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Ergodic Behaviour of Nonconventional Ergodic
Averages for Commuting Transformations∗
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Abstract Based on T. Tao’s celebrated result on the norm convergence of
multiple ergodic averages for commuting transformations, we find that there
is a subsequence which converges almost everywhere. Meanwhile, we obtain
the ergodic behaviour of diagonal measures, which indicates the time average
equals the space average. According to the classification of transformations,
we also give several different results. Additionally, on the torus Td with special
rotation, we prove the pointwise convergence in Td, and get a result for ergodic
behaviour.
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1. Introduction

In 2008, T. Tao proved a convergence result for several commuting transformations:

Theorem 1.1. [14] Let d ≥ 1 be an integer. Assume that T1, T2, . . . , Td : X → X
are commuting invertible measure-preserving transformations of a measure space
(X,B, µ). Then, for any f1, f2, . . . , fd ∈ L∞(X,B, µ), the averages

1

N

N−1∑
n=0

f1(Tn1 x) . . . fd(T
n
d x) (1.1)

are convergent in L2(X,B, µ).
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Soon after, H. Towsner [15], B. Host [9] and T. Austin [2] gave proofs of Theorem
1.1 from different viewpoints. T. Tao’s approach was combinatorial and finitary,
inspired by the hypergraph regularity and removal lemmas. H. Towsner used non-
standard analysis, whereas T. Austin and B. Host all exploited ergodic methods,
building an extension of the original system with good properties.

There is a rich history towards Theorem 1.1. For d = 1, it reduces to the classical
mean ergodic theorem. When T1 = T, T2 = T 2, . . . , Td = T d, Furstenberg studied
such averages originally in his proof of Szemerédi’s theorem [7], where T is weakly
mixing or T is general but d = 2. For higher d, various special cases have been
shown by Conze and Lesigne [4, 5], Furstenberg and Weiss [8], Host and Kra [10],
and Ziegler [19]. Finally, it was totally proved by Host and Kra [11] for arbitrary
d, and independently by Ziegler [20].

When T1, T2, . . . , Td are commuting measure-preserving transformations with
some hypothesis on the transformations, Zhang [18] gave a proof for d = 3 and
Frantzikinakis and Kra [6] for general d. Without those assumptions, the L2-
convergence of the averages (1.1) was established by Tao. As we have mentioned
above, it possesses four different proofs. When T1, T2, . . . , Td belongs to nilpotent
group, it was proved by Miguel N. Walsh [16].

Although most people believe the existence of the averages (1.1) almost every-
where, the cases in which one knows the answer are scarce. In this paper, With the
fact that the averages (1.1) have a subsequence which converges almost everywhere,
the ergodic behaviour of diagonal measure is proved. Furthermore, on the torus Td
with special rotation, say, Rα1,...,αd

: Td → Td, where 1, α1, . . . , αd are rationally
independent, the convergence of the averages (1.1) for every point in Td is obtained,
and a result for ergodic behaviour is presented.

Before launching into the main result, we first remind the reader some elements
of the measure theory and the ergodic theory in Section 2. With sufficient prepara-
tion, we give a proof of the ergodic behaviour of Theorem 1.1, and give a classifica-
tion of T1, T2, . . . , Td, in case 1: all the Ti are pairwise different, i.e., Ti 6= Tj , i 6= j,
and in case 2: there is k, with 1 ≤ k ≤ d, such that Ti1 = Ti2 = · · · = Tik in Section
3. In Section 4, we will employ the result obtained in Section 3 to the special case
in which the space is the torus Td, and transformations Rα1 , . . . , Rαd

: T→ T, sat-
isfying that 1, α1, · · · , αd are rationally independent. In Section 5, we give several
examples to show that each alternative in Section 3 and Section 4 really occurs.

2. Preliminary

Let us first recall from [13, 17] some basic facts on measure theory and ergodic
theory.

2.1. Measure Theory

In this section, X will be an arbitrary measure space equipped a positive measure
µ.

