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Abstract In this paper, first of all we give the necessary and sufficient con-
ditions of the center of a class of planar quintic differential systems by using
reflecting function method, and provide a simple proof of this results. Sec-
ondly, We use the reflecting integral to research the equivalence of the Abel
equation and some complicated equations and derive their center conditions
and discuss their integrability.
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1. Introduction

In this paper, we will consider the Abel equations of the form

dr

dθ
= A(θ)r2 +B(θ)r3, (1.1)

where A(θ), B(θ) are continuous functions. The main reason why we are interested
in this Abel equations is that they are closely related to planar vector fields. There
are many classes of planar systems which are in some sense equivalent to some Abel
equations [1–4,6,7,14,15]. The first class is planar polynomial systems of the form
x′ = −y + p, y′ = x + q with homogeneous polynomials p and q of degree k. The
second class is the Liénard systems : x′ = y, y′ = −f(x)y − g(x), they can be
transformed to the Abel (1.1) [15]. The third class is the systemx′ = −y + x(Pn(x, y) + P2n(x, y)),

y′ = x+ y(Pn(x, y) + P2n(x, y)),
(1.2)

where Pk(x, y) =
∑
i+j=k pijx

iyj , pi,j (i, j = 0, 1, 2, ..., k, k = n, 2n) are real con-
stants.
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In polar coordinates, the system (1.2) becomes

dρ

dθ
= (Pn(cos θ, sin θ) + P2n(cos θ, sin θ)ρn)ρn+1. (1.3)

Taking r = ρn, then (1.3) becomes (1.1) with A(θ) = nPn, B(θ) = nP2n. The origin
is a center for the two-dimensional system (1.2) if and only if all solutions of the
Abel equation (1.1) starting near the origin are periodic with period 2π , i.e., all
the solutions nearby are closed: r(2π) = r(0). In this case, we say that r = 0 is a
center of the Abel equation.

The Abel equations have been investigated over the years. In the papers [1–4,6,
7,14,15] and others, the authors Alwash and Lloyd presented some center conditions
for the Abel equations and give the composition conditions [2, 3] under which the
Able equation has a center. Yomdin [6] and Yang [15] give an asymptotic expansion
of the solutions of Abel equations and some center conditions.

In this paper, in the first section, we use reflecting function method [9, 17, 18]
to derive the center conditions for a class of planar quintic differential systems and
provide a simple proof of this results. In the second section, we give the integrability
conditions of some polynomial differential equations by using its reflecting integrals
[17], and establish the equivalence between the polynomial equations and some
complicated equations and judge when do these complicated equations have a center
at the origin.

Now, I briefly introduce the concept of the reflecting function and reflecting
integral which will be used throughout the rest of this article.

Consider differential system

x′ = X(t, x), (t ∈ I ⊂ R, x ∈ D ⊂ Rn, 0 ∈ I) (1.4)

which has a continuously differentiable right-hand side and general solution ϕ(t; t0, x0).

Definition 1.1. [9] For system (1.4), F (t, x) := ϕ(−t, t, x) is called its Reflecting
function.

By this, for any solution x(t) of (1.4), we have F (t, x(t)) = x(−t), F (0, x) = x
and F (t, x) is a reflecting function of system (1.4), if and only if, it is a solution of
the Cauchy problem

Ft + FxX(t, x) +X(−t, F ) = 0, F (0, x) = x. (1.5)

By [9, 18], if system (1.4) is 2ω-periodic with respect to t, and F (t, x) is its
reflecting function, then T (x) := F (−ω, x) is the Poincaré mapping of (1.4) over
the period [−ω, ω], and the solution x = ϕ(t;−ω, x0) of (1.4) defined on [−ω, ω] is
2ω-periodic if and only if x0 is a fixed point of T (x). Thus, we can use the method
of reflecting function to study the existence and stability of the periodic solutions
of the differential systems (1.4) [5, 9–13,17,18].

Definition 1.2. [9] If the reflecting functions of two differential systems coincide
in their common domain, then these systems are said to be Equivalent.

