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The Complete Biorthogonal Expansion Theorem
and Its Application to a Class of Rectangular

Plate Equations∗
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Abstract In this paper, we first establish the separable Hamiltonian system
of rectangular cantilever thin plate bending problems by choosing proper dual
vectors. Then using the characteristics of off-diagonal infinite-dimensional
Hamiltonian operator matrix, we derive the biorthogonal relationships of the
eigenfunction systems and based on it we further obtain the complete biorthog-
onal expansion theorem. Finally, applying this theorem we obtain the general
solutions of rectangular cantilever thin plate bending problems with two op-
posite edges slidingly supported.
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1. Introduction

Rectangular thin plates are important structural components that are used in var-
ious engineering applications such as plates in rigid pavements of highways, bridge
and houses decks and traffic zones of airports. Bending analysis of rectangular thin
plates is one of the challenging issues in theory and engineering, especially for rect-
angular cantilever thin plates which is an important structural element. Actually
its bending has been one of the most difficult problems in the theory of elastic
thin plate due to the complexity in both the governing equation and the boundary
conditions.

In this paper, we consider the bending problems of cantilever thin plates in the
rectangular region Ω = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b}. The governing equations of
the plates are

∂Mx

∂x
+
∂Mxy

∂y
−Qx = 0, (1.1)

∂My

∂y
+
∂Mxy

∂x
−Qy = 0, (1.2)
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∂Qx
∂x

+
∂Qy
∂y

+ q = 0, (1.3)

with

Mx = −D(
∂2W

∂x2
+ ν

∂2W

∂y2
), (1.4)

My = −D(
∂2W

∂y2
+ ν

∂2W

∂x2
), (1.5)

Mxy = −D(1− ν)
∂2W

∂x∂y
, (1.6)

where W is the transverse deflection of plate midplane, D is the flexural rigidity, q
is the distributed transverse load, Mx, My and Mxy are the bending moments and
the torsional moment, respectively. The internal forces of the plate are

Qx = −D∂(∇2W )

∂x
, (1.7)

Qy = −D∂(∇2W )

∂y
, (1.8)

and

Vx = Qx +
∂Mxy

∂y
, (1.9)

Vy = Qy +
∂Mxy

∂x
, (1.10)

where Qx, Qy, Vx and Vy are shear forces and total shear forces, respectively.
In reference [6], the basic equations for rectangular thin plate were transferred

to a Hamiltonian canonical equation and the symplectic superposition method
was applied to obtain the exact bending solutions. In the end, two numerical
examples were provided to illustrate the accuracy of the proposed method. However,
the completeness of the eigenfunction systems of the corresponding Hamiltonian
operator has not been established. In [1] the authors discussed and obtained the
completeness of the eigenfunction systems of the Hamiltonian operator stated in
the rectangular plates with two opposite edges slidingly supported through the
symplectic eigenfunction expansion approach. This approach was originated by W.
Zhong and X. Zhong [15] to solve a class of eigenvalue problems of non-self-adjoint
operators in mathematical physics and it has been applied to various branches of
mechanics and engineering sciences, see [2, 3, 7, 8, 13,14,16] among others.

In recent years, Luo etc [9,10] further studied a new systematic methodology for
theory of elasticity and found that the symplectic orthogonality relationships could
be decomposed into two symmetrical and independent sub-orthogonality relation-
ships for the orthotropic plane elasticity and thin plate theory. And the biorthogo-
nal relationships of elasticity was also extended into three-dimensional couple stress
problems (see [11]). The biorthogonal relationships not only includes but also is
simpler than the symplectic orthogonality relationship. Therefore, the method of
biorthogonal expansion in solving the elastic mechanics equations has obvious ad-
vantages in calculation than the symplectic eigenfunction expansion method, which
makes the calculation more concise. By utilizing this method Hou etc [5] inves-
tigated the eigenfunction systems of the Hamiltonian operator for the Mindlin
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plate and obtained the exact solutions to deflections and bending moments for the
Mindlin plate with fully simply supported sides.

In this article, making use of a complete biorthogonal expansion theorem we
devote to looking for the general solutions of the equations (1.1)-(1.3) for the bend-
ing problems of cantilever thin plates. We first study the eigenfunction systems of
the infinite-dimensional Hamiltonian operator associated to the considered equa-
tions. Then we utilize the complete biorthogonal expansion method to establish
the completeness of the eigenfunction systems of the corresponding Hamiltonian
operator. Finally the general solutions of the equations (1.1)-(1.3) are achieved by
applying the theorem and, meanwhile, the feasibility of using complete biorthogonal
expansion method is obtained as well. It is seen that our obtained results are more
advantageous than those in [6].

