Existence and Multiplicity of Positive Solutions for Fractional Differential Equation with Parameter*

Xiaoling Han^{1,†}, Shaolin Zhou¹ and Ruilian An¹

Abstract In this paper, by using the fixed point theorem for a cone map, we study the existence and multiplicity of positive solutions for a class of fractional differential equation with parameter.

Keywords Fractional differential equation, Green function, Cone.

MSC(2010) 34A08, 34B18.

1. Introduction

Fractional calculus has played a significant role in engineering, science, economy, and other fields, during the last few decades. There has been a significant development in ordinary and partial differential equations involving fractional derivatives. There are many important results about the existence of solutions for fractional differential equation, see [1, 2, 5–8, 10, 11] for more details.

In [1], Bai and Lü considered the positive solutions for boundary value problem of fractional order differential equation

$$\begin{cases} D_{0+}^{\alpha} u(t) + f(t, u(t)) = 0, \ t \in (0, 1), \\ u(0) = 0, u(1) = 0, \end{cases}$$

where $1 < \alpha \le 2, f : [0,1] \times [0,+\infty) \to [0,+\infty)$ is continuous.

In this paper, under different growth conditions of f, we obtain the existence and multiplicity of positive solutions for boundary value problem of fractional differential equation with parameter

$$\begin{cases} D_{0+}^{\alpha} u(t) + \lambda f(t, \ u(t)) = 0, \ t \in (0, \ 1), \\ u(0) = 0, u(1) = 0, \end{cases}$$
 (1.1)

where $1 < \alpha \le 2, f: [0,1] \times [0,+\infty) \to [0,+\infty)$ is continuous, $\lambda > 0$ is a parameter.

Remark 1.1. When $\alpha = 2$, problem (1.1) is reduced to the problem of paper [4].

We make the following hypotheses:

[†]the corresponding author.

hanxiaoling9@163.com(X. Han), zhoushaolin@nwnu.edu.cn(S. Zhou), 1258038557@qq.com(R. An)

¹Department of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu 730070, China

^{*}Supported by National Natural Science Foundation of China (11561603).

(A) $f(t,u): [0,1] \times [0,+\infty) \to [0,+\infty)$ is continuous and there exists $g \in C((0,+\infty),(0,+\infty)), q_1,q_2 \in C((0,1),(0,+\infty))$ such that $q_1(t)g(y) \leq f(t,t^{\alpha-2}y) \leq q_2(t)g(y), t \in [0,1], y \in [0,+\infty).$

For the convenience, we take some notations. Let

$$g_0 = \lim_{y \to 0^+} \frac{g(y)}{y},$$
 $g_\infty = \lim_{y \to +\infty} \frac{g(y)}{y}.$

 $i_0=$ numbers of zeros in the set $\{g_0,g_\infty\}$; $i_\infty=$ numbers of infinities in the set $\{g_0,g_\infty\}$.

$$M(p) = \max_{0 \leq y \leq p} \{g(y)\}, \qquad m(p) = \min_{\frac{(\alpha - 1)p}{16} \leq y \leq p} \{g(y)\}.$$

The tool theorem is following:

Theorem 1.1. Let E be a Banach space, $K \subset E$ is a cone, Ω_1, Ω_2 are bounded open subsets of E, $0 \in \Omega_1, \overline{\Omega}_1 \subset \Omega_2$, suppose that $A : K \cap (\overline{\Omega}_2 \setminus \Omega_1) \to K$ is completely continuous and satisfies :

- (i) $||Ax|| \le ||x||, x \in K \cap \partial\Omega_1$, and $||Ax|| \ge ||x||, x \in K \cap \partial\Omega_2$; or
- (ii) $||Ax|| \ge ||x||, x \in K \cap \partial\Omega_1$, and $||Ax|| \le ||x||, x \in K \cap \partial\Omega_2$; Then A has a fixed point in $K \cap (\overline{\Omega}_2 \setminus \Omega_1)$.

Then A has a fixed point in $K \mid |(\Omega_2 \setminus \Omega_1)|$.

Definition 1.1. We call $D_{0+}^{\alpha}f(x) = \frac{1}{\Gamma(n-\alpha)}(\frac{d}{dx})^n \int_0^x \frac{f(t)}{(x-t)^{\alpha-n+1}} dt$, $\alpha > 0$, $n = [\alpha] + 1$ is the Riemann-Liouville fractional derivative of order $\alpha.[\alpha]$ denotes the integer part of number α .

