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1. Introduction

In many branches of science, economics, computer science, engineering and the de-
velopment of nonlinear analysis, the fixed point theory is one of the most important
tool. In 1989, Backhtin [4] introduced the concept of b-metric space. In 1993,
Czerwik [6] extended the results of b-metric spaces. Altun, Sola and Simsek [1]
introduced generalized contractions on partial metric spaces. Rao, Kishore, Tas,
Satyanaraya and Prasad [10] introduced common coupled fixed point results in or-
dered partial metric spaces. Azam, Fisher and Khan [3] introduced new spaces
called complex valued metric spaces and established the existence of fixed point
theorems under the contraction condition. Dhivya and Marudai [7] introduced new
spaces called complex partial metric space and established the existence of com-
mon fixed point theorems under the contraction condition of rational expression.
Bhaskar and Lakshmikantham [8] introduced the concept of coupled fixed point.
Ciric and Lakshmikantham [5] investigated some more coupled fixed point theo-
rems in partially ordered sets. Aydi [2] introduced coupled fixed point results on
partial metric spaces. Gunaseelan and Mishra [9] introduced coupled fixed point
theorems on complex partial metric space using different type of contractive con-
ditions. In this paper, we introduced generalized coupled fixed point results on
complex partial metric spaces under the contractive condition.
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2. Preliminaries

Let C be the set of complex numbers and z1, zo € C. Define a partial order < on C
as follows:

z1 = 29 if and only if Re(z1) < Re(z2), Im(z1) < Im(z2).

Consequently,one can infer that z; < 25 if one of the following conditions is satisfied:
(i) Re(z1) = Re(z2),Im(z1) < Im(z2),

(ii)Re(z1) < Re(z2),Im(z1) = Im(z2),

(iii)Re(z1) < Re(z2),Im(z1) < Im(z2),

(iv)Re(z1) = Re(z2),Im(z1) = Im(z2).

In particular, we write 21 3 22 if 21 # 22 and one of (i), (i) and (iii) is satisfied and
we write 21 < 2o if only (44) is satisfied. Notice that

(a) If 0 < 21 3 22, then |z1| < |2,

(b) If 21 < 25 and 22 < z3 then 2z < z3,

(¢) If a,b € R and a < b then az < bz for all z € C.

Definition 2.1. [7] A complex partial metric on a non-empty set Y is a function
o.:Y xY — Ct such that for all p,r,s € Y:

(i) 0 X oe(p,p) = oc(p, ) (small self-distances)

(ii) oc(p,7) = oc(r, p)(symmetry)

(iii) Jc(pap) = o.(p, ’I“) = Jc(r> ’I“) < DP= r(equality)

(iv) oc(p, 1) X 0c(p, 8) + 0c(s, 1) — 0c(8, 8)(triangularity).

A complex partial metric space is a pair (Y, o.) such that Y is a non empty set and
0. is complex partial metric on Y.

For the complex partial metric . on Y, the function d,, : ¥ x Y — C* given
by o = 20.(p,7) —0c(p,p) —0c(r,7) is a (usual) metric on Y. Each complex partial
metric o, on Y generates a topology 7,, on Y with the base family of open o.-balls
{Bs,(p,;€) : p € Y,e > 0}, where B,_(p,e) ={r €Y : g.(p,7) < oc(p,p) + €} for all
peEY and 0<ec CT.

Definition 2.2. [7] Let (Y, 0.) be a complex partial metric space(CPMS). A se-
quence (py,) in a CPMS (Y, 0.) is convergent to p € Y, if for every 0 < ¢ € C* there
is N € N such that for all n € N we get p,, € B,_(p,€)

Definition 2.3. [7] Let (Y, 0.) be a complex partial metric space. A sequence (p;,)
in a CPMS (Y, 0.) is called Cauchy if there is a € C* such that for every ¢ < 0
there is N € N such that for all n,m > N; |6c(pn, pm) — a] < €.