2. Preliminaries

In this section we recall some definitions and lemmas, which will be used in our
discussion.

Definition 2.1 ( [4]). Let X be a Hilbert space, H =

A F

G −A∗

 : D(H) ⊂

X ×X → X ×X be a densely defined closed linear operator, where A is a densely
defined and closed linear operator in X, and F and G are (symmetric) self-adjoint
operators. Then, H is called an infinite-dimensional Hamiltonian operator. Spe-
cially, if A = 0, H is called an off-diagonal infinite-dimensional Hamiltonian opera-
tor, and the following evolution equation

∂U(t, x)

∂t
= HU + f,

is called the infinite-dimensional separable Hamiltonian system, Herein, f denotes
the vector of external force.

Definition 2.2 ( [4]). Let T be a linear operator in space X with the eigenvalue
λ. If there exists a non-zero element u0 ∈ D(T ) such that Tu0 = λu0, and u0 is
called the basic eigenfunction of T . Further, if there exists u1 ∈ D(T ) such that

Tu1 = λu1 + u0, u1 6= 0,

then u1 is called the (first− order) Jordan form eigenfunction of T . By induction,
if the Jordan form eigenfunction uk−1 of order k − 1 of T has been defined, then
the Jordan form eigenfunction uk of order k is defined by the formula

Tuk = λuk + uk−1, uk 6= 0.

Definition 2.3. Let X be a Hilbert space, the vector set {uk}+∞k=−∞ in X is called
to be complete in the sense of Cauchy principal value, if for any x ∈ X there exist
constant sequences {ck}+∞k=0 and {c−k}+∞k=1 such that

x = c0u0 +

∞∑
k=1

(ckuk + c−ku−k).
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Definition 2.4. If a linear operator T in space X has Jordan eigenfunctions, then
the functions composed of the basic eigenfunctions and Jordan eigenfunctions of T
are called the generalized eigenfunction systems of T .

Definition 2.5. Let X = L2[0, a]× L2[0, a], we define a new inner product in the
Hilbert space X as follows:

〈u1, u2〉 =

∫ a

0

u1(x)Tu2(x)dx, for any u1, u2 ∈ X.

Lemma 2.1 ( [12]). The following orthogonal set of functions{
cos

kπ

a
| k = 0, 1, 2, · · ·

}
is complete in the Hilbert space L2[0, a] with the standard inner product. Thus, the
corresponding Fourier series of any g(x) ∈ L2[0, a] converges to g(x) in L2[0, a],
i.e.

g(x) =
1

a

∫ a

0

g(ξ)dξ +

+∞∑
m=1

[
2

a

∫ a

0

g(ξ) cos
kπ

a
ξdξ

]
cos

kπ

a
x.

3. Separable Hamiltonian system

In this section, we will transform the governing equation of the rectangular can-
tilever thin plate into an infinite-dimensional separable Hamiltonian system by
introducing the state parameters. On the rectangular region Ω, the boundary con-
ditions for a plate slidingly supported at x = 0 and x = a are

∂W (x, y)

∂x
= Vx(x, y) = 0, for x = 0, a. (3.1)

In order to obtain the separable Hamiltonian system of rectangular plates, ac-
cording to Eqs. (1.9), (1.10) and (1.3) , we have

∂Vx
∂x

+
∂Vy
∂y
− 2

∂2Mxy

∂x∂y
+ q = 0, (3.2)

Setting

∂W

∂y
= θ. (3.3)

From Eq. (1.5), we can get

∂θ

∂y
= −ν ∂

2W

∂x2
− 1

D
My. (3.4)

In view of Eq. (1.6), we have

Mxy = −D(1− ν)
∂θ

∂x
. (3.5)
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Combining Eqs. (1.5), (1.6), (1.7), (1.9) and (3.2), we find

∂Vy
∂y

= D(1− ν2)
∂4W

∂x4
− ν ∂

2My

∂x2
− q. (3.6)

Similarly, from Eqs. (1.2), (1.10) and (3.5), we obtain that

∂My

∂y
= Vy + 2D(1− ν)

∂2θ

∂x2
. (3.7)

Now, let the Hilbert space X = L2(0, a) and Z = X × X, and we define on
Z × Z and Z the operators

