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Abstract. We present a new conservative semi-Lagrangian finite difference weighted
essentially non-oscillatory scheme with adaptive order. This is an extension of the
conservative semi-Lagrangian (SL) finite difference WENO scheme in [Qiu and Shu,
JCP, 230 (4) (2011), pp. 863-889], in which linear weights in SL WENO framework
were shown to not exist for variable coefficient problems. Hence, the order of accu-
racy is not optimal from reconstruction stencils. In this paper, we incorporate a recent
WENO adaptive order (AO) technique [Balsara et al., JCP, 326 (2016), pp. 780-804]
to the SL WENO framework. The new scheme can achieve an optimal high order of
accuracy, while maintaining the properties of mass conservation and non-oscillatory
capture of solutions from the original SL WENO. The positivity-preserving limiter is
further applied to ensure the positivity of solutions. Finally, the scheme is applied to
high dimensional problems by a fourth-order dimensional splitting. We demonstrate
the effectiveness of the new scheme by extensive numerical tests on linear advection
equations, the Vlasov-Poisson system, the guiding center Vlasov model as well as the
incompressible Euler equations.
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1 Introduction

In this paper, we propose a conservative semi-Lagrangian (SL) finite difference (FD)
weighted essentially non-oscillatory adaptive order (WENO-AO) scheme for the advec-
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tion equation in the form of

ut+∇x ·(P(x,t)u)=0, (x,t)∈R
d×[0,T], (1.1)

with applications to kinetic equations such as the Vlasov-Poisson (VP) system, the guid-
ing center Vlasov model as well as incompressible Euler equations.

For hyperbolic type advection equations, the Eulerian approach, e.g. Runge-Kutta
discontinuous Galerkin (DG) and WENO methods [11], is well-known to be computa-
tionally effective with high order accuracy for smooth problems, preservation of local
mass conservation, and non-oscillatory capture of shocks. One bottleneck of the Eule-
rian approach is the stringent Courant-Friedrichs-Lewy (CFL) condition for explicit time
stepping. To overcome the CFL condition, the SL approach have been developed. In an
SL framework, the solutions is updated by tracking information along characteristics; as
a result, the scheme can remain stable for a much larger time stepping size than its Eule-
rian counterpart. SL algorithms have been applied for a wide range of application fields
from climate modeling [27] to kinetic description of plasmas [16, 33].

Preservation of mass conservation has been a top priority when designing schemes
for hyperbolic conservation laws. For semi-Lagrangian schemes, the conservation prop-
erty can be assured conveniently in a finite volume [13,20,23] or DG [8,14,24,30,31] frame-
works. However, it is nontrivial to design a conservative SL scheme in the FD framework.
In [28], a class of high order conservative SL WENO schemes is proposed for advection
equations, yet it was shown in the same work there do not exist linear weights in the
SL WENO scheme. As a result, the SL WENO scheme cannot achieve the optimal high
order accuracy from its reconstruction stencils. To overcome this, we propose to apply
other types of WENO methods that use a set of artificial weights and retains high order
accuracy. Examples of such WENO reconstructions include CWENO [25, 26], WENO-
ZQ [41], WENO-AO [4], targeted ENO scheme [17,18], hybrid WENO [1,35,40] and their
extensions. Especially, there have been systematic studies on WENO-AO [2, 3, 22]. As
in classic WENO-Z [6], smoothness indicators in WENO-ZQ and WENO-AO are prop-
erly defined for high order accuracy at critical points. Following the same spirit as the
WENO-AO reconstruction [4], we propose new conservative SL FD WENO-AO schemes.
The introduction of the WENO-AO procedure enables us to derive explicit formulas of
the compact flux reconstruction with the full order in the SL framework. As mentioned
in [28], designing the compact flux functions are critical for stability consideration, and
designing WENO scheme for the composition of two reconstruction procedures is highly
challenging. The proposed schemes in this paper can achieve the formal (2r−1)-th or-
der accuracy when using a stencil of width (2r−1). For high dimensional problems, we
apply a fourth order dimensional splitting [37,38]. For problems with positivity physical
variable such as the nonlinear VP system, we further apply a positivity preserving (PP)
limiter in [36] that maintains high order accuracy of the schemes.

