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Limit Cycles in a Two-Species Reaction*

Brigita Ferčec1,2, Ilona Nagy3, Valery G. Romanovski2,4,5,†,

Gábor Szederkényi6 and János Tóth3,7

Abstract Kinetic differential equations, being nonlinear, are capable of pro-
ducing many kinds of exotic phenomena. However, the existence of multista-
tionarity, oscillation or chaos is usually proved by numerical methods. Here
we investigate a relatively simple reaction among two species consisting of five
reaction steps, one of the third order. Using symbolic methods we find the
necessary and sufficient conditions on the parameters of the kinetic differential
equation of the reaction under which a limit cycle bifurcates from the station-
ary point in the positive quadrant in a supercritical Hopf bifurcation. We
also performed the search for partial integrals of the system and have found
one such integral. Application of the methods needs computer help (Wolfram
language and the Singular computer algebra system) because the symbolic
calculations to carry out are too complicated to do by hand.
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1. Introduction

After an extremely short review of the history of oscillatory reactions we describe
how and why we selected—both from the mathematical and chemical points of
view—the model investigated here. Definitions of concepts and formulation of the-
orems not given here can be found e.g. in [44] and [34].
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1.1. Historical remarks

Chemical reactions show all kinds of exotic behavior: oscillation, multistability,
multistationarity, or chaos. They are interesting not only from the mathematical
point of view, but oscillatory behavior in a reaction may also form the basis of
periodic behavior in biological systems that can have different periods: minutes,
one day, one year etc., see [14,30,31,47]. Analogous expectations can be expressed
in connection with other phenomena. Here we are only concerned with oscillatory
behavior.

In his famous 1900 lecture David Hilbert formulated as the second part of his
XVIth problem to find the number of limit cycles of two-dimensional autonomous
polynomial differential systems, see e.g. [28]. The last more than 100 years have
shown that this is a very hard problem (see e.g. [28].) However, from the point of
view of applications one would need even more: find the number of periodic solutions
of polynomial differential equations in any number of variables although one would
be content with the solution of the kinetic case, i.e. a subclass of quadratic or cubic
polynomials is only relevant. Early attacks by [17,18] are worth mentioning here.

As it can be seen form history, Hilbert’s XVIth problem seems to be very difficult
even in the case of two-dimensional kinetic differential equations. (It is quite char-
acteristic that according to Schlomiuk and Vulpe [36] in the class of quadratic differ-
ential equations—slightly larger than the set of kinetic differential equations—the
number of different phase portraits is estimated to be more than two thousand.) We
neglected quite important topics: the case of simplest oscillators, see e.g. [41,43,46],
reactions with more than two species [1, 21,42], etc.

1.1.1. Existence of periodic trajectories

Especially when the experiments of Belousov [7] became widely known—first, through
the work by Zhabotinsky [48]—the question emerged what are the structural con-
ditions of the existence of periodic solutions in a kinetic differential equation. (On
the difference between structural and parametric conditions see e.g. [5, 6].)

A fruitful tool to prove the existence of periodic solutions is the theorem on
Andronov–Hopf bifurcation as it has been shown by Hsü [27]: he has rigorously
shown that the Oregonator model of the Belousov–Zhabotinsky reaction has pe-
riodic solutions. Another early application is shown in [39] containing a reaction
similar to the Brusselator—see below: (1.10)—to model synaptic low waves and
having periodic solutions as a consequence of the above mentioned theorem.

Another method to prove the existence of closed trajectories is to find first
integrals having closed level curves. This is how one can investigate the Lotka–
Volterra reaction.

Even before oscillatory chemical reactions became popular in the seventies of the
XXth century, following the work by Belousov and Zhabotinsky, and later by Field,
Kőrös and Noyes [22] and others, the biologically motivated differential equation

ẋ = k1x− k2xy, ẏ = k2xy − k3y (1.1)

was reinterpreted as the induced kinetic differential equation of the reaction

X
k1−−→ 2 X, X + Y

k2−−→ 2 Y, Y
k3−−→ 0 (1.2)

and was used as a model of oscillation in cold flames by Frank-Kamenetsky [23].
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Since the Lotka–Volterra equation (1.1) has a nonlinear first integral, it shows
conservative oscillations, i.e. to all initial concentrations in the open first quadrant
(except the unique positive stationary point) a different closed trajectory is assigned.

