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Existence and Multiplicity of Positive Solutions for
Fractional Differential Equation with Parameter*

Xiaoling Han'f, Shaolin Zhou! and Ruilian An'

Abstract In this paper, by using the fixed point theorem for a cone map,
we study the existence and multiplicity of positive solutions for a class of
fractional differential equation with parameter.
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1. Introduction

Fractional calculus has played a significant role in engineering, science, economy,
and other fields, during the last few decades. There has been a significant develop-
ment in ordinary and partial differential equations involving fractional derivatives.
There are many important results about the existence of solutions for fractional
differential equation, see [1,2,5-8,10,11] for more details.

In [1], Bai and Lii considered the positive solutions for boundary value problem
of fractional order differential equation

D u(t) + f(t, u(t)) =0, ¢ € (0, 1),

where 1 < o <2, f:]0,1] x [0, +00) — [0, 4+00) is continuous.

In this paper, under different growth conditions of f, we obtain the existence and
multiplicity of positive solutions for boundary value problem of fractional differential
equation with parameter

{Dg+u(t)+Af(t, u(t)) =0, t € (0, 1), (1.1)

u(0) = 0,u(1) =0,

where 1 < a <2, f:[0,1]%[0,400) — [0,+00) is continuous, A > 0 is a parameter.

Remark 1.1. When « = 2, problem (1.1) is reduced to the problem of paper [4].

We make the following hypotheses:
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(A )f(t,u) : [0,1] x [0,400) — [0,+00) is continuous and there exists g €
C((0,+00), (0,400)), q1, 42 € C((0, 1), (0, +-00)) such that ¢1(t)g(y) < f(t,t*7%y) <
22(t)g(y), t € [0,1],y € [0, +-00).

For the convenience, we take some notations. Let
go = lim M, Joo = lim .
y—0+ Y y—+oo
ip=numbers of zeros in the set {go,goo}; ‘oo=numbers of infinities in the set

{90, 90 }-
M(p) = max {g(y)},  m(p)=  min {g(y)}.
vsp e <y<p
The tool theorem is following:

Theorem 1.1. Let E be a Banach space, K C E is a cone, 1, Qo are bounded open
subsets of E, 0 € Q1,Q; C Qy, suppose that A : K((Qa \ Q1) — K is completely
continuous and satisfies :

(i) |Az|| < ||lz|l,z € K (0, and ||Az| > ||z||,z € K[ 0Q2; or

(i) ||Az|| > ||z||,z € K0, and ||Az| < |jz|,z € K[)O;
Then A has a fized point in K ((Q2\ Q1).

Definition 1.1. We call Df, f(z) = F(n a)
1 is the Riemann-Liouville fractional derlvatlve of order a.[a] denotes the integer
part of number «.

Definition 1.2. We call I, f(z) = ﬁf;(x — )L f(t)dt,z > 0,0 > 0 is
Riemann-Liouville fractional integral of order a.

)™ Jy Ldt,a>0,n: [a] +

m t)a n+1

2. Preliminaries

Lemma 2.1 (Lemma 2.3, [1]). The solutions of problem

Dgyu(t) + Af(E, u(t)) =0, t € (0, 1),

s equivalent to the solutions of the integral equation

1
u(t) = )\/ G(t,s)f(s,u(s))ds, (2.1)
0
where )
t(1—s)]* 1 —(t—s)>!
[t( )]F(a)( ) L0<s<t<l;
G(t,s) =
t(1—s)]> !
%, 0<t<s<l.

Lemma 2.2 (Proposition 1, [5]). The Green function G(t,s) has the following
properties:

(i) G(t,s) € C([0,1] x [0,1]) and G(t,s) > 0,Vt,s € (0,1);
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(ii) There exists s positive function v € C(0,1) such that

min_ G(t,s) > v(s) max G(t,s) > v(s)G(s,s),s € (0,1).
<t< 0<t<1

N
Blw

Lemma 2.3 (Lemma 2.3, [5]). The Green function G(t,s) satisfies

a—1
')

11— )1 — )" < Gty s) < ﬁto"l(l (1= 8) 215 € (0,1).

Let G*(t,s) := t2=*G(t, s), then

1
(@)

a—1
I'(a)

t(1—t)s(1 —s)*" 1 < G*(t,s) < s(1—s)*"1t,s€(0,1).

—

Define
K :={y € C[0,1] | y(t) > 0,y(t) > (a« — 1)t(1 = t)|lyl},

where [ly]| = max Jy(t)].

