Journal of Nonlinear Modeling and Analysis http://jnma.ca; http://jnma.ijournal.cn
Volume 1, Number 3, September 2019, 397-413 DOI:10.12150/jnma.2019.397

Lyapunov-type Inequalities for Fractional
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Abstract In this paper, we establish some new Lyapunov type inequalities
for fractional (p, ¢)-Laplacian operators in an open bounded set Q C RY,
under homogeneous Dirichlet boundary conditions. Next, we use the obtained
inequalities to derive some geometric properties of the generalized spectrum
associated to the considered problem.
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1. Introduction

The Lyapunov inequality and its various generalizations have found applications in
the study of properties of solutions such as oscillation theory, asymptotic theory,
eigenvalue problems of differential and difference equations. On the other hand, the
fractional p-Laplacian operator is a class of non-local pseudo differential operators.
The equations involving the fractional p-Laplacian operators are used to describe
the diffusion phenomenon, which has been widely used in fluid mechanics, material
memory, biology, plasma physics, finance, and so on. In the last few decades,
many authors have established various Lyapunov type inequalities for fractional
p-Laplacian operators, see, for example the Refs. [2-6] and the references therein.

In [4], Mohamed Jleli, Mokhtar Kirane and Bessem Samet considered the frac-
tional p-Laplacian operator (—A,)®, where 1 < p < o0, s € (0, 1), in an open
bounded set Q ¢ RN, N > 2, under homogeneous Dirichlet boundary conditions.
More precisely, they considered the following problem

(=A,)*u = wuP~?u, in Q,
u =0, on RM\Q,
where the weight function w € L*°(Q). They discussed two cases, the case sp > N

and the case sp < N. For each case, they obtained a Lyapunov-type inequality
involved the inner radius of the domain and L norms of the weight w.
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In [5], Mohamed Jleli and Bessem Samet considered the following system in-
volving (p;, ¢;)-Laplacian operators (i = 1, 2):

{ — (' (@)% (2)) = (| ()| 72 (@) = f(@)u(@)]* 2 o) u(z), (L1)
= (@)% (@) = (|0 ()| 72 (2)) = g(@)[u(@)|*[o(@)]" (),
on the interval (a, b), under Dirichlet boundary conditions
u(a) = u(b) =v(a) =v(b) =0.
System (1.1) is investigated under the assumptions
a>2, 22, pi>2 ¢=>2, (i=1,2),
and
2« 2
P11+ q1 +pzf(J2 -

Where f and g are two nonnegative real-valued functions such that (f, g) € L*(a, b)x
L'(a, b). It was proved that if (1.1) has a nontrivial solution (u, v) € C?[a, b] x
C?a, b], then

28
P2 242 } Patas

) 2p1 2a1 m?%ql )
[mm{ (b—ap—1" (b—a)n-1 }} [mm{ (b— a1 (b—a)e=-1

< (% /ab f(x)dx)pffaql (% /ab g(x)dm)ﬁ.

Some nice applications to generalized eigenvalues are also presented in [5].
In this paper, we establish some new Lyapunov type inequalities for fractional
Laplacian systems. More precisely, we consider:

(=Ap)*ul@) + (=Ap,)*u(z) = f(2)|u(@)|*?[v(z)| u(x),
(=2g)*0(@) + (= Agy)*v(x) = g(2)|u(@)|*Jv(@)|"Pv(x), in @, (1.2)
u=uv=0, on RM\Q.

System (1.2) is investigated under the assumptions

86(071)a 0622, /822a pzZQ, Ql227 (’L:172)7

and
202 (1.3)
pr+p2 q1tq2
We also consider the system:

3

Z[(—Am)%(m)] = f(2)|u(@)]* 2 v (@)’ [w (@) u(@),

3

— Sv(x @) |u(@)]*|v(@)]? 2 |w(z)| v(z

;[( Ag,)*v(@)] = g(a)|u(@)|*v(2)|” 2 w(z) | v (@), (1.4)

3

Z[(—An)sw(l’)]=h(w)\U(x)Ialv(l‘)lﬁIW(w)W_Qw(JG% in Q,
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System (1.4) is investigated under the assumptions
56(03 1)7 0422, 5227 7227 p2227 q122; T1223 (1:17233)5

and

3a L 30 L 3y
pr+p2+p3s qgt+q+gqg Ti+r2+7T3

=1. (1.5)

In the next section, we establish Lyapunov-type inequalities for problem (1.2)
and (1.4). Then, we use the obtained inequalities to derive some geometric proper-
ties of the generalized spectrum associated to the considered problem.