Definition 1.2. We call $I_{0+}^{\alpha}f(x)=\frac{1}{\Gamma(\alpha)}\int_{0}^{x}(x-t)^{\alpha-1}f(t)dt, x>0, \alpha>0$ is Riemann-Liouville fractional integral of order α .

2. Preliminaries

Lemma 2.1 (Lemma 2.3, [1]). The solutions of problem

$$\begin{cases} D_{0+}^{\alpha}u(t) + \lambda f(t, u(t)) = 0, t \in (0, 1), \\ u(0) = 0, u(1) = 0 \end{cases}$$

is equivalent to the solutions of the integral equation

$$u(t) = \lambda \int_0^1 G(t, s) f(s, u(s)) ds, \qquad (2.1)$$

where

$$G(t,s) = \begin{cases} \frac{[t(1-s)]^{\alpha-1}-(t-s)^{\alpha-1}}{\Gamma(\alpha)}, & 0 \le s \le t \le 1; \\ \frac{[t(1-s)]^{\alpha-1}}{\Gamma(\alpha)}, & 0 \le t \le s \le 1. \end{cases}$$

Lemma 2.2 (Proposition 1, [5]). The Green function G(t,s) has the following properties:

(i)
$$G(t,s) \in C([0,1] \times [0,1])$$
 and $G(t,s) > 0, \forall t,s \in (0,1)$;

(ii) There exists s positive function $\gamma \in C(0,1)$ such that

$$\min_{\frac{1}{4} \leq t \leq \frac{3}{4}} G(t,s) \geq \gamma(s) \max_{0 \leq t \leq 1} G(t,s) \geq \gamma(s) G(s,s), s \in (0,1).$$

Lemma 2.3 (Lemma 2.3, [5]). The Green function G(t,s) satisfies

$$\frac{\alpha - 1}{\Gamma(\alpha)} t^{\alpha - 1} (1 - t) (1 - s)^{\alpha - 1} \le G(t, s) \le \frac{1}{\Gamma(\alpha)} t^{\alpha - 1} (1 - t) (1 - s)^{\alpha - 2}, t, s \in (0, 1).$$

Let $G^*(t,s) := t^{2-\alpha}G(t,s)$, then

$$\frac{\alpha - 1}{\Gamma(\alpha)} t (1 - t) s (1 - s)^{\alpha - 1} \le G^*(t, s) \le \frac{1}{\Gamma(\alpha)} s (1 - s)^{\alpha - 1}, t, s \in (0, 1).$$

Define

$$K := \{ y \in C[0,1] \mid y(t) \ge 0, y(t) \ge (\alpha - 1)t(1 - t) \|y\| \},$$

where $||y|| = \max_{0 \le t \le 1} |y(t)|$.

Lemma 2.4. Let $(T_{\lambda}y)(t) := \lambda \int_0^1 G^*(t,s) f(s,s^{\alpha-2}y(s)) ds$, then $T_{\lambda}: K \to K$ is completely continuous.

Proof. The continuity of T_{λ} is obvious. Following we prove $T_{\lambda}: K \to K$. From Lemma 2.2 and condition (A), we can get that $T_{\lambda}y(t) \geq 0, t \in [0,1]$. For $\forall y \in K$, from Lemma 2.3, we have

$$\begin{split} T_{\lambda}y(t) &= \lambda \int_0^1 G^*(t,s)f(s,s^{\alpha-2}y(s))ds \\ &\geq \frac{\lambda(\alpha-1)}{\Gamma(\alpha)}t(1-t)\int_0^1 s(1-s)^{\alpha-1}f(s,s^{\alpha-2}y(s))ds. \end{split}$$

On the other hand

$$||T_{\lambda}y|| = \max_{0 \le t \le 1} |T_{\lambda}y(t)| \le \frac{\lambda}{\Gamma(\alpha)} \int_0^1 s(1-s)^{\alpha-1} f(s, s^{\alpha-2}y(s)) ds.$$

Hence

$$T_{\lambda}y(t) \ge (\alpha - 1)t(1 - t)||T_{\lambda}y||.$$

So $T_{\lambda}: K \to K$.

Next we show that T_{λ} is uniformly bounded and equicontinuous.