Definition 2.4. [7] Let (Y, 0.) be a complex partial metric space(CPMS).
(1) A CPMS (Y, 0.) is said to be complete if a Cauchy sequence (p,,) in ¥ converges,
with respect to 7,,, to a point p € Y such that o.(p,p) = lim oc(pn,Pm)-

—00

n,m
(2) A mapping H : Y — Y is said to be continuous at pg € Y if for every e < 0,
there exists 6 > 0 such that H(B,,(po,d)) C By, (H(po,€)).

Lemma 2.1. [7] Let (Y,0.) be a complex partial metric space. A sequence {yn}
is Cauchy sequence in the CPMS (Y,o0.) then {y,} is Cauchy in a metric space
(,0t).

Definition 2.5. Let (Y, 0.) be a complex partial metric space(CPMS).Then an
element (p,r) € Y x Y is said to be a coupled fixed point of the mapping F :
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Y XY =Y if F(p,r) = p and F(r,p) = r.

3. Main results

Theorem 3.1. Let (Y,0.) be a complete complex partial metric space. Suppose
that the mapping ¢ : Y XY — Y satisfies the following contractive condition for all
p,q,r,s €Y

oc(¥(p, ), ¥(r,s)) 2 koe(p,r) +loc(q, s),

where k,l are nonnegative constants with k +1 < 1. Then, ¢ has a unique coupled
fized point.

Proof. Choose pg,qo € Y and set p; = ¥(po, qo) and ¢1 = (g0, po). Continuing

this process, set pp+1 = w(pn,qn) and g1 = w(qnapn)~
Then,

0c(PnsPrt1) = 0c(Y(Pn-1,4n-1), V(Pn; qn))
j kgc(pn—lapn) + lac(qn—ly qn)

which implies that
|0c(Pns Prt1)| < Eloe(Pn—1,00)| + Uoc(dn-1,a5)] (3.1)
Similarly, one can prove that
|0c(@ny Gns1)| < kloe(gn-1,an) + Uoc(Pr—1.pp)] (3-2)
From (3.1) and (3.2), we get
|0c(Prs Prt1) |+ |0e(n, gnia)] < (K + D (J0e(gn—1, )| + |0c(Pr—1,Pn)])
= (|oe(gn—1,gn)| + |oc(Pn—1,1n)])

where a =k +1 < 1.
Also,

loc(Pra1s Pry2)| < Kloe(Pn, Prt1)] + Uoe(@ns Gnit)] (3.3)
|UC(Q7L+17 Qn+2)| < k|ac(Qn7 Qn+1)| + Z|Uc(pn7pn+1)| (3'4)
From (3.3) and (3.4), we get

|0'c(pn+1apn+2)‘ + |O'C(Qn+17Qn+2)| < (k + l)(|Uc(QnaQn+1)| + |0'c(pnapn+1)‘)
04(|Uc(qn, Qn+1)| + |Uc(pn>pn+1)|)

Repeating this way, we get

|Uc(pn7pn+1)‘ + |Uc(qn7Qn+1)| < a(lac(anlath)' + |0'c(pn717pn)|)
< O‘2(|Uc(qn—27qn—1)‘ + |0c(pn—27pn—1)‘)
- < a"(loe(qo, q1)| + |oc(po, p1)])

IN |

NOWa if |UC(pn7pn+1)| + |UC(qna QTL+1)| = Sn, then

Sp < asy_1 < - < asg (3.5)
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If so = 0 then |oc(po,p1)| + |oc(qo,q1)| = 0. Hence py = p1 = 9(po,qo) and
go = @1 = ¥(qo,po), which implies that (pg, qo) is a coupled fixed point of ).
Let sg > 0. For each n > m, we have