1.1.2. Exclusion of periodic trajectories

Given a special mechanism one may try to apply the theorem by Bendixson, or by
Bendixson and Dulac, see e.g. [8]. These are enough to show e.g. that the induced
kinetic differential system

ẋ = −k1x+ k−1y − 2k2x
2 + 2k−2y

2 =: f ◦ (x, y),

ẏ = k1x− k−1y + 2k2x
2 − 2k−2y

2 = −f ◦ (x, y)

of the reversible Wegscheider reaction has no periodic trajectory, or to show that
periodic trajectories of the Lotka–Volterra reaction necessarily cross a line (having
a tangent and an intersection which depends on the reaction rate coefficients).

Based on the Bendixson–Dulac theorem Bautin [4] has shown that within the
class of equations

ẋ = x(ax+ by + c), ẏ = y(dx+ ey + f) (1.3)

(which are often called generalized Lotka–Volterra equations, a subclass of Kol-
mogorov type equations) only those can have a periodic solution which are of the
Lotka–Volterra form (1.1), specifically, they cannot have a limit cycle.

A far reaching generalization of the statement by Bautin is the Póta–Hanusse-
Tyson–Light theorem, the full proof of which by Póta [32] has also used an appro-
priate Dulac function.

Theorem 1.1. Suppose that the coefficients of the equation

ẋ = ax2 + bxy + cy2 + dx+ ey + f, ẏ = Ax2 +Bxy +Cy2 +Dx+Ey + F (1.4)

obey the following inequalities

0 ≤ c, e, f, A,D, F, (1.5)

0 ≥ a,C, (1.6)

and

at most one of b and B is positive. (1.7)

Then, the only equation to have periodic solutions is of the form similar to (1.1)
above, specifically, limit cycles cannot arise.

Schuman and Tóth [40] has provided an alternative proof based on the classi-
fication of polynomial vector fields which may be more handy to be generalized.
(One should remark that Point 4 of their Theorem 2.2 is said to give the conditions
for symmetric (time-reversible) centers. However it is not precise, not all systems
defined by this condition are time-reversible. Confer it to the details in Section 4
of the paper [35].)

Condition (1.5) restricts the set of equations to the kinetic case (cf. [26]). Con-
dition (1.6) excludes the presence of reaction steps 2 X −−→ 3 X or 2 Y −−→ 3 Y,



286 B. Ferčec, I. Nagy, V.G. Romanovski, G. Szederkényi & J. Tóth

while condition (1.7) excludes the presence of reaction steps X + Y −−→ 2 X + Y
and X + Y −−→ X + 2 Y.

An interesting question is if condition (1.5) is enough to exclude the emergence
of limit cycles. The answer has been given by Escher [17], who has written the
most remarkable early papers on the topics of oscillation in two-species reactions
both from the mathematical and chemical points of view. Here we only cite one
of his interesting reactions: the one having both conservative oscillations and limit
cycles—in different parts of the state space:

2 Y −−⇀↽−− 2 X −−→ 3 X, X −−⇀↽−− 0←−− Y X + Y −−→ 0. (1.8)

The article [17] of Escher contains chemical examples with two species and sec-
ond order reactions with even more than one limit cycles, but the author allows
long product complexes, as well, thus his examples are in no contradiction to Theo-
rem 1.1. Theorem 1.1 says that among two-species second order reactions the only
oscillatory reaction is the Lotka–Volterra model. It is interesting that the same
result is obtained if one starts from different premises: if the linearized form of the
Lotka–Volterra model is given, then the simplest model with this linearized form is
again the Lotka–Volterra model [43].

A serious disadvantage of the Bendixson–Dulac theorem is that it is about planar
systems, and cannot easily and naturally be generalized to higher dimensional cases.
It may happen that a system can be reduced to a 2D system via first integrals and
then one can apply the theorem [42].

Necessary conditions formulated in chemical terms to exclude the existence of
periodic solutions can be found in the classical central theorems on regular behavior,
see e.g. [44, Subsection 8.7.1].

1.1.3. Limit cycles

People involved in modeling real life phenomena wanted to have a model with a
(preferably stable) limit cycle or limit cycles. It was Prigogine and Lefever [33] who
constructed the reaction

0
1−−⇀↽−−
1

X
b−−→ Y, 2 X + Y

a−−→ 3 X (1.9)

having the induced kinetic differential equation

ẋ = 1− (b+ 1)x+ ax2y, ẏ = bx− ax2y. (1.10)

It can be—and has later been—shown that there exists a limit cycle in this
model. (One can use the Andronov–Hopf theorem on bifurcation to show this,
or construct a Bendixson sack only to show the existence of a periodic solution.
[45] shows a Wolfram language animation how a Hopf biurcation emerges in the
Brusselator.)