Definition 1.3. [17] If ∆(t, x) is a unequal identically to zero solution of the
partial differential system

∆t(t, x) + ∆x(t, x)X(t, x)−Xx(t, x)∆(t, x) = 0, (1.6)

then ∆(t, x) is called a Reflecting integral of (1.4).
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Lemma 1.1 ( [9, 10, 17]). If ∆i(t, x) (i = 1, 2, ...,m) are the reflecting integrals of
(1.4), then the system (1.4) is equivalent to the system

x′ = X(t, x) +

m∑
i=1

αi(t, u1(t, x), u2(t, x), ..., un(t, x))∆i(t, x),

where αi(t, u1, u2, ..., un) (i = 1, 2, ..,m) are arbitrary odd continuously differentiable
scalar functions with respect to t, ui(t, x)(i = 1, 2, ..., n) are the independent first
integrals of (1.4).

In particular, if n = 1 in (1.4) we get the following result.

Lemma 1.2 ( [17]). For one-dimensional differential equation (1.4) ( in which
n = 1), if ∆(t, x) is its reflecting integral, then ∆−1 is the integral factor of (1.4)
and one equation is equivalent to equation (1.4), if and only if, it can be expressed
as

x′ = X(t, x) + α(t, u)∆(t, x), (1.7)

where α(t, u) is a continuously differentiable odd function with respect to t, u is the
first integral of (1.4).

Besides, if the equations (1.4) and (1.7) are 2π− periodic with respect to t, then
the qualitative behavior of the 2π- periodic solutions of these equivalent systems are
the same.

By Lemma1.2, to find the reflecting integral is very important for discussing the
equivalence and integrability of some differential equations. In general, to find out
the reflecting integral ∆ from (1.6) is very difficult. Belsky [5] and Musafirov [13]
and Zhou [17] have found some special reflecting integrals for some differential
equations and using them to discuss the qualitative behavior of the time-varying
differential systems. In this paper, we will give the sufficient condition for equations
(1.1) and (1.3) have some polynomial reflecting integrals, and use them to discuss
the integrability of these polynomial equations and give the expression of its first
integrals. We establish the equivalence between the polynomial equations and some
complicated systems and give their center conditions.

In the following, all the differential systems under discussing have continuously
differentiable right-hand sides, and have a unique solution for their initial value
problems.

2. Center condition for a class of planar quintic sys-
tem

In [2, 4], Alwash and Lloyd give the following conclusion.

Lemma 2.1 ( [2, 4]). If there exists a differentiable function u of period 2π such
that

A(θ) = u′(θ)A1(u(θ)), B(θ) = u′(θ)B1(u(θ))

for some continuous functions A1 and B1, then the Abel differential equation (1.1)
has a center at the origin.

The condition in Lemma 2.1 is called the Composition Condition. This is a
sufficient but not a necessary condition for the origin to be a center [2].
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Consider the quintic differential systemx′ = −y + x(P2(x, y) + P4(x, y)),

y′ = x+ y(P2(x, y) + P4(x, y)),
(2.1)

where Pn(x, y) =
∑
i+j=n pijx

iyj , pi,j (i, j = 0, 1, 2, ..., n, n = 2, 4) are real con-
stants.

Although there are several authors [8, 14] have solved this problem by using
computer and other traditional methods. But, in this paper, we also show how to use
the reflecting function method [9,17] (a new method) to derive the center conditions
and give the simple proof of the obtained results. Moreover, this result will help us
to study the integrability of the corresponding equivalent periodic equation later.

In this section, we denote:

Ā =

∫ θ

0

Adθ, Ae =
1

2
(A(θ) +A(−θ)), Ao =

1

2
(A(θ)−A(−θ)), etc.

Theorem 2.1. The origin is a center for (2.1), if and only if, the following condi-
tions are satisfied

p20 + p02 = 0; (2.2)

p22 + 3(p40 + p04) = 0; (2.3)

p11(p04 − p40) + p20(p31 + p13) = 0; (2.4)

(p2
11 − 4p2

20)(p40 + p04)− p11p20(p31 − p13) = 0. (2.5)

Proof. Taking x = ρ cos θ , y = ρ sin θ, system (2.1) becomes
dρ
dt = ρ3(P2 + P4ρ

2),

dθ
dt = 1,

where
P2 = p20 cos2 θ + p11 cos θ sin θ + p02 sin2 θ,

P4 = p40 cos4 θ + p31 cos3 θ sin θ + p22 cos2 θ sin2 θ + p13 cos θ sin3 θ + p04 sin4 θ.

