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Periodic Solutions of a Class of Duffing Differential
Equations∗

Rebiha Benterki1 and Jaume Llibre2,†

Abstract In this work we study the existence of new periodic solutions for
the well knwon class of Duffing differential equation of the form x′′ + cx′ +
a(t)x + b(t)x3 = h(t), where c is a real parameter, a(t), b(t) and h(t) are
continuous T–periodic functions. Our results are proved using three different
results on the averaging theory of first order.
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1. Introduction and statement of the main result

Several classes of Duffing differential equations have been investigated by many
authors. They are mainly interested in the existence of periodic solutions, in their
multiplicity, stability and bifurcation. See the survey of J. Mawhin [12] and for
example the articles [2–4,6, 9, 10,13,16,18,19].

In this work we shall study the class of Duffing differential equations of the form

x′′ + cx′ + a(t)x+ b(t)x3 = h(t), (1.1)

where c > 0 is a constant, and a(t), b(t) and h(t) are continuous T–periodic func-
tions. These differential equations were studied by Chen and Li in the papers [2,3].
These authors studied the periodic solutions of equation (1.1) with the following
additional conditions, either b(t) > 0, h(t) > 0 and a(t) satisfies

a(t) ≤ π2

T 2
+
c2

4
, and a0 =

1

T

∫ T

0

a(t)dt > 0; (1.2)

or a(t) = a > 0, b(t) = 1 and c > 0, a, c constants.
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In [8] the authors studied the existence and the stability of periodic solutions of
the Duffing differential equation (1.1) with c = εC > 0, a(t) = ε2A(t), A0b0 > 0

where A0 =
1

T

∫ T

0

A(t)dt and b0 =
1

T

∫ T

0

b(t)dt, and ε is sufficiently small.

Instead of working with the Duffing differential equation (1.1) we shall work
with the equivalent differential system

x′ = y,

y′ = −cy − a(t)x− b(t)x3 + h(t).
(1.3)

We define the polynomial

p(x0) = −

(∫ T

0

e−ct
∫ t

0

ecsb(s) ds dt− e−cT

c

∫ T

0

ecsb(s) ds

)
x30

−

(∫ T

0

e−ct
∫ t

0

ecsa(s) ds dt− e−cT

c

∫ T

0

ecsa(s) ds

)
x0

+
e−cT

c

∫ T

0

ecsh(s) ds+

∫ T

0

e−ct
∫ t

0

ecsh(s) ds dt.

Our first result on the periodic solutions of the differential system (1.3) is the
following.

Theorem 1.1. For every simple real root of the polynomial p(x0) the differential
system (1.3) has a periodic solution (x(t), y(t)) such that (x(0), y(0)) = (x0, 0).

Theorem 1.1 will be proved in section 3 using Theorem 4.1 of the averaging
theory.

Now we define the polynomial

q(x0) = −

(∫ T

0

b(s) ds

)
x30 −

(∫ T

0

a(s) ds

)
x0 +

∫ T

0

h(s) ds.

Theorem 1.2. For every simple real root of the polynomial q(x0) the differential
system (1.3) has a periodic solution (x(t), y(t)) such that (x(0), y(0)) = (0, 0).

Theorem 1.2 will be proved in section 4 using Theorem 4.2 of the averaging
theory.

As we shall see Theorem 4.3 of the averaging theory will provide results on the
periodic solutions of system (1.3) which are already contained in Theorems 1.1 and
1.2.

In order to apply the three theorems of the averaging theory of first order for
studying the periodic solutions of the differential system (1.3) in section 2 we rescale
the variables, the parameters and the functions of system (1.3).

The results of averaging theory that we use in this paper are described in section
4.
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2. Preliminary results

We start doing a rescaling of the variables (x, y), of the functions a(t), b(t) and h(t)
and of the parameter c as follows:

x = εm1X, y = εm2Y,

c = εm3C, a(t) = εn1A(t),

b(t) = εn2B(t), h(t) = εn3H(t).

(2.1)

In such a way that the differential equation (1.3) becomes

X ′ = εm2−m1Y,

Y ′ = −εm3CY − εn1+m1−m2A(t)X − εn2+3m1−m2B(t)X3 + εn3−m2H(t),

where 0 ≤ m3, 0 ≤ m1 ≤ m2 ≤ n3, m2 ≤ n1 +m1, m2 ≤ n2 + 3m1,

and {m2 −m1,m3, n1 +m1 −m2, n2 + 3m1 −m2, n3 −m2} ∩ {1} 6= ∅.