Note the cubic term x2y on the right-hand sides.
A similar reaction with a limit cycle called the Autocatalator

0
k0−−→ Y

k3−−→ X
k2−−→ 0, 2 X + Y

k1−−→ 3 X (1.11)

having the induced kinetic differential equation

ẋ = k3y − k2x+ k1x
2y, ẏ = k0 − k3y − k1x

2y (1.12)
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has been proposed and later thoroughly investigated by Gray and Scott [25].
Erle [15] has shown that under the conditions

0 ≤ m′ < m; 0 < β < n < n′;α > 0

for the reaction

mX + nY
k1−−⇀↽−−
k′1

m′X + n′Y, αX
k2−−⇀↽−−
k′2

0
k3−−⇀↽−−
k′3

βY (1.13)

there exist reaction rate coefficients for which the reaction has an asymptotically
orbitally stable closed orbit.

In a following paper Erle [16] has dealt with the case when all the reaction steps
are reversible and the number of reversible pairs is not larger than the number of
species. Although it is a strong restriction (e.g. in the case of combustion reactions
the usual ratio of the number of reaction steps to the number of species is five as
stated by the—empirical—Law of Law [29]), let us summarize his results in this case.
He does not assume mass conservation and neither that the orders of the reaction
steps are low. If the number of species and the number of reversible reaction step
pairs are equal to two and the stoichiometric matrix is invertible, then no closed
trajectory can exist in the open first orthant. If the number of reaction step pairs
is not larger than the number of species (and now it can be any number, not only
two), then no structurally stable closed orbit can exist in the open first orthant. His
result is in accordance with the statement by Schnakenberg [38], who has shown
that for exhibiting limit cycle behavior a two-species reaction has to consist of at
least three reaction steps among which one must be autocatalytic of the type 2 X +
Y −−→ 3 X. Under this condition, possible candidates having (a) limit cycle(s)
are selected by postulating that their stationary state be an unstable focus. He
enumerated all the reactions with three reaction steps fulfilling the conditions.

Császár et al. [10] used necessary conditions (for systems of two equations with
not necessarily polynomial right-hand sides) provided by Feistel and Ebeling [19]
and by Escher to construct candidate reactions with limit cycles, and they obtained
a table of reactions similar to, but different from—thus, complementary in a cer-
tain sense—that of Schnakenberg. They have shown numerically that some of the
reactions seem to have limit cycles.

A graph theoretical necessary condition of periodicity and multistationarity has
been given by Schlosser and Feinberg [37].

Finally, we mention that an important mathematical tool for the qualitative
analysis performed below is blowing up/down singularities. The reader can consult
[3, 13] regarding to this technique.

1.2. The model with limit cycles

The dynamical system considered in this paper comes from a chemical model pub-
lished in [10] that numerically shows limit cycle behavior for certain parameter
values. The reaction scheme is called ’model A1’ in [10], it contains two species, U
and V and the following set of reactions:

0
K1−−→ V , U

K2−−→ 0, V
K3−−→ U , 2U

K4−−→ V , 2U +V
K5−−→ 3U (1.14)

where ‘0’ is the so-called zero complex representing the environment (see, e.g. [44]),
and Ki > 0 for i = 1, . . . , 5 are the reaction rate coefficients. (Contrary to the usual
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custom uppercase K here does not mean equilibrium constant.) The model was
further analyzed in [2], where it was shown that precisely 17160 reaction graphs with
different structure—including the original model (1.14)—can produce exactly the
same dynamical behavior: they induce the same mass action type kinetic differential
equations. However, the computed structures could not be used to show important
dynamical properties of the model (e.g. the existence of positive equilibria or the
boundedness of solutions).

Figure 1. Graph of the reaction (1.14)

This reaction induces the following two-dimensional system of ordinary differ-
ential equations with five parameters: K1,K2,K3,K4,K5; where u, v are concen-
trations of two species:

u̇ =−K2u− 2K4u
2 +K3v +K5u

2v,

v̇ = K1 +K4u
2 −K3v −K5u

2v.
(1.15)

From now on we only assume that all parameters of the system are non-negative
(contrary to the usual custom according to which only reaction steps which do take
place are only shown).