By [1–4,15], we know that the origin (0, 0) of (2.1) is a center, if and only if, every
solution in a neighborhood of ρ = 0 is a 2π− periodic solution for the differential
equation

dρ

dθ
= ρ3(P2 + P4ρ

2). (2.6)

If we put r = ρ2, then equation (2.6) will be transformed to

dr

dθ
= A(θ)r2 +B(θ)r3, (2.7)

where
A(θ) = 2P2(cos θ, sin θ), B(θ) = 2P4(cos θ, sin θ).

Let F (θ, r) be the reflecting function of (2.7) with F (0, r) = r. We write

F (θ, r) =

∞∑
n=1

an(θ)rn, (2.8)
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where a1(0) = 1 and an(0) = 0 for n > 1. The origin is a center if and only
if F (θ + 2π, r) = F (θ, r), i.e., a1(2π) = 1, an(2π) = 0 (n = 2, 3, 4, ...) [9, 17, 18].
Substituting (2.8) into (1.5) with X = Ar2 +Br3 we get

∞∑
n=1

a′n(θ)rn + (

∞∑
n=1

nan(θ)rn−1)(Ar2 +Br3)

+A(−θ)(
∞∑
n=1

an(θ)rn)2 +B(−θ)(
∞∑
n=1

an(θ)rn)3 = 0.

Equating the corresponding coefficients of rn yields

a′1 = 0, a1(0) = 0;

a′n + (n− 1)an−1A+ (n− 2)an−2B+A(−θ)
∑
i+j=n

aiaj +B(−θ)
∑

i+j+k=n

aiajak = 0,

an(0) = 0, n = 2, 3, 4, ....

Solving these equations recursively gives

a1 = 1,

a′2 = −2Ae, a2(0) = 0; (2.9)

a′3 = −4a2Ae − 2Be, a3(0) = 0; (2.10)

a′4 = −3a3A− 2a2B − 3a2B(−θ)−A(−θ)(a2
2 + 2a3), a4(0) = 0; (2.11)

a′5 = −4a4A− 3a3B − 2(a2a3 + a4)A(−θ)− 3(a2
2 + a3)B(−θ), a5(0) = 0. (2.12)

Solving (2.9) we get

a2(θ) = −2

∫ θ

0

Aedθ = −2Āe

and
a2(2π) = −4(p20 + p02)π,

it implies that a2(2π) = 0, i.e., p20 + p02 = 0 , thus the first condition (2.2) is valid.
Using this and (2.10), we have

a3(θ) = a2
2 − 2B̄e

and

a3(2π) = −2

∫ 2π

0

Bedθ = −π(3(p40 + p04) + p22),

from a3(2π) = 0 implies the second necessary condition (2.3) holds. Using (2.2)
and (2.3) we get

a4(θ) = a3
2 + 10ĀeB̄e + 2(AoB̄e −BoĀe)

and

a4(2π) = 2

∫ 2π

0

(AoB̄e −BoĀe)dθ = π(p11(p40 − p04)− p20(p31 + p13)),
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so, by a4(2π) = 0 we know the third necessary condition (2.4) is valid. Applying
the above relations and (2.12), we have

a5(θ) = a4
2 + 6B̄2

e − 36Ā2
eB̄e − 12ĀeAoB̄e − ĀeBo + 4AeĀeB̄e −Ao(AoB̄e − ĀeBo),

a5(2π) = 4

∫ 2π

0

(AeĀeB̄e −Ao(AoB̄e − ĀeBo))dθ =

=
π

4
((4p2

20 − p2
11)(p40 + p04) + p11p20(p31 − p13)),

so, by a5(2π) = 0 we get

(p2
11 − 4p2

20)(p40 + p04)− p11p20(p31 − p13) = 0.