(2.2)

We distinguish the following seven cases with their corresponding subcases, recall
that we want to apply the averaging theory of first order for studying the periodic
solutions of the differential system (1.2), see a summary on this theory at the
appendix.
Case I: m2 −m1 = 0 and m3 = 0. Then we have the following subcases

(I.1) n1 +m1 −m2 = 0, n2 + 3m1 −m2 = 0, n3 −m2 = 1;

(I.2) n1 +m1 −m2 = 0, n2 + 3m1 −m2 = 1, n3 −m2 = 0;

(I.3) n1 +m1 −m2 = 1, n2 + 3m1 −m2 = 0, n3 −m2 = 0;

(I.4) n1 +m1 −m2 = 0, n2 + 3m1 −m2 = 1, n3 −m2 = 1;

(I.5) n1 +m1 −m2 = 1, n2 + 3m1 −m2 = 0, n3 −m2 = 1;

(I.6) n1 +m1 −m2 = 1, n2 + 3m1 −m2 = 1, n3 −m2 = 0;

(I.7) n1 +m1 −m2 = 1, n2 + 3m1 −m2 = 1, n3 −m2 = 1.

Case II: m2 −m1 = 0 and m3 ≥ 1.
Case III: m2 −m1 = 1 and m3 = 0.
Case IV: m2 −m1 = 1 and m3 = 1.
Case V: m2 −m1 > 1 and m3 = 1.
Case VI: m2 −m1 = 1 and m3 > 1.
Case VII: m2 −m1 > 1 and m3 > 1.

Every case α from II to VII can be split into the following eight subcases:

(α.1) n1 +m1 −m2 = 0, n2 + 3m1 −m2 = 0, n3 −m2 = 0,

(α.2) n1 +m1 −m2 = 0, n2 + 3m1 −m2 = 0, n3 −m2 = 1,

(α.3) n1 +m1 −m2 = 0, n2 + 3m1 −m2 = 1, n3 −m2 = 0,

(α.4) n1 +m1 −m2 = 1, n2 + 3m1 −m2 = 0, n3 −m2 = 0,

(α.5) n1 +m1 −m2 = 0, n2 + 3m1 −m2 = 1, n3 −m2 = 1,
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(α.6) n1 +m1 −m2 = 1, n2 + 3m1 −m2 = 0, n3 −m2 = 1,

(α.7) n1 +m1 −m2 = 1, n2 + 3m1 −m2 = 1, n3 −m2 = 0,

(α.8) n1 +m1 −m2 = 1, n2 + 3m1 −m2 = 1, n3 −m2 = 1.

We have applied the three theorems of averaging (see section 4) for studying the
existence of periodic solutions of the 55 previous subcases of differential systems
(2.2). Theorem 1.1 comes from the subcase (III.1), and Theorem 1.2 follows from
the subcase (IV.1).

All the subcases, different from (III.1) or (IV.1), either do not satisfy the hy-
potheses of one of the three theorems of averaging, or provide partial results of the
ones stated in Theorems 1.1 and 1.2. So in what follows we shall consider only the
subcases (III.1) or (IV.1).

Theorem 4.3 has been applied for studying the subcases (α, 8) for α = IV, . . . , V II,
and either do not provide periodic solutions, or provide particular cases of the results
given in Theorems 1.1 and 1.2.

In short, in what follows we only provide the details of the positive results, i.e.
we shall give the proofs of Theorems 1.1 and 1.2.

3. Proof of Theorem 1.1

For the case (III.1), i.e. for

m2 = m1 + 1, m3 = 0, m2 = n1 = n2 = n3 = 1 and m1 = m3 = 0; (3.1)

system 2.2 becomes

Ẋ = εY,

Ẏ = −CY −A(t)X −B(t)X3 +H(t).
(3.2)

We shall apply the averaging Theorem 4.1 to system (3.2) and we shall obtain
Theorem 1.1. In what follows we shall use the notation of Theorem 4.1, see the
appendix. Thus x = (X,Y )T and

F0(t,x) =

 0

−CY −A(t)X −B(t)X3 +H(t)

 ,

F1(t,x) =

Y

0

 ,

F2(t,x) =

 0

0

 .