In this paper we explain the reason for the existence of the limit cycle detected
in [10]. Moreover, we find all systems in the family in which a limit cycle appears
as a result of a Hopf bifurcation at the stationary point in the first quadrant, and
show that it is always stable.

We also have looked for integrals of the system, which from the point of view
of chemical kinetics can be considered as conservation laws of the model. Here our
result is mostly negative—it appears that the system cannot admit an analytic first
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integral, and we have found only one partial integral for chemically relevant values
of parameters.

The paper is organized as follows. After preparatory calculations we investigate
in details the behavior of trajectories in the first quadrant. Then we study the
stationary singular point in this quadrant and find the systems admitting the Hopf
bifurcation. Finally we look for algebraic invariant curves of the system.

2. Preparation for the analysis of the model

We note that the number of parameters in system (1.15) can be decreased by two in
the following way. Let us introduce new variables, x and y, such that u(t) = ax(tτ)
and v(t) = by(tτ) where a, b and τ are parameters. Then u′(t) = aτx′(tτ) and
v′(t) = bτy′(tτ) so the new equation system is

ẋ =− K2x

τ
− 2aK4x

2

τ
+
bK3y

aτ
+
abK5x

2y

τ
,

ẏ =
K1

bτ
+
a2K4x

2

bτ
− K3y

τ
− a2K5x

2y

τ
.

(2.1)

If b = a and τ = a2K5 then the coefficient of x2y will be equal to 1, and if a = K4/K5

then the coefficient of x2 will also be equal to 1. With these substitutions the system
will be

ẋ =− K2K5x

K2
4

− 2x2 +
K3K5y

K2
4

+ x2y,

ẏ =
K1K

2
5

K3
4

+ x2 − K3K5y

K2
4

− x2y.

(2.2)

If k1 =
K1K

2
5

K3
4

, k2 =
K2K5

K2
4

and k3 =
K3K5

K2
4

then the system will have the form

ẋ =− k2x− 2x2 + k3y + x2y,

ẏ = k1 + x2 − k3y − x2y,
(2.3)

which can also be obtained from system (1.15) if K4 = K5 = 1, and the notation is
changed appropriately.

Thus, without loss of generality, instead of system (1.15) we will study system
(2.3).

3. Limit cycles of system (2.3)

Straightforward computations show that system (2.3) has two singular points:

A

(
−k2 +

√
k2

2 + 4k1

2
,

2k1

√
k2

2 + 4k1

k2 (k3 − k1) +
√
k2

2 + 4k1 (k3 + k1)

)
(3.1)

and

B

(
−k2 +

√
k2

2 + 4k1

2
,

2k1

√
k2

2 + 4k1

k2 (k1 − k3) +
√
k2

2 + 4k1 (k3 + k1)

)
.
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Clearly, when all parameters are positive, then A is located in the first quadrant
and B is in the fourth one, so only the point A is of interest for us.

The following theorem shows that all trajectories of system (2.3) in the first
quadrant are bounded and tend either to the singular point A or to a limit cycle
surrounding A when time increases.

Theorem 3.1. For any positive values of parameters ki the corresponding system
(2.3) has a unique singular point in the first quadrant and all trajectories of this
quadrant tend to this point or to a limit cycle surrounding it when t→ +∞.

Proof. As it is shown above the point A is the unique singular point in the first
quadrant. The vector field on the coordinate axes bounding the first quadrant is
directed inside the quadrant. Thus, to understand the behavior of the trajectories
in the quadrant we have to study the singular points of the system at infinity.

Performing the substitution

u = y/x, z = 1/x

and the time rescaling dt→ dt/z2 we obtain from (2.3) the system

u̇ =− u− u2 + z + 2uz + k2uz
2 − k3uz

2 − k3u
2z2 + k1z

3 = U(u, z),

ż =z(−u+ 2z + k2z
2 − k3uz

2) = Z(u, z).
(3.2)

The line z = 0 corresponds to the equator of the Poincaré sphere of system
(2.3). Obviously, system (3.2) has two singular points at the equator z = 0: points
C(0, 0) and D(−1, 0). Clearly, only point C corresponds to the first quadrant and
it is located at the ends of the Ox axis of system (2.3).