Let $\forall D \subset K$ be bounded, so there exists a constant L > 0 such that $||y|| \leq L$ for $\forall y \in D$.

Let
$$M = \max_{0 \le y \le L} |g(y)| + 1$$
, then

$$|T_{\lambda}y(t)| \leq \lambda \int_0^1 |G^*(t,s)f(s,s^{\alpha-2}y(s))|ds$$

$$\leq \lambda \int_0^1 |G^*(t,s)q_2(s)g(y(s))|ds$$

$$\leq M\lambda \int_0^1 \frac{1}{\Gamma(\alpha)} s(1-s)^{\alpha-1}q_2(s)ds.$$

It follows from (A) that $T_{\lambda}(D)$ is uniformly bounded. For $\forall \varepsilon > 0, \forall y \in D, t_1, t_2 \in [0,1], t_1 < t_2$, since $G^*(t,s)$ is uniformly continuous on $(t,s) \in [0,1] \times [0,1]$, then there exists $\eta > 0$, when $|t_1 - t_2| < \eta$, we have

$$|G^*(t_1,s) - G^*(t_2,s)| < \frac{\varepsilon}{M\lambda \int_0^1 q_2(s)ds}.$$

Then from condition (A), one has

$$\begin{split} &|T_{\lambda}y(t_{1})-T_{\lambda}y(t_{2})|\\ &=\lambda|\int_{0}^{1}G^{*}(t_{1},s)f(s,s^{\alpha-2}y(s))ds-\lambda\int_{0}^{1}G^{*}(t_{2},s)f(s,s^{\alpha-2}y(s))ds|\\ &\leq\lambda\int_{0}^{1}|G^{*}(t_{1},s)-G^{*}(t_{2},s)|f(s,s^{\alpha-2}y(s))ds\\ &\leq\lambda\int_{0}^{1}|G^{*}(t_{1},s)-G^{*}(t_{2},s)|q_{2}(s)g(y(s))ds\\ &< M\lambda\cdot\frac{\varepsilon}{M\lambda\int_{0}^{1}q_{2}(s)ds}\cdot\int_{0}^{1}q_{2}(s)ds=\varepsilon. \end{split}$$

By means of the Arzela- Ascoli theorem, $T_{\lambda}: K \to K$ is completely continuous.

3. Main results and proofs

Theorem 3.1. Assume (A) hold,

- (a) If $i_0 = 1$ or 2, then problem (1.1) has i_0 positive solutions for $\lambda > \lambda_0 = \frac{1}{\int_{\frac{1}{4}}^{\frac{3}{4}} G^*(\frac{1}{2},s)q_1(s)ds \cdot m(1)};$
- (b) If $i_{\infty} = 1$ or 2, then problem (1.1) has i_{∞} positive solutions for $0 < \lambda < \lambda_0 = \{\frac{1}{\Gamma(\alpha)} \int_0^1 s(1-s)^{\alpha-1} q_2(s) ds \cdot M(1)\}^{-1}$.

Proof. (a) Choose a number p=1, let $\Omega_p=\{y\in C[0,1]\mid \|y\|< p\}$, we have $\frac{(\alpha-1)p}{16}\leq y(t)\leq p$ for $y\in K\bigcap\partial\Omega_p$ and $t\in [\frac{1}{4},\frac{3}{4}]$. Hence

$$||T_{\lambda}y|| \ge T_{\lambda}y(\frac{1}{2}) = \lambda \int_{0}^{1} G^{*}(\frac{1}{2}, s)f(s, s^{\alpha-2}y(s))ds$$

$$\ge \lambda \int_{\frac{1}{4}}^{\frac{3}{4}} G^{*}(\frac{1}{2}, s)q_{1}(s)g(y(s))ds$$

$$\ge \lambda \int_{\frac{1}{4}}^{\frac{3}{4}} G^{*}(\frac{1}{2}, s)q_{1}ds \cdot m(p).$$

Then $||T_{\lambda}y|| > ||y||, y \in K \cap \partial \Omega_p$ for $\lambda > \lambda_0 = \frac{1}{\int_{\frac{1}{4}}^{\frac{3}{4}} G^*(\frac{1}{2}, s) q_1(s) ds \cdot m(1)}$.