The unperturbed differential system (4.5) has the solution x(t, z, 0) = (X(t), Y (t))T

such that x(0, z, 0) = z = (X0, Y0)T , where

X(t) = X0,

Y (t) = e−Ct
(
Y0 +

∫ t

0

eCs
(
−B(s)X3

0 −A(s)X0 +H(s)
)
ds

)
.
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In order that x(t, z, 0) be a periodic solution we must choose

Y0 =
1

eCT − 1

∫ T

0

eCs
(
−B(s)X3

0 −A(s)X0 +H(s)
)
ds.

So we get

zα = (α, β0(α)) =

(
X0,

1

eCT − 1

∫ T

0

eCs
(
−B(s)X3

0 −A(s)X0 +H(s)
)
ds

)
.

Therefore, following the notation of Theorem 4.1, we have n = 2 and k = 1.
Now we compute the fundamental matrix Mzα

(t) associated to the first varia-
tional system (4.6) such that Mzα

(0) = Id of R2, and we obtain

Mzα
(t) =

 1 0

−e−Ct
(∫ t

0

eCs (3B(s)X0 +A(s)) ds

)
e−Ct

 .

Its inverse matrix is

M−1zα
(t) =

 1 0∫ t

0

eCs
(
3B(s)X2

0 +A(s)
)
ds eCt

 .

Since the matrix

M−1zα
(0)−M−1zα

(T ) =

 0 0

−
∫ t

0

eCs
(
3B(s)X2

0 +A(s)
)
ds 1− eCT


has a zero 1 × 1 matrix in the upper right corner and a non–zero 1 × 1 matrix in
its lower right corner equal to 1− eCT , because T 6= 0. We can apply the averaging
theory described in Theorem 4.1 for studying the periodic solutions which can be
prolonged from the unperturbed differential system to the perturbed one. Therefore,
since for our differential system we have ξ(X,Y ) = X, then we must compute the
function F(α) = F(X0) given in (4.7), i.e.

F(X0) = ξ

(∫ T

0

M−1zα
(t)F1(t,x(t, zα, 0))dt

)

=

∫ T

0

[
e−Ct

(
1

−1 + eCT

∫ T

0

eCs
(
−B(s)X3

0 −X0A(s) +H(s)
)
ds

+

∫ t

0

eCs
(
−B(s)X3

0 −X0A(s) +H(s)
)
ds

)]
dt

=

∫ T

0

Y (t) dt.

Theorem 4.1 says that for every simple real root X0 of the polynomial F(X0)
the differential system (3.2) with ε 6= 0 sufficiently small has a periodic solution
(X(t), Y (t)) such that (X(0), Y (0)) tends to (X0, β0(X0)) when ε→ 0.
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Now it is to check that the function F(X0) after the change of variables (2.1)
satisfying (3.1), i.e.

X = x, Y =
y

ε
, H(t) =

h(t)

ε
, B(s) =

b(s)

ε
, A(s) =

a(s)

ε
,

becomes the polynomial p(x0) defined in section 1 just before the statement of
Theorem 1.1. Hence Theorem 1.1 is proved.

4. Proof of Theorem 1.2

For the case (IV.1), i.e.

m2 = m1 + 1, m3 = 1, m1 = 1, m2 = 2, n1 = −n2 = 1 and n3 = 2; (4.1)

system (2.2) becomes

Ẋ = εY,

Ẏ = −εCY −A(t)X −B(t)X3 +H(t).
(4.2)

We shall apply the averaging Theorem 4.2 to system (4.2) and we shall obtain
Theorem 1.2. In what follows we shall use the notation of Theorem 4.2. Thus
x = (X,Y )T and

F0(t,x) =

 0

−A(t)X −B(t)X3 +H(t)

 ,

F1(t,x) =

 Y

−CY

 ,

F2(t,x) =

 0

0

 .

The unperturbed differential system (4.5) has the solution x(t, z, 0) = (X(t), Y (t))T

such that x(0, z, 0) = z = (X0, Y0)T , where

X(t) = X0,

Y (t) = Y0 +

∫ t

0

(
−B(s)X3

0 −A(s)X0 +H(s)
)
ds.