Thus the necessity of the present theorem is established.
Now, we prove that these conditions are also sufficient.
Case 1. If p13 + p31 = 0. From (2.4) follows p11 = 0 or p04 − p40 = 0.
10. If p11 = 0, from (2.5), we get p20 = 0 or p40 + p04 = 0.
If p20 = 0, by relation (2.2), we have P2 ≡ 0. On the other hand, when relation

(2.3) is held,
∫ 2π

0
P4dθ = 0. Thus solving the first order equation (2.7), we get r(θ)

is a 2π-periodic, so r = 0 is a center.
If p20 6= 0, p40 + p04 = 0, then P2 = p20 cos 2θ,

P4 =
P2

p20
(p40 +

p31

p20
P 2).

By Lemma 2.1, the origin of (2.7) is a center.
20. If p11 6= 0, p04 − p40 = 0.
If p20 6= 0, then

P4 =
p40

p20p11
(p11 − 4P̄2)P2.

If p20 = 0, then

P4 =
p31

p2
11

(p11 − 4P̄2)P2.

As P2 is a 2π-periodic function, by Lemma 2.1, the origin of (2.7) is a center.
Case 2. If p13 + p31 6= 0, then from (2.4) we get

p20 =
p11(p40 − p04)

p31 + p13
. (2.13)

Substituting (2.13) into (2.5) we obtain

p2
11

(p31 + p13)2
[(p40 + p04)((p31 + p13)2 − 4(p40 − p04)2)− (p40 − p04)(p2

31 − p2
13)] = 0.

(2.14)
10. If p11 6= 0, then from (2.14) follows that

(p31 + p13)(p04p31 + p40p13) = 2(p04 − p40)2(p40 + p04). (2.15)

Using relations (2.15) and (2.2) and (2.3) we get:
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If p20 6= 0, then

P4 =
1

p20p11
(p11p40 − 2(p40 + p04)P̄2)P2.

If p20 = 0, then from (2.4) and (2.5) follows p40 = p04 = p22 = 0 and

P4 =
1

p2
11

(p11p31 + 2(p13 − p31)P̄2)P2.

By Lemma 2.1, the origin of (2.7) is a center.
20. If p11 = 0, then from (2.14) and (2.2) follows p20 = p02 = 0, so P2 ≡ 0. Thus,

by (2.3) and (2.7) we know r = 0 is a center.
In summary, the proof of the present theorem is finished.

3. Equivalence and integrability of the Abel equa-
tion and some polynomial equations

Consider the Abel equation

dr

dθ
= A(θ)r2 +B(θ)r3 = R(θ, r), (3.1)

where A(θ), B(θ) are continuous functions, θ ∈ D ∈ R.
Obviously, if B = kA (k is a constant), or AB ≡ 0, then this Abel equation is

integrable. So, in the following, we only discuss (3.1) in the other cases.
By [5,17], if the reflecting integral of (3.1) is a polynomial function on r, then it

must be a cubic function. If ∆(θ, r) and ∆̃(θ, r) are the reflecting integrals of (3.1),
then ∆̃(θ, r) = ∆(θ, r)φ(u), where u is the first integral of (3.1), this means that if
we can find out a reflecting integral of (3.1), at the same time, we know its infinite
reflecting integrals. So, in the following we only discuss when does (3.1) have a
cubic reflecting integral ? By Lemma 1.2, we can use the reflecting integral for
discussing the equivalence and integrability of (3.1) and some differential equations
and derive their center conditions.

Let

v0 = 4ABĀ− 3BB̄ −BĀ2; v1 = 2AB̄ −BĀ; v2 = −B; v3 = A, (3.2)

where Ā(θ) =
∫
A(θ)dθ, B̄ =

∫
B(θ)dθ, etc.