The point C is a degenerate singular point of system (3.2). Since the first degree
approximation of the polynomial U(u, z) is the polynomial U1 = −u + z and the
lowest terms in Z(u, z) have the second degree, Z1 ≡ 0, we consider the function

F = uZ1 − zU1 = z(u− z). (3.3)

The function F vanishes when z = 0 and z = u. Therefore, trajectories of system
(3.2) tend to the singular point C tangentially to the lines z = 0 and z = u (see,
e.g. [3]). To investigate the behavior of the trajectories more precisely we blow up
the singularity at the origin of system (3.2) using the substitution

X = u, Y = z/u.

The transformation yields the system

Ẋ =−X(1 +X − Y − 2XY − k2X
2Y 2 + k3X

2Y 2 + k3X
3Y 2 − k1X

2Y 3),

Ẏ =− Y (−1 + Y − k3X
2Y 2 + k1X

2Y 3).
(3.4)

Singular points of (3.4) on the axis X = 0 are X = 0, Y = 0 and X = 0, Y = 1.
Clearly, the point X = 0, Y = 0 is a saddle. Moving the origin into the point
X = 0, Y = 1 using the substitution w = X, v = Y − 1 and rescaling the time by
dt→ −dt, we obtain the system

ẇ =− vw − w2 − 2vw2 − k1w
3 − k2w

3 + k3w
3 − 3k1vw

3 − 2k2vw
3 + 2k3vw

3

− 3k1v
2w3−k2v

2w3+k3v
2w3−k1v

3w3+k3w
4 + 2k3vw

4 + k3v
2w4 = P (w, v),

v̇ =v + v2 + k1w
2 − k3w

2 + 4k1vw
2 − 3k3vw

2 + 6k1v
2w2 − 3k3v

2w2

+ 4k1v
3w2 − k3v

3w2 + k1v
4w2 = v +Q(w, v).

(3.5)
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(a) k1 = 4, k3 = 1 (b) k1 = k3 = 1 (c) k1 = 1, k3 = 2

Figure 2. Phase portrait of system (3.5) for fixed values of k1 and k3 (when k2=1), generated by
Wolfram Mathematica.

If v = φ(w) is the solution to the equation v + Q(w, v) = 0 then P (w, φ(w)) =
−w2 + h.o.t. By Theorem 65 of [3] the singular point at the origin of (3.5) is a
saddle-node and the phase portrait qualitatively looks as shown in Figure 2 or
Figure 3a . Taking into account that we have changed the direction on trajectories
dividing by the negative number −1 after the blow-down we obtain that the phase
portrait near the origin of system (3.2) looks as in Figure 3b.

Figure 3. (a) Phase portrait of system (3.5) and (b) phase portrait of system (3.2).

To study the behavior of the trajectories of system (2.3) at the ends of the axis
Oy, we perform the substitution

u = x/y, z = 1/y

and time rescaling dt→ dt/z2 and thus we obtain the system

u̇ =u2 + u3 − 2u2z − u3z + k3z
2 − k2uz

2 + k3uz
2 − k1uz

3 = U(u, z),

ż =u2z − u2z2 + k3z
3 − k1z

4 = Z(u, z).
(3.6)

The origin of system (3.6) corresponds to the singular point at the ends of the Oy
axis of system (2.3).

For system (3.6) the function (3.3) is identically equal to zero and

uZ2 − zU2 = −z(u2 + k3z
2).
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Hence, the characteristic direction is z = 0 and the u-directional blow-up needs
to be done. Thus, to blow up the singularity at the origin of (3.6) we use the
substitution

u = X, z = XY.

After the transformation and the rescaling of time

dt→ Xdt (3.7)

the system has the form

Ẋ =−X(−1−X + 2XY +X2Y − k3Y
2 + k2XY

2 − k3XY
2 + k1X

2Y 3),

Ẏ =Y (−1 + 2XY − k3Y
2 + k2XY

2).
(3.8)

The only singularity of system (3.8) at the origin is a saddle shown in Figure 4.
Taking into account rescaling (3.7) we obtain that the phase portrait of system
(3.6) near the origin looks like the right picture of Figure 4.

Figure 4. Phase portrait of system (3.8) and phase portrait of system (3.6) after the blow-down.

System (2.3) has exactly one singular point, the point A, in the first quadrant.
Thus, the phase portrait of system (2.3) in the first quadrant up to some number
of limit cycles surrounding A is qualitatively equivalent to the one shown in Figure
5.

That is, when the time increases, each trajectory of the first quadrant either
reach the singular point A or a limit cycle surrounding A.