H =

 0 C

B 0

 , B =

−2D(1− ν) ∂2

∂x2 1

1 0

 , C =

 1
D −ν ∂2

∂x2

−ν ∂2

∂x2 −D(1− ν2) ∂4

∂x4

 ,
where the domain of operator B and C are respectively given by

D(B) =


 θ

T

 ∈ Z∣∣∣∣θ′, θ′′ ∈ X and θ′ are absolutely continuous

 ,

and

D(C) =


 −My

W

 ∈ Z∣∣∣∣
W ′(0) = W ′(a) = W ′′′(0) = W ′′′(a) = 0,

W ′,M ′y,W
′′,M ′′y ,W

′′′,W (4) ∈ X and M ′y,

W ′,W ′′,W ′′′ are absolutely continuous

 .

Then, putting Vy = −T and defining the full state vectors U = (θ, T,−My,W )
T

,

f = (0, q, 0, 0)
T

, we rewrite Eqs. (3.3), (3.4), (3.6) and (3.7) as the following form

∂U

∂y
= HU + f. (3.8)

It was prove in [6] that H is a Hamiltonian operator. Therefore, the considered
rectangular cantilever thin plate bending problems are now transformed into the
separable Hamiltonian system (3.8).

4. Complete biorthogonal expansion theorem

In this section, using the biorthogonal relationships of the eigenfunction systems ,
we establish a complete biorthogonal expansion theorem for the bending problems
of rectangular cantilever plate.

For conciseness, we denote −My by M . In order to the obtain biorthogonal
relationships, we set

U =

U1

U2

 , U1 =

 θ
T

 , U2 =

M
W

 , f1 =

0

q

 , f2 =

0

0

 . (4.1)
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Then we can rewrite Eq. (3.8) as

U̇1 = CU2 + f1, (4.2)

U̇2 = BU1 + f2. (4.3)

Differentiate Eq. (4.3) about y, and substitute into Eq. (4.2) yield that

Ü2 = BCU2 +Bf1. (4.4)

Put F = BC, f̌ = Bf1, then Eq. (4.4) becomes

Ü2 = FU2 + f̌ , (4.5)

where

F =

 (ν − 2) ∂2

∂x2 −D(1− ν)2 ∂4

∂x4

1
D −ν ∂2

∂x2

 , f̌ =

 q
0

 .
According to boundary conditions (3.1), we obtain the domain of the operator F as

D(F ) =


 M
W

 ∈ Z∣∣∣∣
W ′(0) = W ′(a) = W ′′′(0) = W ′′′(a) = 0,

W ′,M ′,W ′′,M ′′,W ′′′,W (4) ∈ X and

M ′,W ′,W ′′,W ′′′ are absolutely continuous

 . (4.6)

If we can solve U2 from Eq. (4.5), then it’s easy to get U1 through Eq. (4.3).
By straightforward calculation, we find that the operator F has the zero eigenvalue
and nonzero eigenvalues λm = (mπa )2, m = 1, 2, · · · . Moreover, the corresponding
basic eigenfunctions of the nonzero eigenvalues λm = (mπa )2 are

u0m(x) =

D(mπa )2(1− ν) cos mπa x

cos mπa x

 , m = 1, 2, · · · ,

and the first-order Jordan eigenfunctions of the nonzero eigenvalue λm = (mπa )2 are
given by

u1m(x) =

D[(mπa )2(1− ν) + 1] cos mπa x

cos mπa x

 , m = 1, 2, · · · .

In addition, the basic eigenfunctions and first-order Jordan eigenfunctions of the
zero eigenvalue are respectively

v00(x) =

0

1

 , v10(x) =

D
1

 .
Furthermore, by careful calculation, we can get the following proposition on

their biorthogonal relationships.
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Proposition 4.1. The eigenfunction systems {u0m(x)}+∞m=1, {u1m(x)}+∞m=1, v
0
0(x) and

v10(x) of the operator F have the following biorthogonal relationships:

〈u0m, v00〉 = 0 , 〈u1m, v00〉 = 0 , 〈v00 , u1n〉 = 0 , 〈v00 , u0n〉 = 0 , 〈v00 , v00〉 = 〈v00 , v10〉 = a

〈u0m, v10〉 = 0 , 〈u1m, v10〉 = 0 , 〈v10 , u1n〉 = 0 , 〈v10 , u0n〉 = 0 , 〈v10 , v10〉 = (D2 + 1)a

〈v10 , v00〉 = a ,m, n = 1, 2, · · ·

and

〈u1m, u1n〉 =

 0 m 6= n,

a[D2(λm−λmν+1)2+1]
2 m = n,

m, n = 1, 2, · · · ,

〈u0m, u0n〉 =

 0 m 6= n,

a[D2λ2
m(1−ν)2+1]

2 m = n,
m, n = 1, 2, · · · ,

〈u1m, u0n〉 = 〈u0m, u1n〉 =

 0 m 6= n,

a[D2λm(1−ν)[λm(1−ν)+1]+1]
2 m = n,

m, n = 1, 2, · · · ,

where inner product 〈u1, u2〉 is defined in Definition 2.5.