Theorem 3.1. Suppose that the functions v0, v1, v2, v3 are linear dependent, i.e.,
there are (λ0, λ1, λ2, λ3) 6= 0 such that

λ0v0 + λ1v1 + λ2v2 + λ3v3 = 0, θ ∈ D. (3.3)

Then
∆ = a0(θ) + a1(θ)r + a2(θ)r2 + a3(θ)r3

is a reflecting integral of the Abel equation (3.1) and u =
∫

1
∆dr is the first integral

of (3.1) and which is equivalent to equation

dr

dθ
= A(θ)r2 +B(θ)r3 + α(θ, u)∆(θ, r), (3.4)



214 Y. Yan, Y. Pan, F. Lu & Z. Zhou

where α(θ, u) is an arbitrary continuously differentiable odd function with respect to
θ,

a0 = λ0; a1 = 2λ0Ā+ λ1; a2 = λ0(Ā2 + 3B̄) + λ1Ā+ λ2; a3 = 4λ0BĀ+ 2λ1B̄+ λ3.
(3.5)

Besides, if (3.1) and (3.4) are 2π-periodic equations, then the qualitative behav-
ior of the 2π-periodic solutions of their are the same.

Proof. By Definition 1.3, the cubic function

∆ = a0(θ) + a1(θ)r + a2(θ)r2 + a3(θ)r3

is the reflecting integral of (3.1), if and only if, it is a solution of

∆θ(θ, r) + ∆r(θ, r)R(θ, r)−Rr(θ, r)∆(θ, r) = 0, (3.6)

i.e.,

a′0 + a′1r + a′2r
2 + a′3r

3 + (a1 + 2a2r + 3a3r
2)(Ar2 +Br3)

− (2Ar + 3Br2)(a0 + a1r + a2r
2 + a3r

3) = 0.

Equating the coefficients of r yield

a′0 = 0; a′1 = 2Aa0; a′2 = a1A+ 3a0B; a′3 = 2a1B; a3A = a2B.

Solving these equations we get (3.5) and (3.3) and (3.2). This shows that the
function ∆ = a0(θ) + a1(θ)r + a2(θ)r2 + a3(θ)r3 is the reflecting integral of (3.1).
By Lemma 1.2, the equation (3.1) is equivalent to (3.4) and if they are 2π-periodic
systems, then the qualitative behavior of their 2π-periodic solutions are the same,
∆−1 is the integral factor of equation (3.1) and its first integral is

u =

∫ (θ,r)

(0,0)

1

∆(θ, r)
dr − R(θ, r)

∆(θ, r)
dθ,

since R(θ,r
∆(θ,r) |r=0 = 0, so, u =

∫
1

∆(θ,r)dr.

Theorem 3.2. If B = kAĀ, k is a constant, then the Abel equation (3.1) has
reflecting integral

∆ = r + Ār2 + 2B̄r3.

The first integral of (3.1) is as follows:
10. If k = 1

4 ,

u = ln
2r

2 + Ār
+

2

2 + Ār
;

20. If k > 1
4 ,

u =
1

2
ln

r2

|1 + Ār + 2B̄r2|
− 1√

4k − 1
arctan

2kĀr + 1√
4k − 1

;

30. If k < 1
4 ,

u =
1

2
ln

r2

|1 + Ār + 2B̄r2|
− 1

2
√

1− 4k
ln |2kĀr + 1−

√
1− 4k

2kĀr + 1 +
√

1− 4k
|.
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Proof. If B = kAĀ, then v1 = 2B̄A−BĀ = k(AĀ2−AĀ2) = 0 and the functions
v0, v1, v2, v3 are linear dependent. Taking (λ0, λ1, λ2, λ3) = (0, 1, 0, 0) we have

λ0v0 + λ1v1 + λ2v2 + λ3v3 = 0.

Therefore, by (3.5) we get

a0 = 0, a1 = 1, a2 = Ā, a3 = 2B̄

and

∆ = r + Ār2 + 2B̄r3

is the reflecting integral of (3.1).
By Lemma 1.2, ∆−1 is the integral factor of (3.1), then its first integral is

u =

∫
1

∆
dr + ψ(θ) =

∫
1

r + Ār2 + 2B̄r3
dr + ψ(θ)

and

ψ′(θ) = −R
∆
− ∂

∂θ
(

∫
1

∆
dr) = −R

∆
|r=0 −

∂

∂θ
(

∫
1

∆
dr)|r=0.