0e(Pn,Pm) = 0c(Pn, Pn-1) + 0c(Prn-1,Pn—2) = 0c(Pn—1,Pn-1)
+0e(Pn—2,Pn-3) + 0c(Pn—3,Pn—1) — Oc(Pn—3,Pn-3)
+ 4 0e(Pmt2, Pm+1) + 0c(Pm+1,Pm) — Oc(Pmt1, Pmt1)
= 0e(PnsPn—1) + 0c(Pn-1,Pn—2) + -+ 0c(Pmi1,Pm)

which implies that

|0c(Pr, Pm)| < 10c(Prs Pr—1)] + 0c(Pn—1,Pn—2)| + - + [0c(Pm+1, Pm)|.
Similarly, one can prove that

|0(an, @m)| < |oc(an, Gn-1)] + |oc(@n-1, qa—2)| + -+ + |oc(@m+1, Gm)|-
Thus,

|Uc(pnupm)| + |UC(Qn7 qm)| S Sn—1 + Sn—2 + Sn—3 + -+ Sm
< (Oénfl +O[n72 +~~+Ozm)80

m

<

< so—~0 n— oo
1l—«

which implies that {p,} and {g¢,} are Cauchy sequences in (Y, o.). Since the partial
metric space (Y,o0.) is complete, there exist p,q € Y such that {p,} — p and

qn — g as n — oo and O'c(pap) = lim, 0 Uc(papn) = hmn,m—)oo Uc(pnvpm) =0,
Uc(an) = lim, 00 Uc(qa QH) = limn,mﬁoo Uc(qwm(Im) = 0. We now show that p =

¥(p,q). We suppose on the contrary that p # v¥(p,q) and g # ¥(q,p) so that
0 < oe(p,¥(p,q)) =l and 0 < 0.(g,9(q,p)) = 2

then
lh = oc(p,¥(p,q)) 2 0e(p,Pny1) + oc(Pry1, (P, q))
= Oc(p,pn+1) + Uc('(/)(p'm Qn)a 1P(Pa q))
= O—c(pvpn+1) + kJC(pnap) + lUC(qn7q)

which implies that

] < |oc(p, Prs1)| + kloc(Pn, p)| + Uoe(gn, )|

As n — oo, |l1] < 0. Which is a contradiction, therefore |o.(p,1(p,q))| = 0 which
implies that p = ¥(p, ¢). Similarly we can prove that ¢ = ¥(g,p). Thus (p,q) is a
coupled fixed point of ¢. Now, if (g, k) is another coupled fixed point of ¥, then

oc(p,g) = oc(V(p, @), ¥(9,h)) =X koe(p, g) +1o(q, h),
Thus

)

0u(p.9) < T oela,h) (36)

k
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which implies that

loe(p,g)] < loe(q, h)] (3.7)

l
1-k
Similarly,

00(a:1)| < T loelp.0) (33)

From (3.7) and (3.8), we get

005 9] + [oe(a W] < 1= [l 9] + (g, W]

(1= L) (loelp.0)| + loela, W) < 0

Since k + 1 < 1, this implies that |o.(p, g)| + |oc(q, k)| < 0. Therefore p = g and
g=h = (p,q) = (9, D).
Thus, v has a unique coupled fixed point. O

Corollary 3.1. Let (Y,0.) be a complete complex partial metric space. Suppose
that the mapping ¢ : Y XY — Y satisfies the following contractive condition for all
pg,rs €Y

oe((p: @), 9 (r,8)) = 5 (0e(p,7) + 0c(4; 5)); (3.9)

where 0 < k <1 . Then, ¥ has a unique coupled fized point.

N |

Example 3.1. Let Y = [0,00) endowed with the usual complex partial metric
0c: Y xY — [0,00) defined by o.(p,q) = max{p, ¢}(1 + i).The complex partial
metric space (Y, 0.) is complete because (Y, ot) is complete. Indeed, for any p,q € Y

O'Z = 2oc(p, T) - Jc(pvp) - JC(T’ 7")
= 2max{p,q}(1 +14) — (p +ip) — (¢ +iq)
=lp—ql+ilp—adl.

Thus, (Y,0.) is the Euclidean complex metric space which is complete. Consider
the mapping ¢: Y x Y — Y defined by ¢(p,q) = p—gq. For any p,q,g,h € Y, we
have

0. ((p, ), Y9, 1)) = 15 max(p-+ 4.9+ Y1+ )

< < lma{p, g} + max{a, h})(1 +9)

1
— E[O'C(p, ’LL) + Uc(qv h)]

which is the contractive condition (3.9) for k& = . Therefore, by Corollary 3.1,
1 has a unique coupled fixed point, which is (0,0). Note that if the mapping
¥:Y xY — Y is given by ¢(p,q) = P14 then 1) satisfies the contractive condition

2
(3.9) for k = 1, that is,

oc(Y(p,q),¥(g,h)) = % max{p +q,g + h}(1l +1i)
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IN

%[maX{n g} +max{g, n}](1 +1)

= %[Uc(p, 9) +oclq, h)].