If $g_0 = 0$, then there exists $r \in (0, p)$ such that $g(y) \le \varepsilon y, 0 \le y \le r$, where $\varepsilon > 0$ satisfies

$$\frac{\lambda \varepsilon}{\Gamma(\alpha)} \int_0^1 s(1-s)^{\alpha-1} q_2(s) ds \le 1.$$

Let $\Omega_r = \{y \in C[0,1] \mid ||y|| < r\}$, from Lemma 2.2 and (A), we have

$$T_{\lambda}y(t) = \lambda \int_{0}^{1} G^{*}(t,s)f(s,s^{\alpha-2}y(s))ds$$

$$\leq \frac{\lambda}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1}q_{2}(s)g(y(s))ds$$

$$\leq \frac{\lambda\varepsilon}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1}q_{2}(s)ds \cdot ||y|| \leq ||y||.$$

So $||T_{\lambda}y|| \leq ||y||, y \in K \cap \partial \Omega_r$. Therefore, by the (i) of Theorem 1.1, it follows that T_{λ} has a fixed point $y_1 \in K \cap (\overline{\Omega}_p \setminus \Omega_r)$ and $r \leq ||y_1|| < p$.

If $g_{\infty} = 0$, then there exists M > 0 such that $g(y) \leq \varepsilon y, y > M$. Let

$$\begin{split} R &= \max \Big\{ \frac{\lambda \max\limits_{0 \leq y \leq M} \{g(y(s))\} \int_{0}^{1} s(1-s)^{\alpha-1} q_{2}(s) ds}{\Gamma(\alpha) - \lambda \varepsilon \int_{0}^{1} s(1-s)^{\alpha-1} q_{2}(s) ds}, p + M \Big\}, \\ \Omega_{R} &= \{ y \in C[0,1] \mid \|y\| < R \}. \end{split}$$

From Lemma 2.3 and condition (A), we have

$$\begin{split} T_{\lambda}y(t) &= \lambda \int_{0}^{1} G^{*}(t,s)f(s,s^{\alpha-2}y(s))ds \\ &\leq \frac{\lambda}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1}q_{2}(s)g(y(s))ds \\ &\leq \frac{\lambda}{\Gamma(\alpha)} \int_{0 \leq y \leq M} s(1-s)^{\alpha-1}q_{2}(s)g(y(s))ds \\ &+ \frac{\lambda}{\Gamma(\alpha)} \int_{M < y \leq R} s(1-s)^{\alpha-1}q_{2}(s)g(y(s))ds \\ &\leq \frac{\lambda}{\Gamma(\alpha)} (\max_{0 \leq y \leq M} \{g(y(s))\} + \varepsilon \|y\|) \int_{0}^{1} s(1-s)^{\alpha-1}q_{2}(s)ds \leq R = \|y\|. \end{split}$$

So $||T_{\lambda}y|| \leq ||y||, y \in K \cap \partial \Omega_R$. Therefore, by the part (ii) of Theorem 1.1, it follows that T_{λ} has a fixed point $y_2 \in K \cap (\overline{\Omega}_R \setminus \Omega_p)$ and $p < ||y_2|| \leq R$.

Hence T_{λ} has two fixed points y_1, y_2 and $r \leq ||y_1|| . It follows from above that if <math>g_0 = g_{\infty} = 0$, then T_{λ} has two positive solutions for $\lambda > \lambda_0$ and satisfies

$$y_i(t) = \lambda \int_0^1 G^*(t, s) f(s, s^{\alpha - 2} y_i(s)) ds, t \in [0, 1], i = 1, 2, \text{ and } ||y_i|| \le R.$$

It is obvious that $u_i(t) = t^{\alpha-2}y_i(t)$, i = 1, 2 are two positive solutions of problem (2.1) for $t \in [0, 1]$, i.e

$$u_i(t) = \lambda \int_0^1 G(t, s) f(s, u_i(s)) ds, t \in [0, 1], i = 1, 2.$$

Next, we will prove $u_i(0) = 0, i = 1, 2$. From $y_i \in C[0,1]$ and condition (A), we have

$$\lim_{t\to 0^+}u_i(t)=\lambda\lim_{t\to 0^+}\int_0^1G(t,s)f(s,u_i(s))ds$$

$$\begin{split} &= \lambda \lim_{t \to 0^+} \int_0^1 G(t,s) f(s,s^{\alpha-2} y_i(s)) ds \\ &\leq \lambda \lim_{t \to 0^+} \int_0^1 G(t,s) q_2(s) g(y_i(s)) ds \\ &\leq \lambda \lim_{t \to 0^+} \int_0^1 G(t,s) q_2(s) ds \cdot \max_{\|y_i\| \leqslant 1} g(y_i) = 0, \quad i = 1,2. \end{split}$$

Thus, $u_i(0) = 0, i = 1, 2$. Then $u_i(t) = t^{\alpha-2}y_i(t), i = 1, 2$ are two positive solutions of (2.1) for $t \in [0, 1]$, from Lemma 2.1, problem (1.1) has two positive solutions $u_1(t) = t^{\alpha-2}y_1(t), u_2(t) = t^{\alpha-2}y_2(t)$.