On the other hand,∫
1

∆
dr =

∫
1

r(1 + Ār + 2B̄r2)
dr =

∫
(
1

r
− Ā+ 2B̄r

1 + Ār + 2B̄r2
)dr =ln |r| −

∫
(Ā+ 2B̄r)

(1 +

∞∑
i=1

(−1)i(Ār + 2B̄r2)i)dr = ln |r| − Ār + (AĀ− 2B̄)r2 + ....

From this relation we get
∂

∂θ
(

∫
1

∆
dr)|r=0 = 0.

Thus ψ′(θ) = 0 and u =
∫

1
r+Ār2+2B̄r3

dr , integrating this indefinite integral we
obtain the expression of u as the above.

Remark 3.1. In particular, in the case of B = 2
9 Ā, we can easily to get the first

integral of (3.1). As B = 2
9AĀ, v0 = 0, v1 = 0 and the functions v0, v1, v2, v3 are

linear dependent. Taking (λ0, λ1, λ2, λ3) = (0, 1, 0, 0) or (λ0, λ1, λ2, λ3) = (1, 0, 0, 0),
the relation (3.3) is held. Using (3.5) we obtain two reflecting integrals:

∆ = r + Ār2 + 2B̄r3 = r(1 +
2

3
Ār)(1 +

1

3
Ār)

and

∆̃ = 1 + 2Ār + (Ā2 + 3B̄)r2 + 4BĀr3 = (1 +
2

3
Ār)3.

By [17],

u =
∆

∆̃
=

3r(3 + Ār)

(3 + 2Ār)2

is the first integral of (3.1) and which is equivalent to equation (3.4).
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Corollary 3.1. If

p20 + p02 = 0, p20p
2
10 + p11p10p01 + p02p

2
01 = 0,

then system dx
dt = −y + x(P1(x, y) + P2(x, y)) + xα(θ, u)(1 + p10y − p01x+ 2p20xy + p11y

2),

dy
dt = x+ y(P1(x, y) + P2(x, y)) + yα(θ, u)(1 + p10y − p01x+ 2p20xy + p11y

2)

(3.7)
has a center at (0,0), where

P1(x, y) = p10x+ p01y, P2(x, y) = p20x
2 + p11xy + p02y

2,

α(θ, u) is an arbitrary continuously differentiable 2π-periodic odd function with re-
spect to θ,

θ = arctan
y

x
, u =

∫
(r + P̄1r

2 + 2P̄2r
3)−1dr, r =

√
x2 + y2,

P1 = P1(cos θ, sin θ), P2 = P2(cos θ, sin θ), P̄1 =

∫ θ

0

P1dθ, P̄2 =

∫ θ

0

P2dθ.

Proof. By the assumption and [1], we know the system dx
dt = −y + x(P1(x, y) + P2(x, y)),

dy
dt = x+ y(P1(x, y) + P2(x, y))

(3.8)

has a center at (0,0) and P2 = kP1P̄1, k is a constant. By Theorem 3.2, the equation

dr

dθ
= r2P1 + P2r

3 (3.9)

is equivalent to equation

dr

dθ
= r2P1 + P2r

3 + α(θ, u)∆(θ, u), (3.10)

where ∆ = r + P̄1r
2 + 2P̄2r

3, u =
∫

1
∆dr.

Taking x = r cos θ, y = r sin θ, equation (3.10) is transformed to (3.7), by
Lemma 1.2, system (3.7) has a center at (0,0) as well.

Example 3.1. If the conditions of Corollary 3.1 are satisfied, and p10p01 = 9, p20 =
−2, then P2 = 2

9P1P̄1 and

∆ = r(3 + 2P̄1r)(3 + P̄1r), u =
r(3 + P̄1r)

(3 + 2P̄1r)2
.

If we take α = λu sin θ, λ is a constant, then (3.10) becomes

dr

dθ
= P1r

2 + P2r
3 + sin θ

r2(3 + P̄1r)
2

3 + 2P̄1r
.
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By this we get its equivalent system dx
dt = (−y + x(P1(x, y) + P2(x, y))(1 + 2

3 (p10y − p01x)) + λ
3xy(3 + p10y − p01x)2,

dy
dt = (x+ y(P1(x, y) + P2(x, y))(1 + 2

3 (p10y − p01x)) + λ
3 y

2(3 + p10y − p01x)2

has a center at (0,0) and has a first integral :

H = ueλ cos θ =
(3 + p10y − p01x)

√
x2 + y2

(3 + 2(p10y − p01x))2
e

λx√
x2+y2 .