2. Main results

We assume readers are familiar with the fractional p-Laplacian operator. For more
details, we refer to [4]. The following fractional Sobolev-type inequalities will be
useful later.

Lemma 2.1 (theorem 6.5, [9]). Let D C RY be bounded and open, sp < N, s €
(0, 1), and 1 < p < oo. Then there is a constant Cy > 0 such that

il < Crlulf , uweWgP(D),

p
LPS(RN) —

Np
N—sp*

where pi =

Lemma 2.2 (corollary 1.4, [1]). Let 0 < s < 1 and 1 < p < oo be such that
sp < N. Assume that D C RY is a (bounded) uniform domain with a (locally)
(s, p)-uniformly flat boundary. Then D admits an (s, p)-Hardy inequality, that is,
there is a constant Cs > 0 such that

u(x)|P s
/Dd(L%’;)')Spdmng[u]gw ue Wi P(D),

where d(x,0D) is the distance from x € D to the boundary 0D.

Lemma 2.3 (theorem 3, [7]). Let D C RY be bounded and open, sp > N and
s € (0, 1). Then there is a constant Cpr > 0 such that for all u € WP (D),

u(z) = u(y)| < Culz — yl°[uls,p, 2,y €RY,

where 8 = %.

In the following, we suppose that Q C RY is a bounded domain satisfying the
regularities required by the fractional Sobolev inequalities given by Lemmas 2.1, 2.2
and 2.3.

First, we define the weak solutions for problem (1.2) and (1.4).
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A (weak) solution of problem (1.2) is (u, v) € W3P(Q2) x W59 (Q) satisfying

i [u(2) = up)|P (@) — um)(e@) = o) 40

| |N+sp

/f ) ()|~ o) Pu()p () da

Zl / lv(z) — v(y)|® |iv(x;|;fs(qy)>(¢(x) - z/}(y»dscdy =

/Qg(w)IU(w)Ia\v(x)\ﬂ’zv(ﬂf)w(w)dx,

for all (p(z), Y(x)) € WP (Q) x W5 4(Q), where
{p = (p1, p2),

7= (11, ¢)-
A (weak) solution of problem (1.4)) is (u, v, w) € Wy (2) x W5 (Q) x W' ()
satisfying

Z [ 1) P~ ole) 512~ 1), -

| |N+sp

/Q @) (@) 2 o(@)]? (@) [ u(z) o1 (2)da,

3 v(z) —wv %=2(y(z) — v 2(x) — o
> [ o) ool ote) o)~ i)
=1 oy (2.2)

/Q 9(@)u() |2 0()|P 2w (@) [0 (2) o (),

Z/ oz )72 (w wiz) —wy))(es(@) = esW)) g

=1 R2N |-'1/'_ |N+sri

/Q () ()| [o(2) P (@) 2w (@) s (@) dz,

for all (¢1(z), w2(x), ps(x)) € WiP(Q) x W (Q) x Wy (), where

Our first result is the following Lyapunov inequality for problem (1.2) in the
case sp; > N, sq; > N, (i =1, 2).
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Theorem 2.1. Let f, g € L1(Q) be a pair of non-negative weights. Suppose that
problem (1.2) with sp; > N, sq; > N, (i = 1, 2) has a non-trivial weak solution
(u, v) € WSP(Q) x W54(Q). Then

28
P1+P2 qa1+a2 2
/ us (/Qg(w>d$) = CorB @B N (23)

where Cpr (a universal constant) is given by Lemma 2.3.