(b) Choose a number p=1, let $\Omega_p=\{y\in C[0,1]\mid \|y\|< p\}$, then for $y\in K\bigcap\partial\Omega_p$, we have

$$T_{\lambda}y(t) \leq \frac{\lambda}{\Gamma(\alpha)} \int_0^1 s(1-s)^{\alpha-1} f(s, s^{\alpha-2}y(s)) ds$$

$$\leq \frac{\lambda}{\Gamma(\alpha)} \int_0^1 s(1-s)^{\alpha-1} q_2(s) g(y(s)) ds$$

$$\leq \frac{\lambda}{\Gamma(\alpha)} \int_0^1 s(1-s)^{\alpha-1} q_2(s) ds \cdot M(p).$$

So $||T_{\lambda}y|| < ||y||$ for $0 < \lambda < \lambda_0 = \{\frac{1}{\Gamma(\alpha)} \int_0^1 s(1-s)^{\alpha-1} q_2(s) ds \cdot M(1)\}^{-1}, y \in K \cap \partial \Omega_p$.

If $g_0 = \infty$, then there exists $r \in (0, p)$, such that $g(y) \ge My, 0 \le y \le r$, where

$$\frac{\lambda M(\alpha - 1)^2}{64\Gamma(\alpha)} \int_{\frac{1}{4}}^{\frac{3}{4}} s(1 - s)^{\alpha - 1} q_1(s) ds \ge 1.$$

Let $\Omega_r = \{y \in C[0,1] \mid ||y|| < r\}$, from Lemma 2.3 and (A), we have

$$||T_{\lambda}y|| \ge T_{\lambda}y(\frac{1}{2}) = \lambda \int_{0}^{1} G^{*}(\frac{1}{2}, s) f(s, s^{\alpha-2}y(s)) ds$$

$$\ge \frac{\lambda(\alpha - 1)}{4\Gamma(\alpha)} \int_{\frac{1}{4}}^{\frac{3}{4}} s(1 - s)^{\alpha - 1} q_{1}(s) g(y(s)) ds$$

$$\ge \frac{\lambda M(\alpha - 1)}{4\Gamma(\alpha)} \int_{\frac{1}{4}}^{\frac{3}{4}} s(1 - s)^{\alpha - 1} q_{1}(s) y(s) ds$$

$$\ge \frac{\lambda M(\alpha - 1)^{2}}{64\Gamma(\alpha)} \int_{\frac{1}{4}}^{\frac{3}{4}} s(1 - s)^{\alpha - 1} q_{1}(s) ds \cdot ||y|| \ge ||y||.$$

Therefore, by the (ii) of Theorem 1.1, it follows that T_{λ} has a fixed point $y_1 \in K \cap (\overline{\Omega}_p \setminus \Omega_r)$ and $r \leq ||y_1|| < p$.

If $g_{\infty} = \infty$, then there exists $M^* > 0$ such that $g(y) \leq \rho y, y > M^*$. Let

$$R = p + \frac{16}{\alpha - 1} M^*, \quad \Omega_R = \{ y \in C[0, 1] \mid ||y|| < R \}.$$

So $y(t) \geq \frac{\alpha-1}{16} ||y|| > M^*$ for $y \in K \cap \partial \Omega_R, t \in [\frac{1}{4}, \frac{3}{4}]$, and

$$\begin{split} \|T_{\lambda}y\| &\geq T_{\lambda}y(\frac{1}{2}) \geq \lambda \int_{\frac{1}{4}}^{\frac{3}{4}} G^{*}(\frac{1}{2},s)q_{1}(s)\rho y(s)ds \\ &\geq \frac{\rho\lambda(\alpha-1)}{16} \int_{\frac{1}{4}}^{\frac{3}{4}} G^{*}(\frac{1}{2},s)q_{1}(s)ds \cdot \|y\| \\ &\geq \frac{\rho\lambda(\alpha-1)^{2}}{64\Gamma(\alpha)} \int_{\frac{1}{4}}^{\frac{3}{4}} s(1-s)^{\alpha-1}q_{1}(s)ds \cdot \|y\| \geq \|y\|. \end{split}$$