In this case, (0,0) and (1,1) are both coupled fixed points of 1, and hence, the
coupled fixed point of v is not unique. This shows that the condition & < 1
in Corollary 3.1, and hence k 4+ 1 < 1 in Theorem 3.1 cannot be omitted in the
statement of the aforesaid results.

Theorem 3.2. Let (Y,0.) be a complete complex partial metric space. Suppose
that the mapping ¢ : Y XY — Y satisfies the following contractive condition for all
pg,rs€Y

Uc(ili(P, Q)ﬂ/)(r; 5)) = kO’c(UJ(p, ) ) + lgf‘(w(rv S),p),

where k,l are nonnegative constants with k421 < 1. Then, ¥ has a unique coupled
fixed point.

Proof. Choose pg,qo € Y and set p1 = ¥(po, qo) and g1 = ¥(qo, po). Continuing

this process, set pp+1 = V(Pn, gn) and gnr1 = (g, pn)-
Then,

Oc(PnsPnt1) = Uc(w(pn—h(Jn—l)vw(pm Qn))
=2 koc(V(Pn—1,4n-1),Pn) + loc(¥(Pns qn), Pn—1)
= kac(pnapn) + lJc(anrlapn 1)
= koe(pn, Pnt1) + loe(Pry1; Pr1)
= koe(pnsPrt1) + 10c(Prt1;pn) + 0e(PrsPr-1) — 0c(Pn, Pn))
( +

j kUc pnapn+1) Z(Uc(anrhpn) O-c(pnapnfl))
l

. — _
=1 (k+l)0'c(p7zapn 1)

which implies that

l
c\UnyPn Si c\UnyPn— 3.10
Similarly, one can prove that
l
ny4n S nsYn— 11
|0c(@ns dn+1)] < 7 (kH)IUc(q Gn—1)| (3.11)
From (3.10) and (3.11), we get
l
‘O'c(pnapn+1)| + |0'c(Qn7Q7L+1)| < m(‘ac(pnvpn—lﬂ + |O'C(Qnaq”—1)|)

= a(\ac(pn,pn,lﬂ + |Uc(Qm Qn—1)|)

where oo = % < 1.
Also,

|Uc(pnapn—1)| (312)

l
<
oc(Prt1,Pns2)] < 1—(k+1)
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l
|oe(qn+1, Gnt2)| < ﬁ'OC(Qn7Qn—1)| (3.13)

k+1)
From (3.12) and (3.13), we get

l
< +—F — c\4Yny Yn—
|0c(Pnt1; Prs2)l + |0c(nt1, Gni2)| < 17(k+l)(\oc(pn,pn |+ loe(gn: gn-1)l)
= a(‘gc(pnapn—lﬂ + |0c(qna Qn—1)|)
Repeating this way, we get

Io'c(pnapn-i-l)‘ + |Uc(q”7qn+1)| S Oé(|0c(pmpn—1)| + |UC(Q71;Q7L—1)|)
O‘2(|UC(Qn727Qn71>‘ + |Uc(pn72apn71)‘)
- < an(|00(q03q1)| + ‘O—C(p()apl)‘)

VANVAN

NOWa if |Jc(pn7pn+1)| + |UC(Qna qn+1)| = Sn, then

sp < asp_1 <---<asg (3.14)

If so = 0 then |oc(po,q1)| + |0c(q0,q1)| = 0. Hence po = p1 = (po,qo) and
g0 = q1 = ¥(qo, po), which implies that (pg, qo) is a coupled fixed point of ).
Let so > 0. For each n > m,we have