Definition 2.1. [13] Let µ be a positive measure on X. A sequence {fn} of
measurable functions on X is said to convergence in measure to the measurable
function f if for every ε > 0 there corresponds an N such that

µ({x : |fn(x)− f(x)| > ε}) < ε (2.1)
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for all n > N .

Definition 2.2. [13] If 1 ≤ p <∞ and f is a measurable function on X, define

‖f‖p =

{∫
X

|f |p dµ

} 1
p

(2.2)

and let Lp(µ) consist of all f for which

‖f‖p <∞. (2.3)

We call ‖f‖p the Lp-norm of f .

If f, f1, . . . , fn, . . . ∈ Lp(µ) with limn→∞ ‖fn − f‖p = 0, we say that {fn} con-
verges to f in the mean of order p, or that {fn} is Lp-convergent to f .

Theorem 2.3. Assuming µ(X) <∞, we have the following statements:

1. If fn ∈ Lp(µ) and ‖fn − f‖p → 0, then fn → f in measure; here 1 ≤ p <∞.

2. If fn → f in measure, then {fn} has a subsequence {fni
(x)} which converges

to f almost everywhere, i.e.,

lim
i→∞

fni
(x) = f(x), a.e..

2.2. Ergodic Theory

Let (X,B, µ) be a probability space and T : X → X be a measure-preserving
transformation. T is called ergodic if T−1B = B for B ∈ B satisfy µ(B) = 0 or
µ(B) = 1. The next theorem gives another form of the definition of ergodicity.

Theorem 2.4. [17] Let (X,B, µ) be a probability space and let T : X → X be a
measure-preserving transformation. Then T is ergodic iff ∀A,B ∈ B,

1

n

n−1∑
i=0

µ(T−iA ∩B)→ µ(A)µ(B). (2.4)

In order to describe the proof of our main result, it will be convenient to refor-
mulate Theorem 2.4 in terms of functions.

Corollary 2.5. Let (X,B, µ) be a probability space and T : X → X be a measure-
preserving transformation. Then T is ergodic iff ∀f, g : X → R, f, g ∈ L∞(X,B, µ),

lim
n→∞

1

n

n−1∑
i=0

∫
f(T i(x))g(x) dµ =

∫
f(x) dµ

∫
g(x) dµ. (2.5)

Proof Let us first prove the “ only if ” part. Assume that T is ergodic, from
Theorem 2.4, we have

lim
n→∞

1

n

n−1∑
i=0

∫
χA(T i(x))χB(x) dµ =

∫
χA(x) dµ

∫
χB(x) dµ, (2.6)

The functions in L∞ can be approximated by some simple functions, based on the
function approximation theory. we obtain the desired result (2.5).
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Now let us prove the “ if ” part. Let f = χA, g = χB , we can get (2.4) easily. From
Theorem 2.4, T is ergodic. �

The first major result in ergodic theory was proved in 1931 by G.D. Birkhoff.
The explicit form is stated below.

Theorem 2.6. [17] Suppose T : (X,B, µ) → (X,B, µ) is measure-preserving and

f ∈ L1(µ). Then
1

N

N−1∑
n=0

f(Tnx) converges almost everywhere to a function f∗ ∈

L1(µ). Also f∗◦T = f∗ almost everywhere and if µ(X) <∞, then
∫
f∗ dµ =

∫
f dµ.

Remark 2.7. If T is ergodic then f∗ is constant almost everywhere and so if
µ(X) < ∞, f∗ = (1/µ(X))

∫
f dµ almost everywhere. If (X,B, µ) is a probability

space and T is ergodic we have ∀f ∈ L1(µ), limN→∞
1
N

∑N−1
n=0

∫
f(Tn(x)) dµ =∫

f(x) dµ almost everywhere.

Unique ergodicity can get much stronger behaviour in the ergodic theorem, now
let us recall the definition of unique ergodicity and its behaviour of those averages
in Theorem 2.6.

Definition 2.8. [17] A continuous transformation T : X → X, where X is a
compact metrisable space, is called uniquely ergodic if there is only one T invariant
Borel probability measure on X.

