient (α) and Reynolds number on the radial velocity.

The effect of slope parameter (k) on the radial velocity is shown in Fig. 8. The
velocity is more for divergent tube than the normal (sinusoidal) tube, and it is less for
convergent tube than the other two. Fig. 9 illustrates the effect of Reynolds number on
the velocity v versus r. As shown, the Reynolds number produces significant influence
on the radial velocity. As Re increases from 1 to 5, the velocity increases and the point
where the velocity attains its maximum decreases from ∼= 0.6 to ∼= 0.4.

The effect of reabsorption coefficient α is presented in the Figs. 10(a), (b) and (c). It

v
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Figure 8: Distribution of transverse velocity (v) with y (Re = 1.0, α = 1.0, x = 0.2).
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Figure 9: Distribution of transverse velocity (v) with y (k = 0.1, α = 1.0, x = 0.2).
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Figure 10: (a) Distribution of transverse
velocity (v) with y (k = 0.1, Re = 1.0,
x = 0.2); (b) Distribution of transverse
velocity (v) with y (k = 0.0, Re = 1.0,
x = 0.2); (c) Distribution of transverse
velocity (v) with y (k = −0.1, Re = 1.0,
x = 0.2).
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Figure 11: (a) Distribution of mean pres-
sure drop ∆ p̄ with x (k = 0.1, Re = 1.0);
(b) Distribution of mean pressure drop
∆ p̄ with x (k = 0.0, Re = 1.0); (c) Dis-
tribution of mean pressure drop ∆ p̄ with
x (k = −0.1, Re = 1.0).
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Figure 12: Distribution of mean pressure drop ∆ p̄ with x (Re = 1.0, α = 1.5).
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Figure 13: Distribution of mean pressure drop ∆ p̄ with x (k = 0.1, α = 1.5).

can be observed from the figures that as α increases, the transverse velocity of the flow
increases for all cases (converging, normal, and diverging tubes).

4.2 Mean pressure drop ∆ p̄

The values of the mean pressure drop (Eq. (3.17)) over the length of the tube are cal-
culated for different values of k, Re and α. As shown, in Figs. 11(a), (b) and (c), when
the reabsorption coefficient α increases, the mean pressure drop decrease for all three
forms of the tube (convergent, normal and divergent tubes). Fig. 12 displays the effect
of slope parameter k to mean pressure drop. We can notice that ∆ p̄ is less for the di-
vergent tube than the normal or convergent tubes, and it is more for convergent tube
than the normal/divergent tubes. Fig. 13 shows the influence of Reynolds number Re
on ∆ p̄. The value of the mean pressure drop ∆ p̄ decreases as Re increases.

4.3 Stream function

We can observe the flow behavior of the fluid by looking at the contour drawing of the
stream function for various values of reabsorption coefficient α and for the Reynolds
number Re. Figs. 14(a), (b) and (c) shows the effect of α on the flow behavior of the
fluid. It can be observed that as α increases, the stream lines moves to the boundary
because of more absorption. Figs. 14(a), (d) and (e) are showing the flow pattern when
Re increases.
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Figure 14: (a) Streamlines (k = 0.1,
Re = 1.0, α = 1.0); (b) Streamlines
(k = 0.1, Re = 1.0, α = 1.5); (c) Stream-
lines (k = 0.1, Re = 1.0, α = 2.0); (d)
Streamlines (k = 0.0, Re = 5.0, α = 1.0);
(e) Streamlines (k = −0.1, Re = 10.0,
α = 1.0).

5 Conclusions

In the present study, an analysis of mathematical model of incompressible fluid flow
in a rigid tube of slowly varying converging/diverging walls has been presented with
possible applications to the flow of fluid in renal tubules. The main contribution of
this study is to use the numerical method to solve the Navier-Stock equations for an
incompressible, steady, viscous flow without imposing any restriction on the param-
eters of the problem. The reabsorption coefficient α, the slope parameter k and the
Reynolds number Re have the same effect on the radial velocity. As they increases, the
velocity also increases. The mean pressure drop decreases for rise of reabsorption co-
efficient for all three forms of the tube (converging, normal (sinusoidal) and diverging
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tubes). It is also less for the divergent tube than the normal or convergent tubes, and it
is more for convergent tube than the normal/divergent tubes. The streamlines shows
the general trend of the fluid flow. Physically, as the reabsorption coefficient increases
the fluid that come out of the tube becomes less.
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