To simplify the further analysis of system (2.3) we rescale the Ox axis such that
the singular point A(x0, y0) (defined in (3.1)) is moved to a singular point A′(x′0, y

′
0)

with x′0 = 1, that is we perform the transformation

X =
x

x0
, Y = y.

Writing in the obtained system x, y instead of X,Y we have

ẋ =− k2x− 2x2x0 +
k3y

x0
+ x2x0y,

ẏ =k1 + x2x2
0 − k3y − x2x2

0y.

(3.9)

Since the point A′(x′0, y
′
0), where x′0 = 1 is a singular point of system (3.9), we

obtain that
k1 = x0(k2 + x0) (3.10)
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(a) The trajectories approach a singular point. (b) The trajectories approach a limit cycle.

Figure 5. Phase portrait of system (2.3) based on Figure 3b and Figure 4.

and the coordinates of the singular point A′ are

x′0 = 1, y′0 =
x0(k2 + 2x0)

k3 + x2
0

.

Let A be the matrix of the linearization of system (3.9) at the point A′. The
necessary condition for the existence of Hopf and degenerate Hopf bifurcation at
the point A′ (and, therefore, also at the point A) is that the trace of the matrix A
is zero, or, equivalently, the real parts of the eigenvalues λ1,2 of A are equal to zero.
Computing we find

Reλ1,2 =
x3

0(k2 − 2k3)− k3x0(k2 + k3)− 4k3x
2
0 − x5

0

2x0 (k3 + x2
0)

. (3.11)

Therefore Reλ1,2 = 0 if and only if

k2 = (−k2
3 − 4k3x0 − 2k3x

2
0 − x4

0)/(k3 − x2
0). (3.12)

Theorem 3.2. If in system (2.3) all parameters and the coordinates of the point
A are positive, and the trace of the matrix of the linearization of system (2.3) at A
is equal to zero, then the point A is a stable focus.

Proof. As it is shown above the conditions of the theorem are fulfilled if and only
if conditions (3.10) and (3.12) hold. Since the numerator of (3.12) is negative, but
k2 should be positive, we have that k3 should satisfy the condition

k3 < x2
0. (3.13)

Taking into account these conditions and moving the origin of system (3.9) at
the origin by the substitution u = x− x′0, v = y − y′0 we obtain the system

u̇ =(k2
3v + k2

3ux0 − 2k3u
2x2

0 + 2k3uvx
2
0 + k3u

2vx2
0 − k3u

2x3
0 − vx4

0 − 2uvx4
0

− u2vx4
0 − ux5

0 − u2x5
0)/(x0(k3 − x2

0)),

v̇ =− (k2
3v − 2k3ux

2
0 − k3u

2x2
0 + 2k3uvx

2
0 + k3u

2vx2
0 − 2k3ux

3
0 − k3u

2x3
0−

2ux4
0 − u2x4

0 − vx4
0 − 2uvx4

0 − u2vx4
0 − 2ux5

0 − u2x5
0)/(k3 − x2

0).

(3.14)
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Eigenvalues of the linearized system are

ω1,2 = ±

(
k3 + x2

0

)√
k3

2 + 2k3x0 − x4
0 − 2x3

0

k3 − x2
0

.

By (3.13) the expression under the radical is always negative, therefore the singular
point at the origin of (3.14) is either a center or a focus (and the same conclusion
holds for the point A of system (1.15)).

We look for a polynomial

Φ(u, v) =

4∑
k+s=2

φksu
kvs (3.15)

such that
∂Φ

∂u
u̇+

∂Φ

∂v
v̇ = g1(u2 + v2)2 + h.o.t. (3.16)

The computation yield that the quadratic part of (3.15) is

Φ2 =
1

2
φ11

(
2u2x2

0(x0 + 1)

x2
0 − k3

+ 2uv +
v2

x0

)
, (3.17)

where φ11 can be chosen arbitrary. We set φ11 = 1, then, in view of (3.13), Φ2 is a
positive defined quadratic form. Performing the further computations we find that

g1 = −((x3
0(−4k2

3 − 3k3
3 − 8k2

3x0 + 12k3x
2
0 + 3k2

3x
2
0 + 24k3x

3
0 + 7k3x

4
0 + x6

0))

/((k3+x2
0)(3k2

3−6k3x
2
0+4k2

3x
2
0−4k3x

3
0+3x4

0−12k3x
4
0+4x5

0+20x6
0+24x7

0+12x8
0))).