Therefore, by the (i) of Theorem 1.1, it follows that $||T_{\lambda}y|| \geq ||y||, y \in K \cap \partial \Omega_R$. Thus T_{λ} has a fixed point $y_2 \in K \cap (\overline{\Omega}_R \setminus \Omega_p)$, and $p < ||y_2|| \leq R$. Consequently, T_{λ} has two fixed points y_1, y_2 and $r \leq ||y_1|| . It follows from above that if <math>q_0 = q_{\infty} = \infty$, then T_{λ} has two positive solutions for $0 < \lambda < \lambda_0$.

that if $g_0 = g_\infty = \infty$, then T_λ has two positive solutions for $0 < \lambda < \lambda_0$. It is similar with (a) that $u_i(t) = t^{\alpha-2}y_i(t), i = 1, 2$ are two positive solutions of problem (1.1).

Theorem 3.2. Assume (A) hold and $i_0 = i_{\infty} = 0$, if

$$\begin{split} &\frac{64\Gamma(\alpha)}{(\alpha-1)^2\int_{\frac{1}{4}}^{\frac{3}{4}}s(1-s)^{\alpha-1}q_1(s)ds\cdot \max\{g_{\infty},g_0\}} < \lambda \\ < &\frac{\Gamma(\alpha)}{\int_{0}^{1}s(1-s)^{\alpha-1}q_2(s)ds\cdot \min\{g_{\infty},g_0\}}, \end{split}$$

then (1.1) has a positive solution.

Proof. If $g_{\infty} > g_0$, then

$$\frac{64\Gamma(\alpha)}{(\alpha-1)^2\int_{\frac{1}{4}}^{\frac{3}{4}}s(1-s)^{\alpha-1}q_1(s)ds\cdot g_\infty}<\lambda<\frac{\Gamma(\alpha)}{\int_0^1s(1-s)^{\alpha-1}q_2(s)ds\cdot g_0}.$$

It is easy to see that there exists $0 < \varepsilon < g_{\infty}$ such that

$$\frac{64\Gamma(\alpha)}{(\alpha-1)^2\int_{\frac{1}{4}}^{\frac{3}{4}}s(1-s)^{\alpha-1}q_1(s)ds\cdot(g_\infty-\varepsilon)}<\lambda<\frac{\Gamma(\alpha)}{\int_0^1s(1-s)^{\alpha-1}q_2(s)ds\cdot(g_0+\varepsilon)}.$$

Now turning to g_0 and g_{∞} , there is $r_1 > 0$ such that $g(y) \leq (g_0 + \varepsilon)y$, $0 \leq y \leq r_1$ for $y \in K \cap \partial \Omega_{r_1}$. From Lemma 2.3, we have

$$||T_{\lambda}y|| \leq \frac{\lambda}{\Gamma(\alpha)} \int_0^1 s(1-s)^{\alpha-1} q_2(s) (g_0 + \varepsilon) y(s) ds$$
$$\leq \frac{\lambda}{\Gamma(\alpha)} \int_0^1 s(1-s)^{\alpha-1} q_2(s) ds \cdot (g_0 + \varepsilon) ||y|| < ||y||.$$

On the other hand, there exists $H > r_1$, such that $g(y) \ge (g_{\infty} - \varepsilon)y, y \ge H$. Let $r_2 = \max\{2r_1, \frac{16H}{n-1}\}$, then

$$y(t) \ge \frac{\alpha - 1}{16} \|y\| \ge H, \quad y \in K \bigcap \partial \Omega_{r_2}, \quad t \in \left[\frac{1}{4}, \frac{3}{4}\right].$$

Thus $g(y) \ge (g_{\infty} - \varepsilon)y(t)$ for $y \in K \cap \partial\Omega_{r_2}, t \in [\frac{1}{4}, \frac{3}{4}]$.