Lemma 2.4. Let (Thy)(t) := )\fol G*(t,8)f(s,5* 2y(s))ds, then Ty : K — K is
completely continuous.

Proof. The continuity of T) is obvious. Following we prove T) : K — K. From
Lemma 2.2 and condition (A), we can get that Thy(¢) > 0,t € [0,1]. For Vy € K,
from Lemma 2.3, we have

Toy(t) = A / G (8, 5) (5, °2y(s))ds

> A(Fo‘(;)l)m — 1) /01 s(1 — 5)21 f(s, 52y (s))ds.
On the other hand
)\ 1
T30l = g, 11300 < s [ 0= 57 2yt

Hence
Thy(t) = (a — (1 = )| Thyl.

So T)\ K — K.
Next we show that T) is uniformly bounded and equicontinuous.
Let VD C K be bounded, so there exists a constant L > 0 such that ||y|| < L
for Vy € D.
Let M = 1, th
e omax, |g(y)[ +1, then

T (t)] < A / G (1, 5) f (5, 522y (s)) | ds

1
<2 / G* (¢, 3)a2(5)9(y()) |ds

< M/\/O ﬁs(l — ) Lga(s)ds.
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It follows from (A) that T)(D) is uniformly bounded. For Ve > 0,Vy € D, t1,t3 €
[0,1],¢1 < tq, since G*(t, s) is uniformly continuous on (¢,s) € [0,1] x [0,1], then
there exists 7 > 0, when |t; — t2| < 7, we have

€
G*(t1,58) — G*(t2,8)| < —————
|G*(t1,5) (t2, )] A T (o)
Then from condition (A), one has
[ Tay(t1) — Thy(ta)]
1
= / G (11, ) (5. 52y (s))ds — A / G (12, ) (5. 52y (s)ds|
0
[ 167 0,6) ~ G, 505
[ 16°01,6) - G, an(o)aw(o)s
1
<M\ ——— / q2(s)ds = .
M)\ fO QQ 0
By means of the Arzela- Ascoli theorem, T) : K — K is completely continuous.

O

3. Main results and proofs

Theorem 3.1. Assume (A) hold,
(a) If ioc = 1 or 2, then problem (1.1) has ig positive solutions for A\ > Ay =
1 .

I G G (s)dsm(n)”
(b) If ico =1 or 2, then problem (1.1) has is positive solutions for 0 < X\ < Ag =
{ﬁ fol s(1—s)* 1ga(s)ds - M(1)}~1.
Proof. (a) Choose a number p = 1, let Q, = {y € C[0,1] | |ly|| < p}, we have
%Sy()<pf0ryef(ﬂaﬂ and t € [1,3].

Hence
1 ! * 1 a—2
Tyl =2 Tay(5) = A | G7(5,8)f(s,5% "y(s))ds
0
i

> [ 6 Gome)gt(s)ds
4% 1

> )\/ G*(§’ s)qids - m(p).

Then [|[Thy|| > |lyll,y € K (0, for A > Ao = — L

S 6 ar(@dsm(1)
If go = 0, then there exists r € (0, p) such that g(y) < ey,0 <y < r, wheree >0

satisfies )
Ae / -1
s(1—8)* ga(s)ds < 1.
I(a) Jo
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Let 2, = {y € C[0,1] | |ly|]| < r}, from Lemma 2.2 and (A), we have

Toy(t) = A / G (1, 5) (s, s°~2y(s))ds

)\ ! a—1
o / s(1— )" 1aa(s)g(y(s))ds

<

ﬁ/ s(1=5)""ga(s)ds - [lyll < [yl

So |Tayll < |lyll,y € K0S Therefore, by the (i) of Theorem 1.1, it follows that
T has a fixed point y1 € K ((2p \ Q) and 7 < [Jy1]| < p.

If goo = 0, then there exists M > 0 such that g(y) < ey,y > M.
Let

<

A max {g(y(s)} fy s(1=5)"ax(s)ds

I'(a) = e fol s(1 —s)*~1gy(s)ds
Qr ={y € Cl0, 1] [ |lyl < R}

From Lemma 2.3 and condition (A), we have

R:max{ ,p+M},

Tyy(t) = A / G (£, 5) (s, 5% 2y(s))ds

At o
< 5o [ =0 (s
A a—1
e o MR (R XCH VO

A a—1
+ T /M<ySRS<1_S> 42 ()g(y(s))ds

- r?a)(ogz,%{g<y<s>>} +ellyl) / s(1=9)""qa(s)ds < R = [yl

So |[Thyll < |lyll,y € K () 0Qgr. Therefore, by the part (ii) of Theorem 1.1, it follows
that Ty has a fixed point yo € K ((Qr \ ©2,) and p < |ly2|| < R.