Proof. The eigenfunction systems of the the operator F are respectively

u0m(x) =

D(mπa )2(1− ν) cos mπa x

cos mπa x

 , u1m(x) =

D[(mπa )2(1− ν) + 1] cos mπa x

cos mπa x

 ,
m = 1, 2, · · · ,

u0n(x) =

D(nπa )2(1− ν) cos nπa x

cos nπa x

 , u1n(x) =

D[(nπa )2(1− ν) + 1] cos nπa x

cos nπa x

 ,
n = 1, 2, · · · . and

v00(x) =

0

1

 , v10(x) =

D
1

 .
By direct calculation, it follows that

〈u0m, v00〉 =

∫ a

0

0 ·D(
mπ

a
)2(1− ν) cos

mπ

a
xdx+

∫ a

0

1 · cos
mπ

a
xdx = 0,

〈u1m, v00〉 =

∫ a

0

0 ·D[(
mπ

a
)2(1− ν) + 1] cos

mπ

a
xdx+

∫ a

0

1 · cos
mπ

a
xdx = 0,

〈v10 , v10〉 =

∫ a

0

D ·Ddx+

∫ a

0

1 · 1dx = (D2 + 1)a,
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in a similar way

〈v00 , u1n〉 = 0 , 〈v00 , u0n〉 = 0 , 〈v00 , v00〉 = 〈v00 , v10〉 = a , 〈u0m, v10〉 = 0

〈u1m, v10〉 = 0 , 〈v10 , u1n〉 = 0 , 〈v10 , u0n〉 = 0 , 〈v10 , v00〉 = a ,m, n = 1, 2, · · · .
Then

〈u1m, u1n〉 =

∫ a

0

D[(
mπ

a
)2(1− ν) + 1] cos

mπ

a
x ·D[(

nπ

a
)2(1− ν) + 1] cos

nπ

a
xdx

+

∫ a

0

cos
mπ

a
x · cos

nπ

a
xdx,

=

 0 m 6= n,

a[D2(λm−λmν+1)2+1]
2 m = n,

m, n = 1, 2, · · · ,

〈u0m, u1n〉 =

∫ a

0

D(
mπ

a
)2(1− ν) cos

mπ

a
x ·D[(

nπ

a
)2(1− ν) + 1] cos

nπ

a
xdx

+

∫ a

0

cos
mπ

a
x · cos

nπ

a
xdx,

=

 0 m 6= n,

a[D2λm(1−ν)[λm(1−ν)+1]+1]
2 m = n,

m, n = 1, 2, · · · ,

similarly

〈u0m, u0n〉 =

 0 m 6= n,

a[D2λ2
m(1−ν)2+1]

2 m = n,
m, n = 1, 2, · · · ,

〈u1m, u0n〉 =

 0 m 6= n,

a[D2λm(1−ν)[λm(1−ν)+1]+1]
2 m = n,

m, n = 1, 2, · · · ,

where λm = (mπa )2, m = 1, 2, · · · . The proof is completed.

Due to Proposition 4.1, we then have the following complete biorthogonal ex-
pansion theorem for the rectangular cantilever plate bending problem.

Theorem 4.1. The generalized eigenfunction systems v00(x), v10(x), {u0m(x)}+∞m=1

and {u1m(x)}+∞m=1 of the operator F are complete in the sense of Cauchy principal
value in Z .

Proof. We need to prove that value in Z. for any G(x) = [g1(x), g2(x)]T ∈ Z,
there exist constant sequences d00, d

1
0, {c0m}+∞m=1 and {c1m}+∞m=1 such that

G(x) = d00v
0
0 + d10v

1
0 +

+∞∑
m=1

(
c0mu

0
m + c1mu

1
m

)
.