0c(PrsPm) 2 0c(PnsPn—1) + 0c(Pn-1,Pn—2) — Oc(Pn—1,Pn-1)
+0e(Pn—2,Pn—3) + 0c(Pn—3,Pn—1) — 0c(Pn—3,Pn—3)
+ o+ e (Pmy2 Pmr1) + 0c(Pmi1, Pm) — c(Pmi1s Pmi1)
2 0e(PnsPn—1) + 0c(Prn—1,Pn—2) + -+ 0c(Pmi1,Pm)

which implies that
loe (P, )| < |oe(Pr, Pr-1)| + [0c(Prn—1,Pn—2)| + - + [0c(Pmt1, Pm)|-

Similarly,one can prove that

|UC(Qn7Qm)| S |UC(Qn7Qn—1)| + ‘ac(qn—la Qn—2)| + -+ |Uc(qm+1a Qm)|

Thus,

|Uc(pn;pm)| + |Uc(qna Qm)| S Sn—1 + Sn—2 + Sn—3 + -+ Sm
< (anfl +an72 -l-'-'-l-()ém)So

m

<

so— 0 n — oo.

which implies that {p,} and {g,} are Cauchy sequences in (Y, c.). Since the partial
metric space (Y,o0.) is complete, there exist p,q € Y such that {p,} — p and
gn — q as n — oo and Uc(pap) = lim, 00 Uc(papn) = 1irnn,m%oo Uc(pnapm) =
0,00(q,q) = limy—00 0¢(q,qn) = limy oo 0c(@n,@m) = 0. We now show that
p = ¥(p,q). We suppose on the contrary that p # ¢ (p,q) and g # (g, p) so that
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0 < oc(p,(p,q)) =11 and 0 < 0.(q,¥(q,p)) = l2
then

L= Uc(pa¢( b, q )) Uc( pn+1) +Uc(pn+1,¢(p, Q))
(D, Prt1) + 0 (Y (P 4n), (P, 0))
( )

(p )

IA

(D, Png1) + koc(V(pn, an),p) + loc(¥(p, ), pn)

(o
g
Oc(Dy Pn+1) + kgﬂ(pn+1ap) + lo—c(d)( Q),pn)

c

which implies that
1| < loe(p, pus1)| + Kloe(pn, )| + Hoe(¥(p, 0), pn)|
As n — oo, |l1] < 0. Which is a contradiction, therefore |o.(p,¥(p,q))| = 0 which

implies that p = 1(p, ¢). Similarly we can prove that ¢ = v (q, ) Thus (p,q) is a
coupled fixed point of ¢. Now, if (g, h) is another coupled fixed point of ¢, then

oc(p,9) = 0c(V(p, ), ¥(g, h)) = kac(¥(p, ), 9) +lo((g, h),p),

Thus,

(1= (k+1D))oc(p.g) 20 (3.15)
which implies that

(1= (k+1)loc(p,g)| <0 (3.16)
Similarly,

(1= (k+D))loc(g )| <0 (3.17)

From (3.16) and (3.17),since k +1 < 1. Therefore p =g and ¢ =h

which implies that (p,q) = (g, k).

Thus, v has a unique coupled fixed point. O
from theorems (3.2) with k = [, we get the following corollary.

Corollary 3.2. Let (Y,0.) be a complete complex partial metric space. Suppose
that the mapping ¢ : Y XY — Y satisfies the following contractive condition for all
pg,rs€Y

oc(¥(p,q), ¥(r; 5)) 2 k(oc(¥(p,q), ) + oc(ib(r, 5), p)),

where k is nonnegative constant with k < % Then, ¥ has a unique coupled fixed
point.