Solving with Reduce of Mathematica the semialgebraic system

g1 ≥ 0 ∧ k3 − x2
0 < 0 ∧ k3 > 0 ∧ x0 > 0

we find that it does not have solution. Therefore, g1 is always negative.
Since Φ2 defined by (3.17) is positive defined quadratic form the function (3.15)

is positive defined Lyapunov function in a sufficiently small neighborhood of the
origin of system (3.14). Since g1 < 0, in view of (3.16) its derivative with respect
to the vector field is negative defined. Therefore by the Lyapunov theorem the
singular point at the origin of (3.14) is asymptotically stable, that means, it is a
stable focus.

The next theorem gives the necessary and sufficient conditions for existence of
a Hopf bifurcation in system (2.3).

Theorem 3.3. If in system (2.3) all parameters are positive, then the point A(x0, y0)
defined in (3.1) is the only singular point in the first quadrant and a Hopf bifurca-
tions occur at A, if and only if the coefficients of (2.3) satisfy the conditions (3.10)
and (3.10). The bifurcation is always supercritical, that is, a stable limit cycle is
born from the point A.

Proof. As it is shown in the proof of the previous theorem the eigenvalues of
system (2.3) linearized at A are pure imaginary if and only if the coefficients of
(2.3) satisfy the conditions (3.10) and (3.10), and in this case A is a stable focus.
From (3.11) and (3.12) we see that taking k2 as perturbation parameter we can
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Figure 6. Trajectory going inward, approaching the big cycle and the components of the solution. The
distance of the initial point from the singular point is 1.

Figure 7. Trajectory going outward, approaching the big cycle and the components of the solution.

The distance of the initial point from the singular point is 10−5.

slightly perturb the system in such a way, that the real parts of λ1 and λ2 (defined
by (3.11)) became positive. It means that the point A becomes an unstable focus
and a limit cycles is born as the result of a supercritical Hopf bifurcation.

The figures were created with Wolfram Mathematica and together with the
calculations these can be found in [20]. The parameter values are k3 = 0.3, k2 =
−((k2

3 + 6k3 + 1)/(k3 − 1))− 10−5 and k1 = k2 + 1.

4. Invariant algebraic curves of system (2.3)

We first recall a few notions and one of the main results of the elimination theory.
Consider a system of polynomials with coefficients in some field k,

f1(x1, . . . , xn) = · · · = fk(x1, . . . , xn) = 0, (4.1)

and the corresponding ideal I = 〈f1, . . . , fk〉 ⊂ k[x1, . . . , xn].

Definition 4.1. Let I be an ideal in k[x1, . . . , xn] (with the implicit ordering of
the variables x1 > · · · > xn) and fix ` ∈ {0, 1, . . . , n−1}. The `-th elimination ideal
of I is the ideal I` = I ∩ k[x`+1, . . . , xn].

To eliminate x1, . . . , x` (0 ≤ ` < n) from the system one can use the following
theorem (see e.g. [9, 34] for the proof).

Theorem 4.1 (Elimination Theorem). Fix the lexicographic term order on the ring
k[x1, . . . , xn] with x1 > x2 > · · · > xn and let G be a Groebner basis for an ideal I
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of k[x1, . . . , xn] with respect to this order. Then for every `, 0 ≤ ` ≤ n− 1, the set

G` := G ∩ k[x`+1, . . . , xn]

is a Groebner basis for the `–th elimination ideal I`.

In this section using the theorem we determine invariant algebraic curve of degree
2 of the form L = f0 + f1x+ f2y + f3x

2 + f4xy + f5y
2 of system (2.3).

Consider the system

ẋ = A(x, y), (4.2)

ẏ = B(x, y). (4.3)

Let

X =
∂

∂x
A+

∂

∂y
B (4.4)

be the vector field associated to (4.3) and let L be a polynomial in the variables
x, y. The polynomial L defines an invariant algebraic curve L = 0 of system (4.3) if

XL = KL (4.5)

for some polynomial K(x, y). The polynomial K is called the cofactor of L and has
degree at most n− 1, if the maximal degree of A,B is n.

In the next theorem we list cases when system (2.3) has at least one invariant
algebraic curve of degree one or two.

Theorem 4.2. System (2.3) has invariant algebraic curves of degree at most two
if one of the following conditions holds:

(i) k3 = 0;

(ii) k2
2 + 4k3 = 0;

(iii) k1 − k3 = k2
2 + 4k3 = 0;

(iv) k3 = k1 = 0;

(v) k3 − k1 = 0.