$$||T_{\lambda}y|| \ge T_{\lambda}y(\frac{1}{2}) \ge \lambda \int_{\frac{1}{4}}^{\frac{3}{4}} G^{*}(\frac{1}{2}, s)q_{1}(s)g(y(s))ds$$

$$\ge \frac{\lambda(\alpha - 1)^{2}}{64\Gamma(\alpha)} \int_{\frac{1}{4}}^{\frac{3}{4}} s(1 - s)^{\alpha - 1}q_{1}(s)ds \cdot (g_{\infty} - \varepsilon)||y|| > ||y||.$$

Consequently, T_{λ} has a fixed point $y \in K \cap (\overline{\Omega}_{r_2} \setminus \Omega_{r_1})$. Hence $u(t) = t^{\alpha-2}y(t)$ is the solution of (1.1).

If
$$g_{\infty} < g_0$$
, then $\frac{64\Gamma(\alpha)}{(\alpha-1)^2 \int_{\frac{1}{4}}^{\frac{3}{4}} s(1-s)^{\alpha-1} q_1(s) ds \cdot g_0} < \lambda < \frac{\Gamma(\alpha)}{\int_0^1 s(1-s)^{\alpha-1} q_2(s) ds \cdot g_{\infty}}$. There

exists $0 < \varepsilon < g_0$ such that

$$\frac{64\Gamma(\alpha)}{(\alpha-1)^2\int_{\frac{1}{4}}^{\frac{3}{4}}s(1-s)^{\alpha-1}q_1(s)ds\cdot(g_0-\varepsilon)}<\lambda<\frac{\Gamma(\alpha)}{\int_0^1s(1-s)^{\alpha-1}q_2(s)ds\cdot(g_\infty+\varepsilon)}.$$

Now turning to g_0 and g_{∞} , there exists $r_1 > 0$ such that $g(y) \ge (g_0 - \varepsilon)y$, $0 \le y \le r_1$, so $g(y(t)) \ge (g_0 - \varepsilon)y(t)$ for $y \in K \cap \partial \Omega_{r_1}$, $t \in [\frac{1}{4}, \frac{3}{4}]$. Hence

$$||T_{\lambda}y|| \ge T_{\lambda}y(\frac{1}{2}) \ge \lambda \int_{\frac{1}{4}}^{\frac{3}{4}} G^{*}(\frac{1}{2}, s)q_{1}(s)g(y(s))ds$$

$$\ge \lambda \int_{\frac{1}{4}}^{\frac{3}{4}} G^{*}(\frac{1}{2}, s)q_{1}(s) \cdot (g_{0} - \varepsilon)y(s)ds$$

$$\ge \frac{\lambda(\alpha - 1)^{2}}{64\Gamma(\alpha)} \int_{\frac{1}{4}}^{\frac{3}{4}} s(1 - s)^{\alpha - 1}q_{1}(s)ds \cdot (g_{0} - \varepsilon)||y|| > ||y||.$$

On the other hand, there exists $H > r_1$ such that $g(y) \leq (g_{\infty} + \varepsilon)y, y \geq H$. Let $r_2 = \max\{2r_1, \frac{16H}{\alpha-1}\}$, then

$$y(t) \ge \frac{\alpha - 1}{16} ||y|| \ge H \text{ for } y \in K \cap \partial \Omega_{r_2}, t \in [0, 1].$$

Thus $g(y(t)) \leq (g_{\infty} + \varepsilon)y(t)$ for $y \in K \cap \partial \Omega_{r_2}, t \in [0, 1]$. From Lemma 2.3, we have

$$||T_{\lambda}y(t)|| \leq \frac{\lambda}{\Gamma(\alpha)} \int_0^1 s(1-s)^{\alpha-1} q_2(s) g(y(s)) ds$$
$$\leq \frac{\lambda}{\Gamma(\alpha)} \int_0^1 s(1-s)^{\alpha-1} q_2(s) ds \cdot (g_{\infty} + \varepsilon) ||y|| < ||y||.$$

Consequently, T_{λ} has a fixed point $y \in K \cap (\overline{\Omega}_{r_2} \setminus \Omega_{r_1})$. Hence $u(t) = t^{\alpha-2}y(t)$ is the solution of (1.1)

Example 3.1. Consider the boundary value problem

$$\begin{cases} D_{0+}^{\alpha} u(t) + \lambda (u^a(t) + u^b(t)) = 0, \ 0 < a < 1 < b < \frac{1}{2-\alpha}, 1 < \alpha < 2, \\ u(0) = 0, u(1) = 0. \end{cases} \tag{3.1}$$

Then problem (3.1) has two positive solutions u_1 and u_2 for each $0 < \lambda < \lambda_0$, where λ_0 is some positive constant.