Theorem 2.9. [17] Let T : X → X be a continuous transformation of a compact
metrisable space X. The following statements are equivalent:

• For every f ∈ C(X),
1

N

N−1∑
n=0

f(Tnx) converges uniformly to a constant.

• For every f ∈ C(X),
1

N

N−1∑
n=0

f(Tnx) converges pointwise to a constant.

• There is a unique probability measure on X which is invariant under T such
that for all f ∈ C(X) and all x ∈ X,

1

N

N−1∑
n=0

f(Tnx)→
∫
f dµ.

• T is uniquely ergodic.

When X is a compact metrisable space, let B(X) be the Borel σ-algebra on X,
T : X → X be a continuous transformation. We shall denote M(X),M(X,T ) as

M(X) = {µ : B(X)→ [0, 1] | µ(X) = 1},

M(X,T ) = {µ ∈M(X) | µ(T−1B) = µ(B), B ∈ B(X)}.

M(X) is convex and compact in the weak∗-topology [17, Theorem 6.5], andM(X,T )
is a convex and compact subset of M(X) [17, Theorem 6.5].

Corollary 2.10. If T1, T2, . . . , Td : X → X are pairwise commuting continuous
maps of a compact space X, then they possess a common invariant probability mea-
sure.



Ergodic behaviour of nonconventional ergodic averages 517

3. Ergodic behaviour

Ergodic theory is the study of statistical properties of dynamical systems related
to a measure on the underlying space of the dynamical system. The name comes
from classical statistical mechanics, where the “ergodic hypothesis” asserts that,
asymptotically, the time averages of an observable is equal to the space average.
Now, we have known the “ergodic hypothesis” happens if the system is ergodic(see
Remark 2.7).

Before the main result of this paper is given, let us introduce the concept of an
irreducible dynamical system as a preliminary.

Definition 3.1. Given a probability space (X,B, T1, T2, . . . , Td, µ), where T1, T2. . . ,
Td : X → X are commuting invertible measure-preserving transformations. If for
any f1, f2, . . . , fd ∈ L∞(X,B, µ),

A = {x : lim
n→∞

1

N

N−1∑
n=0

f1(Tn1 x) . . . fd(T
n
d x) < α},

B = {x : lim
n→∞

1

N

N−1∑
n=0

f1(Tn+1
1 x) . . . fd(T

n+1
d x) < α},

∀α ∈ R, we have A = B, then the set A is called ‘invariant’ with respect to the
measure µ.

Definition 3.2. The probability space (X,B, T1, T2,. . . , Td, µ), where T1,T2, . . . ,Td :
X → X are commuting invertible measure-preserving transformations, is called ‘ir-
reducible’ with respect to the measure µ, if it is impossible to represent X as the
sum of two measurable ‘invariant’ sets of positive measure without common points.

Theorem 3.3. Let d ≥ 1 be an integer. Assume that T1, T2, . . . , Td : X → X are
commuting invertible measure-preserving transformations of a ‘irreducible’ space
(X,B, µ), TiT

−1
j , i 6= j are ergodic. Then, for any f1, f2, . . . , fd ∈ L∞(X,B, µ),

Ti 6= Tj , i 6= j, there is a subsequence {Nk} such that

lim
k→∞

1

Nk

Nk−1∑
n=0

f1(Tn1 x) . . . fd(T
n
d x) =

∫
X

f1 dµ . . .

∫
X

fd dµ a.e.. (3.1)

Proof According to Theorem 1.1, the averages (1.1) converges in L2, Accord-
ing to Theorem 2.3, the averages (1.1) has a subsequence which converges almost
everywhere.