This example shows that, if one system has a center at origin, by the equivalence
we will know its many equivalent systems have a center at origin, too.

Theorem 3.3. If B = (k0 + k1Ā)A, k0, k1 are nonzero constants, then the Abel
equation (3.1) has a reflecting integral

∆ = kr + (1 + kĀ)r2 + (k0 + 2kB̄)r3,

where k = k1
k0
. The first integral of (3.1) is as follows:

10. If k1 = 1
4 ,

u =
1

2k
ln

4k0r
2

(1 + 2k0(1 + kĀ)r)2
+

1

k(1 + 2k0(1 + kĀ)r)
;

20. If k1 >
1
4 ,

u =
1

2k
ln

r2

|k + (1 + kĀ)r + (k0 + 2kB̄)r2|
− 1

k
√

4k1 − 1
arctan

1 + 2k0(1 + kĀ)r√
4k1 − 1

;

30. If k1 <
1
4 ,

u =
1

2k
ln

r2

|k + (1 + kĀ)r + (k0 + 2kB̄)r2|

− 1

2k
√

1− 4k1

ln |1 + 2k0(1 + kĀ)r −
√

1− 4k1

1 + 2k0(1 + kĀ)r +
√

1− 4k1

|.

40. If k1 = 2
9 ,

u =
r(2 + 3(k0 + 2

9 Ā)r)

(1 + 3(k0 + 2
9 Ā)r)2

.

Furthermore, the Abel equation (3.1) is equivalent to equation (3.4).

Proof. As B = (k0 + k1Ā)A, using (3.2) we get v2 = −k0v3 − kv1, i.e., the
functions v0, v1, v2, v3 are linear dependent. Taking (λ0, λ1, λ2, λ3) = (0, k, 1, k0) we
get

λ0v0 + λ1v1 + λ2v2 + λ3v3 = 0.

By Theorem 3.1 and (3.5) we get

a0 = 0; a1 = k; a2 = 1 + kĀ; a3 = k0 + 2kB̄

and
∆ = kr + (1 + kĀ)r2 + (k0 + 2kB̄)r3
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is the reflecting integral of (3.1). Similar to the proof of Theorem 3.2, the first
integral of (3.1) is

u =

∫
1

kr + (1 + kĀ)r2 + (k0 + 2kB̄)r3
dr,

calculating this indefinite integral we get the conclusions of the present theorem.

Corollary 3.2. If the conditions of Theorem 2.1 are satisfied and p2
20 + p2

11 6= 0,
then system  dx

dt = −y + x(P2(x, y) + P4(x, y)) + cos θα(θ, u)∆,

dy
dt = x+ y(P2(x, y) + P4(x, y)) + sin θα(θ, u)∆

has a center at (0,0), where

P2(x, y) = p20x
2+p11xy+p02y

2, P4(x, y) = p40x
4+p31x

3y+p22x
2y2+p13xy

3+p04y
4,

α(θ, u) is an arbitrary continuously differentiable 2π-periodic odd function with re-
spect to θ,

θ = arctan
y

x
, ρ =

√
x2 + y2, ∆ = ρ(k+(1+2kP̄2)ρ2+(k0+4kP̄4)ρ4), u =

∫
∆−1dρ,

P2 = P2(cos θ, sin θ), P4 = P4(cos θ, sin θ), P̄2 =

∫ θ

0

P2dθ, P̄4 =

∫ θ

0

P4dθ,

k0, k are nonzero constants.

Proof. By the assumption and Theorem 2.1, system (2.1) has a center at (0,0)
and P4 = (k0 + 2k1P̄2)P2, i.e., B = (k0 + k1Ā)A, (B = 2P4, A = 2P2), k0, k1 are
nonzero constants. Using Theorem 3.3, we get the equation

dρ

dθ
= ρ3(P2 + P4ρ

2)

is equivalent to equation

dρ

dθ
= ρ3(P2 + P4ρ

2) + α(θ, u)∆, (3.11)

where

∆ = ρ(k + (1 + 2kP̄2)ρ2 + (k0 + 4kP̄4)ρ4), (k =
k1

k0
), u =

∫
∆−1dρ.