Proof. Let ¢ =u and ¢ = v in (2.1), we obtain

/ |1|tg(32 |N(+ep| 1dmd‘“// = _y|N+9p2 dxdy_/f Il de,

R2N
[v(@) — v(y)|" \v y)|® a
[ S ey + ) =W gy = [ g@lu@)o@)Pdz,
Dk |z —yl ZU| Q
that is,
(2t + 12, = [ F@ule)] o) o,
(2.4)
[v]eq + []E,, :Ag(w)lu(x)\“lv(x)lﬁdw~
Using the inequality
A+ B> 2VAVB,
we get
P1 P2
2[u]slp, [U]sTpe < [ulSp, + [Ul2?p,,
[ ]qf [ ]Qpa [Wlg!y, + [u]f?,, (2.5)
2[v]s2q, [v]slqe < 0], + [V] 22,

Since sp; > N, sq; > N, (i = 1, 2), u, v are continuous in RY, in particular in Q.
But (u, v) € WyP(Q2) x Wi () is non-trivial, then there exists z1, zo € 2 such
that

|u(x1)| = max{|u(z)| : = € RV} >0,

|v(z2)| = max{|v(z)| : = € RV} > 0.
From Lemma 2.3, we have

1-N
lu(z) —u(y)l < Culz —y| 7 [uls,p,,  ,y €RY.

For u, taking x = 1, we obtain

—N

sp1
lu(z1)| < Cprley —y| ™ #

[u]&mv Y € 897

which yields

spp—N

u(z1)] < Curg ™ [uls, py- (2.6)
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Similarly, we obtain

spa—N

lu(z1)| < Curg ™ [u]s,pza (2.7)
sq1 —N

[v(22)] < CJVITQ “ ['U]s,qu (2.8)
sqo—N

[o(z2)] < Curg ™ [Vs, 4o (2.9)

Combining (2.4), (2.5) with (2.6) and (2.7), where inequality (2.6) to a power &,

inequality (2.7) to a power £ and multiplying the resulting inequalities, we obtain

=

P2

p1+pa p142rpz sp1+spy—2N P

lu(z)| 727 <Oy % rg 7 Ul [ulsT,
1 p1+p2 5p1+s€272N o 3
=50m° Tq Qf(ﬂé’)\U(fﬂ)l v(z)|”dx
1 p1+p2 SP1+Sp2 2N
<3O T [ fadeluan) oo
that is,
p1+p2  spi+tspa—2N 1+p2
2<Cy* rg ° f(x)dzu(z)]*™ [o(@2)|”. (2.10)
Q
Similarly, combining (2.4), (2.5) with (2.8) and (2.9), where inequality (2.8) to a
power 4, inequality (2.9) to a power £ and multiplying the resulting inequalities,
we obtain

a1+q2  sq1+saz—2N

2< 0 [ g@astuien o)
Q

q1+42
2

(2.11)

Raising inequality (2.10) to a power e; > 0, inequality (2.11) to a power e > 0 and
multiplying the resulting inequalities, we choose e; and es such that |u(x1)], |v(z2)]
cancels out, i.e., e1, ea solve the homogeneous linear system:

(a — w)el + aey =0,
+
[3614’(5*(]1 Q2)2:0.
Using (1.3), we may take
2a
€1 = ’
P1+p2
26
€y = .
q1+ g2

Therefore, we get

2a 28

2 < o i ( [ fape) ™ ([ gtayin) T

which yields

28
2

Fagae) ([ gtarr) T

/ o CotB AN
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The proof is completed. O
Our second result is the following Lyapunov inequality for problem (1.4) in the
case sp; > N, s¢; > N, sr; > N, (i=1, 2, 3).

Theorem 2.2. Let f, g, h € LY(Q) be a group of non-negative weights. Suppose
that problem (1.4) with sp; > N, sq; > N, sr; > N, (i = 1, 2, 3) has a non-trivial
weak solution (u, v, w) € W5P(Q) x W (Q) x W5 (). Then

3o 38 3y
( /Q ! (x)dm) & ( /Qg (x)d‘r) ar ( /Q h(x)dw) B Cﬁ,@ﬂ?a;awﬂ)N

where Cyy is given by Lemma 2.3.