Proof. We look for an algebraic invariant curve of the system (2.3) in the form

L(x, y) = f0 + f1x+ f2y + f3x
2 + f4xy + f5y

2 (4.6)

with the corresponding cofactor

K(x, y) = c0 + c1x+ c2y + c3x
2 + c4xy + c5y

2. (4.7)

For the computations we substitute L(x, y) and K(x, y) from (4.6) and (4.7) into
the equation (4.5) (with the vector field X corresponding to system (2.3)). Then
we compare the coefficients of similar terms on both sides of (2.3) and obtain the
system of polynomials

f1 = f2 = · · · = f15 = 0,

where

f1 = −c3f3;
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f2 = −c5f5;

f3 = −c5f1 − c4f2 − c2f4 − c1f5;

f4 = −c5f2 − c2f5;

f5 = −c5f4 − c4f5;

f6 = −c0f0 + f2k1;

f7 = −c1f0 − c0f1 + f4k1 − f1k2;

f8 = −c2f0 − c0f2 + 2f5k1 + f1k3 − f2k3;

f9 = −c4f0 − c2f1 − c1f2 − c0f4 − f4k2 + 2f3k3 − f4k3;

f10 = −c5f0 − c2f2 − c0f5 + f4k3 − 2f5k3;

f11 = −c3f0 − c1f1 − c0f3 − 2f3k2 − 2f1 + f2;

f12 = −c3f1 − c1f3 − 4f3 + f4;

f13 = −c4f1 − c3f2 − c2f3 − c1f4 − 2f4 + 2f5 + f1 − f2;

f14 = −c4f3 − c3f4 + 2f3 − f4;

f15 = −c5f3 − c4f4 − c3f5 + f4 − 2f5.

Denote by I := 〈f1, f2, . . . , f15〉 the ideal generated by polynomials given above.
To obtain conditions for existence of invariant curves we have to eliminate from
the system the variables fi and ci. We observe that (4.5) always has the solu-
tion L = 1, K = 0. Thus, computing the 12-th elimination ideal of I we ob-
tain the zero polynomial, which means that the elimination is always possible.
To overcome this difficulty we should impose the condition that L 6≡ const. To
this end we add to the ideal I the polynomial 1 − wf3 and thus we obtain the
ideal J = 〈1 − wf3, I〉. Ordering variables using a lexicographic ordering with
{w, f0, f1, f2, f3, f4, f5, c0, c1, c2, c3, c4, c5} > {k1, k2, k3, k4, k5} with eliminate of
Singular [12] we compute the 13-th elimination ideal J13 of J . Then, we compute
the decomposition of the variety of J13 with the routine minAssGTZ∗ of primdec

library [11] of Singular and obtain conditions (i) and (ii) of Theorem 4.2.

Computing the decomposition of the variety of the 13-th elimination ideal of J̃ =
〈1−wf4, I〉 yields additionally conditions (iii) and (iv) of Theorem 4.2. Condition
(v) is obtained by computing the 13-th elimination ideal of Ĵ = 〈1− wf5, I〉.

We now show that if each of conditions (i)− (v) of the theorem is satisfied, then
system (2.3) admits an invariant curve of the form (4.6). We prove this by finding
an invariant curve for each case.

Case (i): In this case the corresponding system has invariant line l1 = x with the
corresponding cofactor K1 = x(y−2)−k2 and invariant curve of degree two l2 = l21.

Case (ii): The system has the invariant line l1 = k2

2 + x with the corresponding

cofactor K1 = x(y − 2)− k2

2 y.

Case (iii): The corresponding system admits two invariant lines l1 = k2

2 + x and

l3 = y− 1 with the corresponding cofactors K1 = x(y− 2)− k2

2 y and K2 = x2− k2
2

4 ,
respectively.

Case (iv): In this case the system has two invariant lines l1 = x and l2 = y − 1
with the corresponding cofactors K1 = x(y − 2)− k2 and K2 = −x2, respectively.

∗The routine eliminate is based on Theorem 4.2 and minAssGTZ on the algoritheorem of [24]
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Case (v): System under this condition admits invariant line l1 = y − 1 with the
corresponding cofactor

K1 = −k1 − x2.

Note that in all five cases of Theorem 4.2 the corresponding system admits also
invariant curves of degree two but they are only products of invariant lines listed
above.
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