First of all, We shall prove that under the condition of irreducible, the subse-
quence converges to a constant almost everywhere. Using the method of proof by
contradiction, we denote by M the least upper bound of f(x) over X computed
on neglecting a set of measure zero and analogously we denote by m the greatest
lower bound of the function f(x) on neglecting a set of measure zero. From the
assumption there follows M > m.
Let α satisfy the inequalities m < α < M . We obtain

µ{p : f(p) < α} = µEα > 0,

and
µ(X − Eα) = µ{p : f(p) ≥ α} > 0,
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then we decompose X into two sets of positive measure which contradicts the con-
dition of ‘irreducibility’.
For d = 1, the statement is the famous mean ergodic theorem.
For d = 2, almost every x ∈ X

lim
k→∞

1

Nk

Nk−1∑
n=0

f1(Tn1 x)f2(Tn2 x)=

∫
X

lim
k→∞

1

Nk

Nk−1∑
n=0

f1(Tn1 x)f2(Tn2 x) dµ

=lim
k→∞

∫
X

1

Nk

Nk−1∑
n=0

f1(Tn1 x)f2(Tn2 x) dµ

=lim
k→∞

∫
X

1

Nk

Nk−1∑
n=0

f1(x)f2((T2T
−1
1 )nx) dµ

=lim
k→∞

1

Nk

Nk−1∑
n=0

∫
X

f1(x)f2((T2T
−1
1 )nx) dµ

=

∫
X

f1 dµ

∫
X

f2 dµ. (by Corollary 2.5)

In the second equality, we used the Lebesgue’s Dominated Convergence Theorem
[13, p. 26].

Putting f1 = χA, f2 = χB in the situation d = 2, then

lim
k→∞

1

Nk

Nk−1∑
n=0

χA(Tn1 x)χB(Tn2 x) =

∫
X

χA dµ

∫
X

χB dµ a.e..

Multiplying the both sides by χC ,

lim
k→∞

1

Nk

Nk−1∑
n=0

χT−n
1 A∩T−n

2 BχC =

∫
T
χA dµ

∫
T
χB dµ · χC a.e.,

thus the dominated convergence theorem implies

lim
k→∞

1

Nk

Nk−1∑
n=0

µ(T−n1 A ∩ T−n2 B ∩ C) = µ(A)µ(B)µ(C). (3.2)

For d = 3, almost every x ∈ X

lim
k→∞

1

Nk

Nk−1∑
n=0

f1(Tn1 x)f2(Tn2 x)f3(Tn3 x)

=

∫
X

lim
k→∞

1

Nk

Nk−1∑
n=0

f1(Tn1 x)f2(Tn2 x)f3(Tn3 x) dµ

= lim
k→∞

∫
X

1

Nk

Nk−1∑
n=0

f1(Tn1 x)f2(Tn2 x)f3(Tn3 x) dµ

= lim
k→∞

∫
X

1

Nk

Nk−1∑
n=0

f1(x)f2((T2T
−1
1 )nx)f3((T3T

−1
1 )nx) dµ
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= lim
k→∞

1

Nk

Nk−1∑
n=0

∫
X

f1(x)f2((T2T
−1
1 )nx)f3((T3T

−1
1 )nx) dµ

=

∫
X

f1 dµ

∫
X

f2 dµ

∫
X

f3 dµ.

In the same way, after d steps, we obtain

lim
k→∞

1

Nk

Nk−1∑
n=0

f1(Tn1 x) . . . fd(T
n
d x) =

∫
X

f1 dµ . . .

∫
X

fd dµ.

�

Corollary 3.4. Let d ≥ 1 be an integer. Assume that T1, T2, . . . , Td : X → X
are commuting invertible measure-preserving transformations of a irreducible space
(X,B, µ), with Ti1 = Ti2 = . . . = Tik , 1 ≤ k ≤ d. Without loss of generality, let
i1 = 1, i2 = 2, . . . , ik = k. TiT

−1
j , i 6= j are ergodic. Then, for any f1, f2, . . . , fd ∈

L∞(X,B, µ),

lim
k→∞

1

Nk

Nk−1∑
n=0

f1(Tn1 x) . . . fd(T
n
d x) =

∫
X

f1f2 . . . fk dµ

∫
X

fk+1 dµ . . .

∫
X

fd dµ a.e..