Proof. Let 1 =u, 2 =v and p3 = w in (2.2), we obtain

Z / |x_yN+w'@ddy / J(@)u@)|o(@) ()| de,

that is

3
> lulty, = [ S o) o))

Using the inequality
A+B+C>3A3B3C3, A, B,C>0,

we have

3
B[u)s?p [u]sTpalulsipe <D _[W2), = /Qf(w)|U($)|a|v($)|’3|w(fc)|7d$~ (2.12)
Similarly, we get

3[v]sT o [V]s g2 [V]s as S/Qg(w)IU(x)Ialv(w)lﬂlw(w)l”dx-

1 T ™

3[u] 7, [w] s [1] 7, S/Qh(fﬂ)lU(l’)\O‘Iv(x)lﬁlw(w)lwd%

Since sp; > N, sq; > N, sr; > N, (i = 1, 2, 3), u, v, w are continuous in RY, in
particular in Q. But (u, v, w) € W5 (Q) x W4(2) x W5 (Q) is non-trivial, then
there exists x1, x2, r3 € Q such that

|u(z1)| = max{|u(z)| : = € RNV} >0,
|v(z2)| = max{|v(x)| : = € RN} >0,
|w(z3)| = max{|w(z)| : = € RNV} > 0.

From the proof of Theorem 2.1, we have

sp1—N

u(z)] < Curg ™ [uls, py (2.13)
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spa—N

lu(@1)| < Curg ™ [u]s, s (2.14)
spg—N

[u(z1)] < Curg ™ [uls, ps- (2.15)

Combining (2.12) with (2.13), (2 14) and (2.15), where inequality (2 13) to a power
B, inequality (2.14) to a power £, inequality (2.15) to a power £ and multiplying
the resulting 1nequahtles we obtain

Sy _ BY EBN aom om
ue) & <Ot
< 30r [ F@lu@)* u(e) o) da
1
< 30r / Fla)detuan) o) Pl )
Q
SH X -N
where Cp = Cy/' 1y’ , that is,
3
-> B
32 Cr [ fadolu(on)” 5 fole)Plutes) (216)
Q

Similarly, we can get .
-> %

3§CG/ g(fﬂ)dfﬁ\u(fcl)|a\v(ﬂf2)| =7 w(ws)]7, (2.17)
Q .
o 5 = 7
3< Cu [ h@)deluCe)|* o)) 57 (2.18)
Q
3 5 3. 3 ..
sS4 3N S S -
where Cq = C);' 1y’ ., Cu=Cy' rg’

Raising inequality (2.16) to a power e; > 0, 1nequahty (2.17) to a power eg > 0,
inequality (2.18) to a power ez > 0 and multiplying the resulting inequalities, we
choose e1, e5 and ez to solve the homogeneous linear system:

3

Z% e1 + aes + aes =0,

i=1

Qz
Ber + (B — 5624—563:0,
i=1
3y

’}/61+’Y€2+’}/ ;563:0.

Using (1.5), we may take

€2 = )

€3 =
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Therefore, we get

3< Ca-i—B-‘rW s(a+5+7) N /f dm)l 1P (/ dx R /h d.’L‘ R

which yields

3a 38 3y
([ s 2 (o) ([ o) 2> e

The proof is completed. O
Our third result is the following Lyapunov inequality for problem (1.2) in the
case sp; < N, sq; < N, (1 =1, 2).

Theorem 2.3. Let f, g € LY(Q), XL o < 0 < oo, S— <l <o, (i=1,2) be a pair

of non-negative weights. Suppose that problem (1.2) with sp; < N, sq; < N has a
non-trivial weak solution (u, v) € W5 () x W34(Q). Then

0

283
9 m+p2 0 ata 2
/f (/Qg (x)dx) = se(a+6 CG JV[lCMl (2.19)

where

aN " BN
SpP1P2 54142

My =

with Cg and Cg ( universal constant) given by Lemmas 2.1 and 2.2.

Proof. Let

pi=Xipi+ (1 —=X)pj, ¢ =diq+ (1—-d)g, i=12,

where
1 N 1 N
ANi=——(0——), 0= — (0 — —
071( spi) 9*1( sql)
and
* 'Afpi * -AIQi

pizmy qu:m-

Observe that A;, 6; € (0, 1) and p; = p;0’, ¢, = ¢;0’, where % + % = 1. From (1.3),

1 2a 28
we have 3 + A + T+ =1.