Similar to the proof of the Corollary 3.1, the present conclusion is true.

Example 3.2. If the conditions of Theorem 2.1 are satisfied and

p13 + p31 = 0, p11 = 0, p40 + p04 = 0, p20 = 3, p31 = 4,

by the proof of Theorem 2.1, we have P4 = P2(k0 + 2k1P̄2), here, k0 = p40
3 , k1 = 2

9 .
By Theorem 3.3, the equation (2.6) has a reflecting integral

∆ = ρ(2 + (p40 +
2

3
P̄2)ρ2)(1 + (p40 +

2

3
P̄2)ρ2)
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and has a first integral

u =
2 + (p40 + 2

3 P̄2)ρ2

(1 + (p40 + 2
3 P̄2)ρ2)2

ρ2.

Taking α = 2λu sin θ cos θ∆, (λ is a constant), (3.11) becomes

dρ

dθ
=

(P2ρ
3 + P4ρ

5)(1 + (p40 + 2
3 P̄2)ρ2) + 2λ sin θ cos θρ3(2 + (p40 + 2

3 P̄2)ρ2)2

1 + (p40 + 2
3 P̄2)ρ2

,

it follows its equivalent system dx
dt = P (1 + p40(x2 + y2) + 2xy + 1

3p11y
2) + yx2Φ,

dy
dt = Q(1 + p40(x2 + y2) + 2xy + 1

3p11y
2) + y2xΦ

(3.12)

has a center at (0,0), where

P = −y + x(P2(x, y) + P4(x, y)), Q = x+ y(P2(x, y) + P4(x, y)),

Φ = 2λ(x2 + y2)(2 + p40(x2 + y2) + 2xy +
1

3
p11y

2)2.

System (3.12) has a first integral:

H = ueλ cos2 θ =
2 + p40(x2 + y2) + 2xy + 1

3p11y
2

(1 + p40(x2 + y2) + 2xy + 1
3p11y2)2

e
λx2

x2+y2 (x2 + y2).

Theorem 3.4. If Aj(θ) = kjA2(θ)Āj−2
2 (θ), (j = 3, 4, ..., n), kj are constants, then

equation
dr

dθ
= A2(θ)r2 +A3(θ)r3 + ...+An(θ)rn, (n ≥ 3) (3.13)

has a reflecting integral

∆ = r(1 + Ā2(θ)r + 2Ā3(θ)r2 + 3Ā4(θ)r3 + ...+ (n− 1)Ān(θ)rn−1) (3.14)

and has a first integral

u =

∫
1

r(1 + Ā2(θ)r + 2Ā3(θ)r2 + 3Ā4(θ)r3 + ...+ (n− 1)Ān(θ)rn−1)
dr. (3.15)

Furthermore, if A2(θ + 2π) = A2(θ) and
∫ 2π

0
A2(θ)dθ = 0, then equation (3.13)

and its equivalent equation

dr

dθ
=

n∑
i=2

Ai(θ)r
i + α(θ, u)∆(θ, r), (3.16)

have a center at r = 0, where α(θ, u) is an arbitrary differentiable odd and 2π-
periodic function with respect to θ.

Proof. Since Aj(θ) = kjA2(θ)Āj−2
2 (θ), (j = 3, 4, ..., n), so

(i− 1)(i− j)ĀiAj + (j − 1)(j − i)ĀjAi = 0, (i, j = 2, 3, 4, ..., n).

By this, it is not difficult to check that function (3.14) is a solution of equation
(3.6). Thus, function (3.14) is the reflecting integral of (3.13). Similar to the proof
of Theorem 3.2, the first integral of equation (3.13) is (3.15). As Āj are 2π-periodic
functions , ∆(θ, r) and u(θ, r) are 2π-periodic, thus r(θ) is 2π-periodic, equation
(3.13) and its equivalent equation (3.16) have a center at r = 0.
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