(3.3)

Proof As the proof of Theorem 3.3, the subsequence converges to a constant
almost everywhere.
For d = 1, the statement is the mean ergodic theorem.
For d = 2, if T1 6= T2, it is conformity with Theorem3.3.
For d = 2, and T1 = T2 = T , for almost every x ∈ X

lim
k→∞

1

Nk

Nk−1∑
n=0

f1(Tn1 x)f2(Tn2 x) =

∫
X

lim
k→∞

1

Nk

Nk−1∑
n=0

f1(Tnx)f2(Tnx) dµ

=lim
k→∞

1

Nk

Nk−1∑
n=0

∫
X

f1(Tnx)f2(Tnx) dµ

=

∫
X

f1f2 dµ. (µ is invariant)

In the procedure of the proof, we used the Lebesgue’s Dominated Convergence
Theorem [13, p. 26].
For d = 3, if T1 6= T2 6= T3, it is conformity with Theorem3.3.
For d = 3, and T1 = T2 = T 6= T3, for almost every x ∈ X,

lim
k→∞

1

Nk

Nk−1∑
n=0

f1(Tn1 x)f2(Tn2 x)f3(Tn3 x) =

∫
X

lim
k→∞

1

Nk

Nk−1∑
n=0

f1(Tnx)f2(Tnx)f3(Tn3 x) dµ

=lim
k→∞

1

Nk

Nk−1∑
n=0

∫
X

f1(Tnx)f2(Tnx)f3(Tn3 x) dµ

=lim
k→∞

1

Nk

Nk−1∑
n=0

∫
X

f1(x)f2(x)f3((T3T
−1)nx) dµ



520 X. Pan, Z. Zheng & Zh. Zhou

=

∫
X

f1f2 dµ

∫
X

f3 dµ.

For d = 3, and T1 = T2 = T3 = T , for almost every x ∈ X,

lim
k→∞

1

Nk

Nk−1∑
n=0

f1(Tn1 x)f2(Tn2 x)f3(Tn3 x) =

∫
X

lim
k→∞

1

Nk

Nk−1∑
n=0

f1(Tnx)f2(Tnx)f3(Tnx) dµ

=lim
k→∞

1

Nk

Nk−1∑
n=0

∫
X

f1(Tnx)f2(Tnx)f3(Tnx) dµ

=

∫
X

f1f2f3 dµ.

In the same way, after d steps, we obtain

lim
k→∞

1

Nk

Nk−1∑
n=0

f1(Tn1 x) . . . fd(T
n
d x) =

∫
X

f1f2 . . . fk dµ

∫
X

fk+1 dµ . . .

∫
X

fd dµ a.e..

�

Remark 3.5. If the open problem of pointwise almost everywhere convergence of
the averages (1.1) is solved, our methods can be applied to the multiple averages
directly.

4. Special case

Consider the torus Td with special rotation, we can not only get the convergence of
the averages (1.1) for every point in Td, although almost everywhere convergence
of the averages (1.1) still unknown, but also get the result of Theorem 3.3.

At first, let us recall the concept of rationally independent.

Definition 4.1. The real numbers 1, α1, . . . , αd are rationally independent, if there
is no k0, k1, . . . , kd ∈ Zd+1\{0} such that k0 + k1α1 + . . . kdαd = 0.

The translation

Rα = Rα1,...,αd
(x1, . . . , xd) = (x1 + α1, . . . , xd + αd)

induces the rotation Rα = Rα1,...,αd
: Td → Td.

From next lemma, the rationally independent rotation Rα = Rα1,...,αd
: Td → Td

is uniquely ergodic.

Lemma 4.2. Let α = (α1, . . . , αd) with 1, α1, . . . , αd rationally independent. The
Haar measure is the only probability measure which is invariant by Rα : Td → Td.

Analogy to Theorem 3.3, the following statements are valid:

Theorem 4.3. Let d ≥ 1 be an integer and α = (α1, . . . , αd) with 1, α1, . . . , αd
rationally independent, Rα1 , . . . , Rαd

: T → T, f1, . . . , fd : T → R, f1, f2, . . . , fd ∈
C(T). Assuming µ is the common invariant probability measure of Rα1

, . . . , Rαd
.