Theorem 3.3. Let (Y,0.) be a complete complex partial metric space. Suppose
that the mapping ¢ : Y XY — Y satisfies

oc(¥(p,q), ¥(r; s)) 2 rmax{oc(p,r), 0c(q; 5),0c(¥(p, q), p), 0c(¥(r; 5),7)},

for allp,q,r,s €Y. Ifr €[0,1), then ¢ has a unique coupled fized point.
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Proof. Choose pg,qo € Y and set p1 = ¥(po, go) and ¢1 = ¥(qo, po). Continuing

this process, set pp+1 = ¥(Pn, qn) and g1 = ¥(gn, pn)-
Then,

Oc(Prt1:Pnt2) = 0c(P(Pns @n), Y (Prt1s Gnt1))
= rmax{0c(Pn, Pn+1), c(@ns Gnr1), 0c(Y(Pny @n)s Pn),
0c(Y(Pn+1: @nt1), Prt1)}
= rmax{oc(pPn, Pn+1), 0c(ln, dnr1),
0c(Pnt+1,Pn)s 0c(Pnt2, Prt1) }
= rmax{o.(pn, Pnt1); 0c(Gns Gni1)},

which implies that

|0c(Pn+1, Prt2)| < rmax{|oc(pn, Pnt1)s [0c(@n, qnr1)[}- (3.18)
Similarly, one can prove that

|oe(tnr1, Gnr2)| < rmax{|oc(qn, Gni1)l, [oc(Pn, Prra)l}- (3.19)
From (3.18) and (3.19), we get

max{|oc(Pn+1, Pnt2)|s [0c(@nr1s Gni2) |} < rmax{|oc(gn, gnr1)l; [oc(Prs Prt1)]}
(3.20)

Continuing this process, we get

maX{|Uc(pn7pn+1)|7 |0-C(q7l’ Qn+1)|} < rmax{|ac(qn_1, Qn)|7 |Uc(pn—1apn)|}
S 7'2 max{|UC(Qn727 anl)\, ‘O—C(pnf%pnfl)”’

< r" HlaX{|Uc(QO,Q1)‘7 ‘O—c(p()apl)‘}'

As n — oo,
nh_{lgo max{|00(pn7pn+1)|ﬂ |Jc(qn7 Qn+1)|} =0.
Therefore,
lim |oc(pn, pn+1)] =0, (3.21)
n—oo
Jim[oe(gn, gni1)] =0 (3.22)

For each n > m, we have

0c(Pn,Pm) = 0c(PnyPn-1) + 0c(Prn-1,Pn—2) = 0c(Pn—1,Pn-1)
+0e(Pn—2,Pn—3) + 0c(Pn—3,Pn—1) — 0c(Pn—3,Pn—3)
+ ot 0e(Pmy2 Pmst) + 0c(Pmat, Pm) — c(Pms1s Pmi1)
2 0c(Pn,Pn—1) + 0c(Pn—1,Pn—2) + - + 0c(Pm+t1,Pm)
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which implies that

|Uc(pn7pm)| S |Uc(pnapnfl)| + ‘Uc(pn717pn72)| +--+ |0_c(pm+17pm)‘-

Therefore,

loc(Pr, Pm)| < 7" max{|oc(qo, q1)], |oc(Po, p1)|}-

As n,m — oo,
lim |oc(pn, pm)| = 0.
n—oo

Similarly, one can prove that

|UC(Qn7Qm)| < |‘76(QTL7Qn—1)| + ‘O'C(Qn—la qn—2)| + o+ |Uc(Qm+1a qm)|a
loc(qn, gm)| < " max{|oc(qo, q1)|, |oc(po, p1)},

lim |o¢(Gn,qm)| = 0.

n—roo

which implies that {p,} and {g,} are Cauchy sequences in (Y, o).
Since the partial metric space (Y,0.) is complete, there exist p,q € Y such
that {p,} — p and ¢, — ¢ as n — oo and o.(p,p) = lim,—0o 0c(P,Pn) =

lilnn,m%oo CTc(Pum) =0, Jc(qa Q) = limy, 00 Jc(‘]a Qn) = lil’nn,mﬁoo Uc(Qn,Qm) =0.
We now show that p = ¥(p, q). Now

oc(p, (P, q)) 2 0e(D; Pry1) + 0c(Prt1, ¥(p: q))

0c(p, Pn+1) + (Y (Pns Gn)s (P, 9))