Hence Ty has two fixed points y1,y2 and 7 < |ly1|| < p < [ly2]| < R. Tt follows
from above that if gy = goo = 0, then T has two positive solutions for A > Ay and
satisfies

1
yi(t) = )\/ G*(t, s)f(s7s“_2yi(s))ds,t €10,1],i =1,2, and ||y;|]| < R.
0

It is obvious that wu;(t) = t*~2y;(t),i = 1,2 are two positive solutions of problem
(2.1) for t € [0,1], i.e

wilt) = )\/0 Glt, 5) f(s,ui(s))ds,t € [0,1],i = 1,2.

Next, we will prove u;(0) = 0,7 = 1,2. From y; € C[0,1] and condition (A), we
have

lim w;(¢t) = A lim G(t,s)f(s,u;(s))ds

t—0t t—=0% Jo
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= lim G(t,8)f(s,5“ 2y(s))ds

t—0+ 0
1

<Alim [ G(t8)q2(s)g(yi(s))ds

t—0t 0
1
< A lim G(t s)q2(s)ds - max g(y;) =0, i=1,2.

t—0+ lyill<1

Thus, u;(0) = 0,i = 1,2. Then u;(t) = t* 2y, (t),i = 1,2 are two positive solutions
of (2.1) for ¢t € [0,1], from Lemma 2.1, problem (1.1) has two positive solutions
uy (t) =t 2yi(t), ua(t) = t*2ya(t).

(b) Choose a number p = 1, let Q, = {y € C[0,1] | |ly|| < p}, then for y €
K (09, we have

Tt < s [0 90 s,
< ot [0 9 aatuteas
<5 / (1= )" aa(s)ds - M(p).

So |Tayll < |ly|| for 0 < X < Ao = {ﬁ fol s(1 —s)* lga(s)ds - M(1)} 7, y €
K (N 0Q,.

If go = oo, then there exists r € (0, p), such that g(y) > My,0 <y < r, where
AM (o — 1)2 i 1
_— 1—35)* ds > 1.
St [ =9 (s>

1
1

Let Q,. = {y € C[0,1] | |ly|]| < r}, from Lemma 2.3 and (A), we have

1
Tl = Tag) = A [ G (505,57 2y(e)ds

> Afﬁi(—a)l) /; s(1—5)"q1(s)g(y(s))ds

> /\]V‘[ZHECEOSI) /; s(1 — )" Lq(s)y(s)ds

AM(a—1)% [1 »
> — 5)¢ . > .
= 64T (a) / s(1—5)""qu(s)ds - [lyll = |y

Therefore, by the (ii) of Theorem 1.1, it follows that T has a fixed point y; €
K@\ Q) and r < [y < p.
If goo = 00, then there exists M* > 0 such that g(y) < py,y > M*. Let
16

R=p+——M", Qp={yc 01|yl <R}.
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So y(t) > 0‘1—_61||y|| > M* for y € K(0Qg,t € [%, %], and

o

1

1 1
1Tyl > DyGG)zA [ G (gaS)(A(S)py(S)ds

3
pAa—1) /Z 1
> 7 — .
2 P [ G omieds- v

a—1)2 i
i [ o= s Iyl = .

Therefore, by the (i) of Theorem 1.1, it follows that ||Thy|| > ||yll,y € K[ IQr.
Thus T has a fixed point yo € K ((Qr \ ), and p < |ly2]| < R. Consequently,
T has two fixed points y1,y2 and r < ||ly1|| < p < ||ly2]| < R. It follows from above
that if gg = goo = 00, then T has two positive solutions for 0 < A < Ag.