Then

lim
N→∞

1

N

N−1∑
n=0

f1(Rnα1
x) . . . fd(R

n
αd
x) =

∫
T
f1 dµ . . .

∫
T
fd dµ. (4.1)
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Proof From Lemma 4.2, for ∀f ∈ C(Td), 1 ≤ p <∞,

lim
N→∞

1

N

N−1∑
n=0

f(Rnα(y)) =

∫
Td

f dν, ∀y ∈ Td, (4.2)

where ν = µ× . . .× µ.
Let f(x1, x2, . . . , xd) = f1(x1) · f2(x2) · . . . · fd(xd), then

lim
N→∞

1

N

N−1∑
n=0

f1(Rnα1
x) . . . fd(R

n
αd
x) =lim

N→∞

1

N

N−1∑
n=0

f(Rnα(x, . . . , x))

=

∫
Td

f dν

=

∫
T
f1 dµ . . .

∫
T
fd dµ.

�

Corollary 4.4. Let d ≥ 1 be an integer and α = (α1, . . . , αd) with 1, α1, . . . , αd ra-
tionally independent,Rα1

,. . . ,Rαd
, S : T→ T, f1,. . . , fd, g : T→ R, f1,f2,. . . , fd, g ∈

C(T), S is a periodic transformation with Skx = x. Assuming µ is the common
invariant probability measure of Rα1 , . . . , Rαd

. Then

lim
N→∞

1

N

N−1∑
n=0

f1(Rnα1
x) . . . fd(R

n
αd
x)g(Snx) =

∫
T
f1 dµ . . .

∫
T
fd dµ

1

k

k−1∑
r=0

g(Srx).

(4.3)

Proof When N = kp, then

lim
p→∞

1

kp

kp−1∑
n=0

f1(Rnα1
x). . .fd(R

n
αd
x)g(Snx) =lim

p→∞

1

kp

k−1∑
r=0

p−1∑
i=0

f1(Rik+rα1
x). . .fd(R

ik+r
αd

x)g(Srx)

=

∫
T
f1 dµ . . .

∫
T
fd dµ

1

k

k−1∑
r=0

g(Srx).

When N = kp+m, 1 ≤ m < k, then

lim
p→∞

1

kp+m

kp+m−1∑
n=0

f1(Rnα1
x) . . . fd(R

n
αd
x)g(Snx)

= lim
p→∞

1

kp+m
{
k−1∑
r=0

p−1∑
i=0

f1(Rik+rα1
x) . . . fd(R

ik+r
αd

x)g(Srx)

+

m∑
j=1

f1(Rpk+jα1
x) . . . fd(R

pk+j
αd

x)g(Sjx)}

= lim
p→∞

kp

kp+m

1

kp

k−1∑
r=0

p−1∑
i=0

f1(Rik+rα1
x) . . . fd(R

ik+r
αd

x)g(Srx)

+ lim
p→∞

1

kp

m∑
j=1

f1(Rpk+jα1
x) . . . fd(R

pk+j
αd

x)g(Sjx)

=

∫
T
f1 dµ . . .

∫
T
fd dµ

1

k

k−1∑
r=0

g(Srx).

(4.4)
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5. Examples

Now we present several examples in which each alternative in Section 3 and 4 occurs.
Although in the uniquely ergodic theorem, we need the function f is continuous, in
our examples, we can get the result with function is not continuous.

Proposition 5.1. Let {x} denote the decimal part of x, f(x) : S1 → R, f(x) = {x},
giving measure-preserving transformation T : S1 → S1 is ergodic, µ is the Haar
measure. Then

lim
N→∞

1

N

N−1∑
n=0

f(Tnx) =
1

2
. (5.1)

Proof Let g(x), h(x) be

g(x) =

 f(x) 0 ≤ x ≤ 1− 1
m ,

(1−m)(x− 1) 1− 1
m ≤ x ≤ 1.

h(x) =

 (1−m)x+ 1 0 ≤ x ≤ 1
m ,

f(x) 1
m ≤ x ≤ 1.