Using Holder s inequality, we get

: Ju(z)| 5
P1 p2 u\xr 2

ju(e |M1|u B0 e Im\u DI IRY
/ d(z, OQ) sm / d(z, O0) 25 dx)

A1 A-xy1)

< </Q %dw)z( Q\u(x)yﬁdx) ’
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% ( / (|33 (agpim

/ |u(x |p2d:17 :

(1 A2)

AL PLA| (1-Xxp)p] (1— )xl)pl Ay m (1-X2)p3 (1—Xx9)p3
< Cg [uls,3 Oy o [Wls,p® Cy [u]s,p. Cy e [uls, ps°
Pl P2 0’
= C{[ulsp, [u]s?p, }
1 9/ ’
<(3) (2)lu()* o)) do

1 0 : vinh N\ diah N Fe
g(—) cl( f(a:)dx) ( u(z)| 2 dx) ( lo(z) dx) :
Q Q Q
A14A (1=xpp] | (1=X2)p3
12 2 2p1 + 2p2 3
where C7 = Cy Cy , that is
20’
A1sp1+Agspg
Tq 2
% p'2 ?ae’/ -1 a) +ab %ﬁe//
< [ @) ([ ) 5 ) ([ @) T e
Q Q

where we used (
Similarly, we have

’
29
d1sq1+d2sa9
rg

< 02(/999(5”)

51435

Cg?

Pl +ph

(1—61)af +(1 52)a3
C 2q1 242
H

where Cy =

d:c) jl(ﬁ/"’ (/ |v(z)
Q

2.4), (2.5) and Lemmas 2.1, 2.2.

236’

7 1_1
dx)ql*% . (2.21)

q)+ab

Raising inequality (2.20) to a power e; > 0, inequality (2.21) to a power es > 0
and multiplying the resulting inequalities, we choose e1, es to solve the homogeneous

linear system:

200’ 200’
(/ /_1)61+ﬁe2: )
Pl + Dy Py + Py
236’ 236’
7 /€1+(, /—1)62:0.
q1 + a3 p1+ Dy
Using (1.3), we may take
_ 2«
p1+p2’
25
€y = .
q1+ g2
Therefore, we get
20

a(X1spy+Azspa) + B(d1s5q1+382sq92)

p1+p2 q1+492

rQ

Cp1+p2 Cq1+q2 / f&

236’

9(p1+p2) (/ ge(x)da:) 9((11+q2).
Q
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Further we get

28

26 <007M10M1 0 )d PlszZ 0 )d q1+a2
RN = 8 H Qf (z)dx 9 (z)dx .

The proof is completed. O
Our fourth result is the following Lyapunov inequality for problem (1.4) in the

case sp; < N, sq; < N, sr; <N, (i=1, 2, 3).

Theorem 2.4. Let f, g, h € LQ(Q),% <6< 007% <0< oo,sﬂri <0<

oo, (1 =1, 2, 3) be a group of non-negative weights. Suppose that problem (1.4) with

spi < N, sq; < N, sr; < N has a non-trivial weak solution (u, v, w) € W5P(Q) x

WE(Q) x Wy (). Then

(/Qfa(x)da:)gm(/ (w)ie) éﬁ /h‘) dx>b3:i
0

09 M, CM27,;29(0£+5+’Y)—N ’
H

where

» [
S|

3
alN

;:1 opi
pr+p2+ps qt+q+qg T1+re+rs

My =

with Cg and Cg ( universal constant) given by Lemmas 2.1 and 2.2.

Proof. Let

i = ipi + (L= X)pf, @ =0iqi + (1 —0i)q;, ri=mnri+(1—mn)r], i=1,2,3,

where
1 N 1 N 1 N
M= (0= ), = (0= ), M= (0= —),
971( spi) 071( sqi) 4 971< sri>
and
. Np; » Ng; Nr;

= — = ——— 7 P —
pi N — sp; i N — sq; " N —sr;

Observe that \;, d;, m (0, 1) and p; = pzﬂ q = qzﬁ’ rl =r;0’, where %4— é =1.
From (1.5), we have § + o +p2+pg + q;+q2+qg + r{+r = =1.
Using Holder’s inequality, we get

i: d(x, 0Q)=1

3
E

i

w\s .
|/\
S~
=
—
&
i
U

5

3 Aipi

|u(z )|(1 Ai)p; 1
= H / .’L' 89) iSPi de)