In order that x(t, z, 0) be a periodic solution X0 must satisfy∫ T

0

(
−B(s)X3

0 −A(s)X0 +H(s)
)
ds = 0, (4.3)

and Y0 is arbitrary. Therefore we get

zα = (α, β0(α)) =
(
Y0, X̄0

)
,
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where X̄0 is a real root of the cubic polynomial (4.3). In short the unperturbed
system (i.e. system (4.3) with ε = 0) has at most three families of periodic solutions
because Y0 is arbitrary and X̄0 is a real root of the cubic polynomial (4.3). Therefore,
using the notation of Theorem 4.2, we have n = 2 and k = 1 for each one of these
possible families of periodic solutions.

We compute the fundamental matrix Mzα
(t) associated to the first variational

system (4.6) associated to the vector field (Ẏ , Ẋ) given by (4.2) with ε = 0, and
such that Mzα(0) = Id of R2, and we obtain

Mzα
(t) =

 1 −
∫ t

0

(
3B(s)X2

0 +A(s)
)
ds

0 1

 .

Its inverse matrix is

M−1zα
(t) =

1

∫ t

0

(
3B(s)X2

0 +A(s)
)
ds

0 1

 .

The matrix

M−1zα
(0)−M−1zα

(T ) =

 0 −
∫ T

0

(
3B(s)X2

0 +A(s)
)
ds

0 0


has a non–zero 1×1 matrix in the upper right corner if the real root X̄0 of the cubic
polynomial (4.3) is simple, and a zero 1×1 matrix in its lower right corner. Therefore
the assumptions of Theorem 4.2 hold, then by applying this theorem we study the
periodic solutions which can be prolonged from the unperturbed differential system
to the perturbed one. Since for our differential system we have ξ⊥(Y,X) = X, then
we must compute the function G(α) = G(Y0) given in (4.7), i.e.

G(Y0) = ξ⊥

(∫ T

0

M−1zα
(t)F1(t,x(t, zα, 0))dt

)
= −

∫ T

0

CY0 = −CTY0.

Theorem 4.2 says that for every simple real root Y0 = 0 of the polynomial G(Y0)
the differential system (4.2) with ε 6= 0 sufficiently small has a periodic solution
(X(t), Y (t)) such that (X(0), Y (0)) tends to (X̄0, 0) when ε→ 0, being X̄0 a simple
real root of the cubic polynomial (4.3).

Now it is easy to check that the cubic polynomial (4.3) after the change of
variables (2.1) satisfying (4.1), i.e.

X =
x

ε
, Y =

y

ε2
, H(t) =

h(t)

ε2
, B(s) =

b(s)

ε
, A(s) =

a(s)

ε
,

becomes the polynomial q(x0) defined in section 1 just before the statement of
Theorem 1.2. Hence Theorem 1.2 is proved.
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The appendix: Periodic solutions via the averaging
theory

In this section we present the basic results on the averaging theory of first order
that we need for proving our results.

We consider the problem of bifurcation of T–periodic solutions from the differ-
ential systems of the form

ẋ = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε), (4.4)

with ε = 0 to ε 6= 0 sufficiently small. The functions F0, F1 : R × Ω → Rn and
F2 : R × Ω × (−ε0, ε0) → Rn are C2, T–periodic in the first variable and Ω is an
open subset of Rn. The main assumption is that the unperturbed system

ẋ = F0(t,x), (4.5)

has a submanifold of periodic solutions. A solution of this problem is given using
the averaging theory.

Let x(t, z, ε) be the solution of system (4.5) such that x(0, z, ε) = z. We write
the linearization of the unperturbed system along a periodic solution x(t, z, 0) as

ẏ = DxF0(t,x(t, z, 0))y. (4.6)

In what follows we denote by Mz(t) a fundamental matrix of the linear differ-
ential system (4.6), by ξ : Rm × Rn−m → Rm and ξ⊥ : Rm × Rn−m → Rn−m
the projections of Rn onto its first m and n − m coordinates respectively; i.e.
ξ(x1, . . . , xn) = (x1, . . . , xm), and ξ⊥(x1, . . . , xn) = (xm+1, . . . , xn).

Theorem 4.1. Let V ⊂ Rm be open and bounded, let β0 : Cl(V )→ Rn−m be a Ck
function and Z = {zα = (α, β0(α)) |α ∈ Cl(V )} ⊂ Ω its graphic in Rn. Assume
that for each zα ∈ Z the solution x(t, zα, 0) of (4.5) is T -periodic and that there
exists a fundamental matrix Mzα

(t) of (4.6) such that the matrix M−1zα
(0)−M−1zα

(T )

(a) has in the lower right corner the (n−m)×(n−m) matrix ∆α with det(∆α) 6= 0,
and

(b) has in the upper right corner the m× (n−m) zero matrix.