Obviously, g(x), h(x) have the following properties:

1. g(x), h(x) are continuous functions,

2. g(x) ≤ f(x) ≤ h(x), ∀x ∈ S1,

3. limm→∞ g(x) = limm→∞ h(x) = f(x),

4.
∫
S1 g(x) dµ = (m− 1)/(2m),

5.
∫
S1 h(x) dµ = (m+ 1)/(2m).

By Theorem 2.9,

lim
N→∞

1

N

N−1∑
n=0

g(Tnx) =

∫
S1

g(x) dµ. (5.2)

lim
N→∞

1

N

N−1∑
n=0

h(Tnx) =

∫
S1

h(x) dµ. (5.3)

From property 2, we have

lim
N→∞

1

N

N−1∑
n=0

g(Tnx)≤ lim inf
N→∞

1

N

N−1∑
n=0

f(Tnx)≤ lim sup
N→∞

1

N

N−1∑
n=0

f(Tnx)≤ lim
N→∞

1

N

N−1∑
n=0

h(Tnx).

According to all the properties and equations listed above, we have

lim
N→∞

1

N

N−1∑
n=0

f(Tnx) =
1

2
.

�

Example 5.2. Let {x} denote the decimal part of x.
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1. limN→∞
1

N

N−1∑
n=0

{x+
√

2n}{x+
√

3n} =
1

4
.

2. limN→∞
1

N

N−1∑
n=0

{x+
√

2n}{x+
√

2n} =
1

3
.

3. limN→∞
1

N

N−1∑
n=0

{x+
√

2n}
{
x+

n

k

}
=

1

2k
{kx}+

k − 1

4k
.

Proof Let f1, f2 : S1 → R, with f1(x) = f2(x) = {x}

T√2 : S1 → S1

x 7→
√

2 + x mod 1.

T√3 : S1 → S1

x 7→
√

3 + x mod 1.

• Proof of Example 1

lim
N→∞

1

N

N−1∑
n=0

{x+
√

2n}{x+
√

3n} =lim
N→∞

1

N

N−1∑
n=0

f1(Tn√
2
x)f2(Tn√

3
x)

=

∫
S1

f1 dµ

∫
S1

f2 dµ

=
1

2
× 1

2
=

1

4
.

• Proof of Example 2

lim
N→∞

1

N

N−1∑
n=0

{x+
√

2n}{x+
√

2n} =lim
N→∞

1

N

N−1∑
n=0

f1(Tn√
2
x)f2(Tn√

2
x)

=

∫
S1

f21 dµ

=

∫
S1

x2 dµ

=
1

3
.

• Proof of Example 3
Assertion:

k−1∑
r=0

{
x+

r

k

}
= {kx}+

k − 1

2
, x ∈ [0, 1]. (5.4)

Let us prove the assertion firstly:
Proof When i

k ≤ x ≤ i+1
k , i = 0, 1, . . . , k − 1. We have x + r

k ≤ 1, r =
0, 1, . . . , k − i− 1, and 1 ≤ x+ r

k ≤ 2, r = k − i, k − i+ 1, . . . , k − 1, then

k−1∑
r=0

{
x+

r

k

}
=

k−i−1∑
r=0

(x+
r

k
) +

k−1∑
r=k−i

(x+
r

k
− 1)
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=kx+
k − 1

2
− i

={kx}+
k − 1

2
.

�

Let g : S1 → R, with g(x) = {x},

T : S1 → S1

x 7→ x+
1

k
mod 1.

lim
N→∞

1

N

N−1∑
n=0

{x+
√

2n}
{
x+

n

k

}
=lim
N→∞

1

N

N−1∑
n=0

f1(Tn√
2
x)g(Tnx)

=

∫
S1

f1 dµ · 1

k

k−1∑
r=0

g(T rx)

=
1

2k

k−1∑
r=0

{
x+

r

k

}
=

1

2k
{kx}+

k − 1

4k
.
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