=1
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- )% (
3 3
< p7d
B H</ﬂd(x 179)) SPz /|u 17
=1
3 Ai Pi; w (1=2)p}
<TI0 0o ™ e
P1 P2 TR
= CA{[ }3 ][] 6 e }
< (3)" ea( [ r@lul o) wopas)”
1 0’ o zg: L; %a@’/
< (f) ou( [ FP@r) ([ Ju@) = ) 5
3 o 0
3 3po’ s, 376’
> % > o >3 &
x (/ Jo(2)|= dx) & ( lw(z)|=° dx) &
Q2 Q
S g Aodoe]
; 3 P 3p;
where Cy = C5" Ci° that is
300’
9/ i’ 3 L; 5 ) 1
P ([ @) ([ B ) B
Y, Sighi Q Q
re !
i 7; gﬁa’/ i L; ge//
/ |'U =8 )izlql ( "LU(J:) =8 d.fL') = 17 (222)
Q
where we used (2.12) and Lemmas 2.1, 2.2.
Similarly, we have
30' o 23: o 33&9’
v 3 > P
5 e < C’B(/ ge(a:)d:c> ’ ( lu(z)|= dx) =
igl 1590 Q O
K¢}
3'y9'

3 . 3 (16,0
z';l %Z 1;:1 . 322)%
where Cp = C§ Cq , and
3 306’
3% & S s
; < Cc(/ he(x)dx) ’ ( u(z)| = dx) RN
& sy o 0
i=1
T
3 , 386’ 3 , 3~6/ 1
>4k N ST 3
< ([ @)= de) 55 ([ @)= de) S
Q Q

23: T ni)rk
2.3 3r;
where Cc = Cg' Cy! )
Raising inequality (2.22) to a power e; > 0, inequality (2.23) to a power ez > 0
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inequality (2.24) to a power es > 0 and multiplying the resulting inequalities, we
choose e1, e5 and ez to solve the homogeneous linear system:

3ab’ 3ab’ 3ab’
(5— —Der+ 5—e2+ 5—e3=0,
Sao Ea g
i= i= i=
380’ 380’ 380’
36 €1 —+ ( 36 — 1)62 —+ 3ﬂ ez = O,
Zl 4 Zl 4 21 q
1= i= 1=
370’ 370’ 370’
37 e + 37 €2—|—(37 —1)6320.
2ot LT 2.7
=1 =1 =1
Using (1.5), we may take
3«
€1 = 3 9
Z Di
i=1
_ 38
€2 = 3 )
Z qi
i=1
€3 = 37
37T 73
> T
i=1
Therefore, we get
30/ 3o 38 3+
% - i - Z S C£1+p2+p3 C§1+q2+q3 Cél+r2+r3
2 0P 2 Boisa 3 YmisT
rQ 11311+P2+P3 + qlirq2+q3 + Tlirr2+7"3
306’ 330’ 3+’

x (/Qf”(x)dx) ﬁl“g(/ﬂgg(m)dx) iil""e(/QhG(g;)dm) &

Further we get

3a

39 9—M M: 6 i Dg
et -N <Cs ZCHZ(/Qf (2)dz) =
Q
38 3
/ o i i 9( )d ) i T
X g (l')dx i=1 /h 2)dz )=
(o) = (),
The proof is completed. -

As a consequence of Theorem 2.1 and Theorem 2.3, we deduce the following
case of a single equation:

{(—Am)su(x) + (—Ap, ) u(z) = f($)|u($)|%f2u(m): n €, (2.25)
w=0, on RM\Q,

where p; > 2, (i=1,2), f >0.
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Corollary 2.1. Let us assume that problem (2.25) exists a nontrivial weak solution.
Then
(i) If sp; > N, f € L' (), we have

2
/f(l‘)dl’z p1tpy  s(P1+p2) N
@ Cu® 1o °
(ii) If sp; < N, f € L°(Q), we have
29
6
/Qf (@)dz > 0witra) N 0ol —oier o 3eps T oeeT

2spy  28p1 ,¥28pg
e} Cg Cy

Remark 2.1. It is interesting to note that when p; = ps, corollary 2.1 reduces to
theorem 3.1 and 3.3 of [4].

3. Generalized eigenvalues
Inspired by the literature [8,10], we present some applications to generalized eigen-

values related to problem (1.2) in this section.
We consider the generalized eigenvalue problem

(=2, u(@) + (=Ap,) u(z) = Aw(@)|u(z)|*?[o(@)| u(z),
(—Ag,)*v(x) + (=Ag,) v(z) = pw()u(x)|*|o(@)[*Pv(z), n O, (3.1)
u=1v=0, on RN\Qa

If problem (3.1) admits a nontrivial weak solution (u, v) € W3(Q) x W54 (2), we
say that (A, u) is a generalized eigenvalue of (3.1). The set of generalized eigenvalues
is called generalized spectrum, which is denoted by o.