In fact, due to Proposition 4.1 we have 〈G, v10〉 = d00〈v00 , v10〉+ d10〈v10 , v10〉,

〈G, v00〉 = d00〈v00 , v00〉+ d10〈v10 , v00〉,
(4.7)
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and  〈G, u1m〉 = c0m〈u0m, u1m〉+ c1m〈u1m, u1m〉,

〈G, u0m〉 = c0m〈u0m, u0m〉+ c1m〈u1m, u0m〉,
(4.8)

in which

d00 = − 1

aD

∫ a

0

g1(ξ)dξ +
1

a

∫ a

0

g2(ξ)dξ, d10 =
1

aD

∫ a

0

g1(ξ)dξ,

c0m = −2

a

(
1

D

∫ a

0

g1(ξ) cos
mπ

a
ξdξ + (λmν − λm − 1)

∫ a

0

g2(ξ) cos
mπ

a
ξdξ

)
,

c1m =
2

a

(
1

D

∫ a

0

g1(ξ) cos
mπ

a
ξdξ − (λm − λmν)

∫ a

0

g2(ξ) cos
mπ

a
ξdξ

)
.

Therefore,

G =d00v
0
0 + d10v

1
0 +

+∞∑
m=1

(
c0mu

0
m + c1mu

1
m

)
=

 1
a

∫ a
0
g1(ξ)dξ

1
a

∫ a
0
g2(ξ)dξ

+

+∞∑
m=1

( 2a ∫ a0 g1(ξ) cos mπa ξdξ
)

cos mπa x(
2
a

∫ a
0
g2(ξ) cos mπa ξdξ

)
cos mπa x

 .
So in view of Lemma 2.1, the generalized eigenfunction systems of operator F

are complete in Hilbert space Z in the sense of Cauchy principal value. This proof
is completed.

5. General solutions for rectangular cantilever plate
bending problems

Now, we are on the position to apply Theorem 4.1 to find the general solutions of
Eq. (3.8). For this, we first obtain the general solutions of Eq. (4.5).

From the superposition principle of solutions and Theorem 4.1, the general so-
lution of Eq. (4.5) has the following form:

U2(x, y) =

M
W

 = l00(y)v00(x) + l10(y)v10(x) +

+∞∑
m=1

(
t0m(y)u0m(x) + t1m(y)u1m(x)

)
.

(5.1)
The non-homogeneous term f̌ is expanded as:

f̌(x, y) =

 q
0

 = k00(y)v00(x) + k10(y)v10(x) +

+∞∑
m=1

(
p0m(y)u0m(x) + p1m(y)u1m(x)

)
.

(5.2)
By virtue of Proposition 4.1, we see that 〈f̌ , v10〉 = k00〈v00 , v10〉+ k10〈v10 , v10〉,

〈f̌ , v00〉 = k00〈v00 , v00〉+ k10〈v10 , v00〉,
(5.3)
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and  〈f̌ , u1m〉 = p0m〈u0m, u1m〉+ p1m〈u1m, u1m〉,

〈f̌ , u0m〉 = p0m〈u0m, u0m〉+ p1m〈u1m, u0m〉.
(5.4)

By straightforward calculation, from Eqs. (5.3) and (5.4), the coefficients of f̌(x, y)
can be obtained as

k00(y) = − 1

aD

∫ a

0

q(ξ, y)dξ, k10(y) =
1

aD

∫ a

0

q(ξ, y)dξ (5.5)

p0m(y) = − 2

aD

∫ a

0

q(ξ, y) cos
mπ

a
ξdξ, p1m(y) =

2

aD

∫ a

0

q(ξ, y) cos
mπ

a
ξdξ. (5.6)

Substituting (5.1) and (5.2) into Eq. (4.5), we then get

¨t0m = λmt
0
m + t1m + p0m,

¨t1m = λmt
1
m + p1m,

l̈00 = l10 + k00,

l̈10 = k10,

from which we obtain that

l00(y) = b01m −
∫
yβ(y)dy +

(
b02m +

∫
β(y)dy

)
y,

l10(y) = b11m −
∫
yα(y)dy +

(
b12m +

∫
α(y)dy

)
y,

t0m(y) = c01me
mπ
a y+c02me

−mπa y+
a

2mπ

(
e
mπ
a y

∫
ϕ(y)e−

mπ
a ydy−e−mπa y

∫
ϕ(y)e

mπ
a ydy

)
,

t1m(y) = c11me
mπ
a y+c12me

−mπa y+
a

2mπ

(
e
mπ
a y

∫
f(y)e−

mπ
a ydy−e−mπa y

∫
f(y)e

mπ
a ydy

)
,

where

α(y)=k10(y) =
1

aD

∫ a

0

q(ξ, y)dξ,

β(y)=b11m −
∫
yα(y)dy +

(
b12m +

∫
α(y)dy

)
y − α(y),

f(y)=p1m(y) =
2

aD

∫ a

0

q(ξ, y) cos
mπ

a
ξdξ,

ϕ(y)=c11me
mπ
a y+c12me

−mπa y+
a

2mπ

(
e
mπ
a y

∫
f(y)e−

mπ
a ydy−e−mπa y

∫
f(y)e

mπ
a ydy

)
−f(y).
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Now, substituting l00(y), l10(y), t0m(y) and t1m(y) into Eq. (5.1) gives that