Consider the function F : Cl(V )→ Rm defined by

F(α) = ξ

(∫ T

0

M−1zα
(t)F1(t,x(t, zα, 0))dt

)
. (4.7)

Suppose that there is α0 ∈ V with F(α0) = 0, then the following statements hold
for ε 6= 0 sufficiently small.

(i) If det((∂F/∂α)(α0)) 6= 0, then there is a unique T -periodic solution ϕ1(t, ε)
of system (4.4) such that ϕ1(t, ε)→ x(t, zα0 , 0) as ε→ 0.

(ii) If m = 1 and F ′(α0) = · · · = F (s−1)(α0) = 0 and F (s)(α0) 6= 0 with s ≤ k,
then there are at most s T -periodic solutions ϕ1(t, ε), . . . , ϕs(t, ε) of system
(4.4) such that ϕi(t, ε)→ x(t, zα0

, 0) as ε→ 0 for i = 1, . . . , s.
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Theorem 4.1 is a classical result due to Malkin [11] and Roseau [14]. For a
shorter proof of Theorem 4.1(a), see [1].

As we shall see in this paper we have cases where Theorem 4.1 cannot be applied
for studying the existence of periodic solutions, because its assumptions are not
satisfied. Then in [7] the following result on averaging has been proved.

Theorem 4.2. Let V ⊂ Rm be open and bounded, let β0 : Cl(V ) → Rm be a Ck
function and Z = {zα = (α, β0(α)) |α ∈ Cl(V )} ⊂ Ω its graphic in R2m. Assume
that for each zα ∈ Z the solution x(t, zα, 0) of (4.5) is T -periodic and that there
exists a fundamental matrix Mzα

(t) of (4.6) such that the matrix M−1zα
(0)−M−1zα

(T )

(a) has in the upper right corner the m×m matrix ∆α with det(∆α) 6= 0, and

(b) has in the lower right corner the m×m zero matrix.

Consider the function G : Cl(V )→ Rm defined by

G(α) = ξ⊥

(∫ T

0

M−1zα
(t)F1(t,x(t, zα, 0))dt

)
. (4.8)

Suppose that there is α0 ∈ V with G(α0) = 0, then the following statements hold for
ε 6= 0 sufficiently small.

(i) If det((∂G/∂α)(α0)) 6= 0, then there is a unique T -periodic solution ϕ1(t, ε)
of system (4.4) such that ϕ1(t, ε)→ x(t, zα0

, 0) as ε→ 0.

(ii) If m = 1 and G′(α0) = · · · = G(s−1)(α0) = 0 and G(s)(α0) 6= 0 with s ≤ k,
then there are at most s T -periodic solutions ϕ1(t, ε), . . . , ϕs(t, ε) of system
(4.4) such that ϕi(t, ε)→ x(t, zα0

, 0) as ε→ 0 for i = 1, . . . , s.

In any case now we shall recall the more classical result on averaging theory for
studying periodic solutions. We consider the initial value problems

ẋ = εF1(t,x) + ε2F2(t,x, ε), x(0) = x0, (4.9)

and
ẏ = εg(y), y(0) = x0, (4.10)

with x , y and x0 in some open Ω of Rn, t ∈ [0,∞), ε ∈ (0, ε0]. We assume that F1

and F2 are periodic of period T in the variable t, and we set

g(y) =
1

T

∫ T

0

F1(t,y)dt.

Theorem 4.3. Assume that F1, DxF1 ,DxxF1 and DxF2 are continuous and
bounded by a constant independent of ε in [0,∞) × Ω × (0, ε0], and that y(t) ∈ Ω
for t ∈ [0, 1/ε]. Then the following statements holds:

1. For t ∈ [0, 1/ε] we have x(t)− y(t) = O(ε) as ε→ 0.

2. If p 6= 0 is a singular point of system (4.10) and detDyg(p) 6= 0, then there
exists a periodic solution φ(t, ε) of period T for system (4.9) which is close to
p and such that φ(0, ε)− p = O(ε) as ε→ 0.

3. The stability of the periodic solution φ(t, ε) is given by the stability of the
singular point.

We have used the notation Dxg for all the first derivatives of g, and Dxxg for
all the second derivatives of g.

For a proof of Theorem 4.3 see [17]. For more information on the averaging
theory see the book [15].
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