We assume that

OZZQ, 6227 p2227 QzZQa i:1a27 U)ZO,

and (1.3) is satisfied.
The following result provides lower bounds of the generalized eigenvalues of
(3.1).

Theorem 3.1. Let (A, 1) be a generalized eigenvalue of (3.1). Then
i > h(), (3.2)
(i) If sp; > N, sq; > N, w € LY (Q), the function h : (0, 00) — (0, o) is defined by

a1+a
M Hapt

triin Jo w(zx)da

h(t) = ( , (3.3)

with

2
CJ(C;'BT;Z(Q+’(3)_N '
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(ii) If sp; < N, sq; < N, w € LY(Q), the function h : (0, 00) — (0, o) is defined
by

a1+4as
2860

(3.4)

where

29

R= .
rss)@(aJr,B)fNCg—Ml C}IL\I/Il

with My given in Theorem 2.3.

Proof. Let (A, u) be a generalized eigenpair, and let u, v be the corresponding
nontrivial weak solutions. For sp; > N, sq; > N, since f(xz) = w(x), g(x) =
pw(x), using condition (1.3) and Theorem 2.1, we obtain

/\p12fp2 ,U,rn%fqz /w(x)da: > M.
Q

Hence, we have

which yields

- ( M ) q12-;(12
= o .
APt Jow(z)dx

For sp; < N, sq; < N, by replacing the functions f(z) = Aw(zx), g(z) = pw(z)
in inequality (2.19), we can get the conclusion from the proof of (i). The proof is
completed. O

As consequences of Theorem 3.1, we deduce the following Protter’s type results
for the generalized spectrum.

Corollary 3.1. There exists a constant cq > 0 that depends on domain 0 such
that no point of the generalized spectrum o is contained in the ball B(0, cq), where

B(0, cq) = {z € R?V : ||z]0 < cql,

and || - ||oo is the Chebyshev norm in RN,

Proof. Let (A, u) € 0. For sp; > N, sq; > N, (i = 1, 2), from (3.2) and (3.3), we
obtain easily that

2a 2B M
APitr2 paitar > —— 3.5
1 2“ 1 2 = Qw(l‘>dx ( )

On the other hand, using condition (1.3), we have

28 20 4 28
)\Plzfm M41+<12 S ||()\7 /,1,)||gol+p2 ataz H()\, /J/)”oo
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Therefore, we obtain

1A w)llee = ca,
where
o
@ Jo w(x)dz

Analogously, for sp; < N, sq; < N, (1 =1, 2), from (3.2) and (3.4), we obtain easily
that

2060 266 R

\pitr2 gartaz > 3.6
AT = Jo w? (x)dx (36)
Further we get
||()‘7 M)HOO > CQ,
where
o= (s
o Jo w(z)da
The proof is completed. O

Corollary 3.2. Let (A, p) be fized and s(a + ) > N. There exists an domain J
of sufficiently small measure such that, if Q2 C J, then there are mo nontrivial weak
solutions of (3.1).

Proof. Suppose that (3.1) admits a nontrivial weak solution. For sp; > N, sq; >
N, (i =1, 2), since M — oo as Q2] — 0T, where M is defined in Theorem 3.1, there
exists d; > 0 such that

20 28
> \P1tpr2 phartaz,

<o = M
r
oo Jow(z)dx

Let J = B(xy, %), xo € RN. Hence, if Q C J, we have
M
Jow(z)da

which is a contradiction with (3.5).
Analogously, for sp; < N, sq; < N, (i =1, 2), since R — oo as |Q — 0T, where
R is defined in Theorem 3.1, there exists do > 0 such that

2a 28
> \pi1tp2 pataz

2060 286

ro < (52 = > \P1tp2 pataz

Jo w? (x)dx
Let J = B(xy, %2), xo € RN. Hence, if Q C J, we have

R 2060 256
> )\Pite2 partaz
Jo w? (z)dz

which is a contradiction with (3.6).
To sum up, if Q C J, there are no nontrivial weak solutions of (3.1). The proof
is completed. O
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