It is similar with (a) that w;(t) = t*~2y;(t),i = 1,2 are two positive solutions of
problem (1.1). O

Theorem 3.2. Assume (A) hold and iy = ioo =0, if

641
§ (@) )
(a@—1)2 [ s(1 —s)*"1qi(s)ds - max{goo, g0}
4
I'(c)
Jy (1= )2 gx(s)ds - min{gec, g0}
then (1.1) has a positive solution.
Proof. If g > go, then
64T r
5 (@) <A< —3 (@) .
(= 1)2 [ s(1 = s)*"1qu(s)ds - goo Jo s(L=8)*1aa(s)ds - go
4
It is easy to see that there exists 0 < € < g, such that
640 r
3 (@) <A< —3 (@) .
(a—1)2 [\ s(1—s)*"tqu(s)ds - (9oo — &) Jo s(L=s)*"ga(s)ds - (g0 +¢)
4

Now turning to go and go., there is r; > 0 such that g(y) < (go +€)y,0 <y < ry
for y € K09y, . From Lemma 2.3, we have

1
Tyl < 1"(>\a)/0 s(1— 8)*Lgo(s)(go + €)y(s)ds
< Foy | s= 0 s (o <)l < ol

On the other hand, there exists H > r1, such that g(y) > (goo — €)y,y > H. Let
ro = max{2ry, 282} then

a—1 13
>yl > N g
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Thus g(y) > (9o — €)y(t) for y € K (0Q,,,t € [i %]
So

1Tl 2 Try(3) 2 A / G* (5 $ar(5)g(y(s)ds

= Aﬁjr_(l))/J s(1 =) qu(s)ds - (900 = 2)llyll > [ly]l-

Consequently, T has a fixed point y € K [)(Q, \ Q). Hence u(t) = t*~2y(t) is
the solution of (1.1).

If goo < go, th 64l (a) <A< [(e) . Th
g go €1l (o 1)2]1 (1—)—1q1(s)ds-g0 jo s(1—s)21ga(s)ds-goo ere

exists 0 < € < go such that
641 r
3 @ <A< —3 () )
(=12 [ s(1 = s)*Lqi(s)ds - (g0 — €) Jo s(1=5)*"1ga(s)ds - (9o + )
4

Now turning to go and g.o, there exists 1y > 0 such that g(y) > (go—¢)y,0 <y < rq,

s0 g(y(t)) > (g0 — e)y(t) for y € KNI, t € [1, 5]
Hence

1Tl = Tan(z) 2 A [ GG (S)gtuls))ds

A / ! a*g, $)a1(s) - (g0 — )y(s)ds

\%

> i, 49 s =yl > ol

On the other hand, there exists H > 7 such that ¢g(y) < (9o + €)y,y > H. Let

ro = max{2ry, 16H} then

y(t) > %Hyll >H forye K[ )0Q,,t€[0,1].

Thus g(y(t)) < (goo + €)y(t) for y € K(9Q,,,t € [0,1]. From Lemma 2.3, we have

1Ty ()] < p@ / s(1— 5)* L ga()g(y(s))ds

1
= r?a)/ s(1 = 5)""g2(s)ds - (g0 + )yl <l

Consequently, Ty has a fixed point y € K((Qy, \ Q). Hence u(t) = t*2y(t) is
the solution of (1.1) O

Example 3.1. Consider the boundary value problem

u(0) = 0,u(1) = 0. (3.1)

Then problem (3.1) has two positive solutions u; and ug for each 0 < A < A\, where
Ao is some positive constant.

{D3+u(t)+/\(u“(t)+ub(t))—O 0<a<l<b< g l<a<?,
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Proof. We will apply Theorem 1.1(ii) to this end, we take f(t,u) = u® + u®,
then f(t,t®2y) = te(@=2ye 4 oa=2yb Tet ¢ (t) = t4*=2) ¢, (t) = t"®Dand
9(y) = y* +y", then

0, ()g(y) < F(t,1*%y) < q,(D)g(y)

and ¢1,q2 € C(0,1),g9 € C((0,400), (0,400)), thus condition (A) is satisfied. Note
go = 00, Joo = 00, SO 1o = 2. Since

1 13 —5)* Lgo(s s:i 15 — g)olghlea=2)gg
| 09w = s [ i) a
_ LT b1 gyaigg
e (msmd
1 T@+b(a—2)(a)  T'2+bla—2)
S T(@)T2+ba—-2)+a) T2+ba-2)+a)
and

M(1) = max {g(y(s))} = max {y" + Y} =2.

So
AT 2+ b(a —2))
2+ b(a—2)+ )

1 1
X ={=— 1—5)* 'ga(s)ds- M(1)} ' = -

o= | s s M) = [ |
Then from 0 < XA < A, we have ||Thy|| < |ly||. The result is now from Theorem
1.1(ii). In particular, if & — 2, then Ag — 3. O
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