0e(p, Pny1) + rmax{oc(pn, p), 0c(qn; @); 0c(V(Pny an)s Pn)s
oc(Y(p,q),p)}

oc(p, Pny1) + rmax{oc(pn,p); 0c(qn, @), c(Prt1, Pn, oc(V(p, q), p)},

PN

which implies that

|Uc(p7¢(pv q))| §|O'C(papn+1)‘ + rmax{|ac(pn,p)|, |UC(qn7 Q)|7 |Uc(pn+1,pn)|7
loe(¥(p, ). p)[}

AS n— 00, |Uc(p7¢(10, Q))I é T|UC(¢(pv q)7p)|
Since r € [0,1), therefore |o.(p,¥(p,q))] =0 = p = ¢¥(p,q). Similarly we can

prove that ¢ = ¥(q,p). Thus (p,q) is a coupled fixed point of ¢. Now, if (g, h) is
another coupled fixed point of 1, then

Uc(pa g) = O'C(w(pv q)a 1;/}(97 h)) = T’maX{O'C(p, g)a UC(Qa h)v Jc(¢(P» Q)ap)v Jc(w(gv h)»g)}
=< rmax{oc(p, 9),0c(q,h), 0c(p,p), 0c(9,9)},

Since o.(p, p) = 0c(p,g) and 0.(g,9) =< 0c(p, g), we have

oc(p,g) = rmax{oc(p, g),0c(q,h)}
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loe(p, 9)| < rmax{|oc(p, g)l,oc(g, h)|}- (3.23)

Similarly, we can prove

|Uc(Q7h)| < rmax{|ac(p,g)\,|ac(q, h)|} (3'24)

From (3.23) and (3.24), we have

max{|oc(p, 9|, [oc(g; )|} < rmax{|oc(p, g)],oc(g; h)[} (3.25)

Since r < 1, we have max{|o.(p, 9)|, |oc(q, h)|} = 0 which implies that o.(p,g) =0
and o.(g, h) = 0. Therefore p = g and ¢ = h which implies that (p,q) = (g, h).
Thus, 1 has a unique coupled fixed point. O

Corollary 3.3. Let (Y,0.) be a complete complex partial metric space. Suppose
that the mapping ¢ : Y XY — 'Y satisfies

O-C(w(pa q)v ¢(T, 8)) j aac(pv T) + bUC(qv 8) + CJcW(P» Q)ap) + d06(¢(T, 8)7 T)v
for all p,q,r,s € Y with a,b,c,d € [0,1), then ¢ has a unique coupled fized point.

Proof. The proof follows from Theorem 3.3.
Note that

aoe(p,7) +boc(q, s) + coc(Y(p, q), p) + doc(¢(r,s),7) < (a+ b+ c+d)
max{oc(p,7),0c(q,5),0c(Y(p,q),p), 0c(¥(r; 5),7)}

O

Example 3.2. Let Y = [0,00) endowed with the usual complex partial metric
0.: Y XY — [0,00) defined by o.(p,q) = max{p,¢}(l + 7). The complex partial
metric space (Y, 0.) is complete because (Y, o) is complete. Indeed, for any p,q € Y

ol =20c(p,7) — oc(p,p) — oc(r,7)
= 2max{p, ¢}(1 +i) — (p +ip) — (¢ + iq)
=[p—q|+ilp—ql

Thus, (Y,0.) is the Euclidean complex metric space which is complete. Consider

the mapping ¢: Y X Y — Y defined by ¥(p, q) = @. For any p,q,g,h € Y we
have

0e((p,0), (g, 1)) = 5 max{lp — al, g — Al}(1+)

1 .
=g max{p — ¢, —p,g—hh—g}(1+1)

1
5 max{p, q7g’ h}(l + Z)

= % maX{Uc(p, g), Uc(Q? h)}

IA

< S max{o. (9, 9),00(, 1), (3, ), ), e, 1) )

Thus, 1 has a unique coupled fixed point. Here, (0,0) is the unique fixed point of
.
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4.

Conclusion

In 2019, Gunaseelan and Mishra [9] proved coupled fixed point theorem on complex
partial metric space. In this paper we proved coupled fixed point results on complex
partial metric space using contractive condition.
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