M(x, y) =

(
b11m + b12my + y

∫
α(y)dy −

∫
yα(y)dy

)
D

+

+∞∑
m=1

((
c01m +

a

2mπ

∫
ϕ(y)e−

mπ
a ydy

)
e
mπ
a y

+

(
c02m −

a

2mπ

∫
ϕ(y)e

mπ
a ydy

)
e−

mπ
a y

)

D
(mπ
a

)2
(1− ν) cos

mπ

a
x

+

((
c11m +

a

2mπ

∫
f(y)e−

mπ
a ydy

)
e
mπ
a y

+

(
c12m −

a

2mπ

∫
f(y)e

mπ
a ydy

)
e−

mπ
a y

)

D

[(mπ
a

)2
(1− ν) + 1

]
cos

mπ

a
x,

and

W (x, y) =b01m + b11m + (b02m + b12m)y

+

(∫
(α(y) + β(y))dy

)
y −

(∫
(α(y) + β(y))ydy

)
+

+∞∑
m=1

((
c01m + c11m +

a

2mπ

∫
(ϕ(y) + f(y))e−

mπ
a ydy

)
e
mπ
a y

+

(
c02m + c12m −

a

2mπ

∫
(ϕ(y) + f(y))e

mπ
a ydy

)
e−

mπ
a y

)
cos

mπ

a
x.

Because B is reversible, from the second formula of Eq. (4.3) it follows that

U1 = B−1U̇2. (5.7)

Thus by Eq. (5.7), we find that

θ(x, y) =b02m + b12m +

∫
(α(y) + β(y))dy

+

+∞∑
m=1

((
1

2

∫
(ϕ(y) + f(y))e−

mπ
a ydy +

mπ(c01m + c11m)

a

)
e
mπ
a y

+

(
1

2

∫
(ϕ(y) + f(y))e

mπ
a ydy − mπ(c02m + c12m)

a

)
e−

mπ
a y

)
cos

mπ

a
x.
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T (x, y) =

(
b12m +

∫
α(y)dy

)
D +

+∞∑
m=1

((
1

2

∫
ϕ(y)e−

mπ
a ydy +

mπ

a
c01m

)
e
mπ
a y

+

(
1

2

∫
ϕ(y)e

mπ
a ydy − mπ

a
c02m

)
e−

mπ
a y

)
D
(mπ
a

)2
(ν − 1) cos

mπ

a
x

+

((
1

2

∫
f(y)e−

mπ
a ydy +

mπ

a
c11m

)
e
mπ
a y

+

(
1

2

∫
f(y)e

mπ
a ydy − mπ

a
c12m

)
e−

mπ
a y

)

D

[(mπ
a

)2
(ν − 1) + 1

]
cos

mπ

a
x,

where the unknown coefficients b0im, b
1
im, c

0
im and c1im(i = 1, 2;m = 1, 2, · · · ) are

determined by the boundary conditions at the remaining two edges.
To sum up, applying Theorem 4.1, we obtain the general solution of the rectan-

gular cantilever plate bending problems.

6. Conclusion

The separable Hamiltonion system of rectangular cantilever thin plate bending
problem is studied in this paper. By the single side product of two symmetric oper-
ator matrices, the eigenvalues and eigenfunctions of the corresponding Hamiltonion
operator are obtained. Then, the biorthogonal relationships and completeness of
the eigenfunction systems are derived by taking full advantage of the structural
characteristics of the off-diagonal Hamiltonian operator matrix. It is seen that,
the biorthogonal relationships of the eigenfunctions makes the computation easier
and more convenient, and its completeness guarantees the convergence of the series
of the solution function for complete biorthogonal expansion. Finally, the general
solutions of the bending problems of the rectangular cantilever thin plate achieved
successfully through the complete biorthogonal expansion theorem. The obtained
results of this paper can also be applied to discuss many other mechanics problems
of multivariable isotropic.
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