Proof. We will apply Theorem 1.1(ii) to this end, we take $f(t,u)=u^a+u^b$, then $f(t,t^{\alpha-2}y)=t^{a(\alpha-2)}y^a+t^{b(\alpha-2)}y^b$. Let $q_1(t)=t^{a(\alpha-2)},q_2(t)=t^{b(\alpha-2)}$ and $g(y)=y^a+y^b$, then

$$q_1(t)g(y) \le f(t, t^{\alpha-2}y) \le q_2(t)g(y)$$

and $q_1, q_2 \in C(0, 1), g \in C((0, +\infty), (0, +\infty))$, thus condition (A) is satisfied. Note $g_0 = \infty, g_\infty = \infty$, so $i_\infty = 2$. Since

$$\begin{split} \frac{1}{\Gamma(\alpha)} \int_0^1 s(1-s)^{\alpha-1} q_2(s) ds &= \frac{1}{\Gamma(\alpha)} \int_0^1 s(1-s)^{\alpha-1} s^{b(\alpha-2)} ds \\ &= \frac{1}{\Gamma(\alpha)} \int_0^1 s^{(2+b(\alpha-2))-1} (1-s)^{\alpha-1} ds \\ &= \frac{1}{\Gamma(\alpha)} \frac{\Gamma(2+b(\alpha-2))\Gamma(\alpha)}{\Gamma(2+b(\alpha-2)+\alpha)} = \frac{\Gamma(2+b(\alpha-2))}{\Gamma(2+b(\alpha-2)+\alpha)}, \end{split}$$

and

$$M(1) = \max_{0 \le y \le 1} \{g(y(s))\} = \max_{0 \le y \le 1} \{y^a + y^b)\} = 2.$$

So

$$\lambda_0 = \{ \frac{1}{\Gamma(\alpha)} \int_0^1 s(1-s)^{\alpha-1} q_2(s) ds \cdot M(1) \}^{-1} = \left[\frac{2\Gamma(2+b(\alpha-2))}{\Gamma(2+b(\alpha-2)+\alpha)} \right]^{-1}.$$

Then from $0 < \lambda < \lambda_0$, we have $||T_{\lambda}y|| < ||y||$. The result is now from Theorem 1.1(ii). In particular, if $\alpha \to 2$, then $\lambda_0 \to 3$.

References

- Z. B. Bai and H. S. Lü, Positive solutions for boundary value problems of nonlinear fractional differential equation, J. Math. Anal. Appl., 2005, 311, 495-505
- [2] Y. J. Cui, Uniqueness of solution for boundary value problems for fractional differential equations, Applied Mathematics Letters, 2016, 51, 48-54.
- [3] K. Deimling, *Nonlinear Functional Analysis*, Applied Mathematics Letters, Srringer, Berlin, 1985.
- [4] J. Henderson and H. Y. Wang, Positive solutions for nonlinear eigenvalue problems, J. Math. Anal. Appl., 1997, 208, 252-259.
- [5] D. Q. Jiang and C. J. Yuan, The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application, Nonlinear Analysis, 2010, 72, 710-719.
- [6] V. Lakshmikantham and A. S. Vatsala, *Basic theory of fractional differential equations*, Nonlinear Analysis, 2008, 69, 2677-2682.
- [7] L. Peng and Y. Zhou, Bifurcation from interval and positive solutions of the three-point boundary value problem for fractional differential equations, Applied Mathematics and Computation, 2015, 257, 458-466.
- [8] A. Wan and D. Jiang, Existence of positive periodic solutions for functional differential equations, J. Math., 2002, 561, 193-202.

- [9] H. Y. Wang, Positive periodic solutions of functional differential equations, J. Differential Equations, 2004, 202, 354-366.
- [10] Y. X. Wu, Existence nonexistence and multiplicity of periodic solutions for a kind of functional differential equation with parameter, Nonlinear Analysis, 2009, 70, 433-443.
- [11] S. Q. Zhang, The existence of a positive solution for a nonlinear fractional differential equation, J. Math. Anal. Appl., 2000, 252, 804-812.