The organization of the paper is as follows: in Section 2, we present the detailed
implementation of the SL FD WENO-AO schemes; in Section 3, we demonstrate the ef-
fectiveness of the proposed schemes by numerically testing one-dimensional (1D) and
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two-dimensional (2D) linear advection problems, the nonlinear VP system, the guiding
center Vlasov model as well as incompressible Euler equations; finally, we conclude in
Section 4.

2 Semi-Lagrangian finite difference WENO-AO scheme

We first briefly review the general semi-Lagrangian finite difference framework in [28]. It
is denoted as ‘SL FD’. Then we will describe the WENO-AO reconstruction procedure [4].
Finally, we use the spirit of WENO-AO reconstruction to propose the new SL FD WENO-
AO scheme, denoted as ‘SL FD WENO-AO’. The complete WENO-AO reconstruction
procedure under the SL FD framework will be given in Section 2.3. We will focus on
the basic formulation of the 1D advection equation, while a dimensional splitting can be
applied to high-dimensional problems.

2.1 Review of semi-Lagrangian finite difference framework

We review the SL FD framework for a simple 1D variable coefficient problem

ut+(a(x,t)u)x =0, (2.1)

with the periodic boundary condition. We adopt the following spatial discretization of
domain [xl ,xr],

xl = x 1
2
< x 3

2
< ···< xN+ 1

2
= xr, (2.2)

where the domain is discretized by N uniform grid points with mesh size ∆x= xr−xl
N . We

denote un
i as numerical approximation to grid point of u(xi,t

n) at the n-th time level. For
simplicity, we let tn =n∆t with ∆t being the time stepping size.

The SL FD scheme in [28] is based on integrating the advection equation (2.1) on the
time interval [tn,tn+1],

u(x,tn+1)=u(x,tn)−
(

∫ tn+1

tn
a(x,τ)u(x,τ)dτ

)

x
.
=u(x,tn)−F(x)x, (2.3)

where

F(x)
.
=
∫ tn+1

tn
a(x,τ)u(x,τ)dτ. (2.4)

In order to evaluate F(x)x by a flux-difference form, as done in a finite difference WENO
scheme [21], a sliding average function H(x) is introduced such that

F(x)=
1

∆x

∫ x+ ∆x
2

x− ∆x
2

H(ξ)dξ. (2.5)
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Ωi

xl xi⋆ xi⋆+1 xi−1 xi xi+2 xr
tn

xi
tn+1

x⋆i

∫ tn+1

tn a(xi,τ)u(xi,τ)dτ

=
∫ xi

x⋆i
u(ξ,tn)dξ

Figure 1: Semi-Lagrangian characteristic tracing.

Taking the derivative of (2.5) gives

F(x)x =
1

∆x

(

H
(

x+
∆x

2

)

−H
(

x−∆x

2

))

.

In the FD framework, we evaluate Eq. (2.3) at each grid point xi,

un+1
i =un

i −
1

∆x

(

H
(

xi+ 1
2

)

−H
(

xi− 1
2

))

, (2.6)

where H(x) is called the flux function. The flux H(xi+ 1
2
) can be reconstructed from its

neighboring cell averages of H(x), i.e.

H̄i
(2.5)
= F(xi)

(2.4)
=
∫ tn+1

tn
a(xi,τ)u(xi,τ)dτ. (2.7)

To evaluate H̄i from the above equality, we apply the integral form of Eq. (2.1) over the
region Ωi bounded by the three points (xi,t

n+1), (xi,t
n) and (x⋆i ,tn). Here x⋆j is the foot of

characteristics tracing back from the grid point (xi,t
n+1) at the time level tn, see Fig. 1.

In particular, we have
∫

Ωi

ut+(au)xdxdt=0. (2.8)

Applying the divergence Theorem to the above equation, we have

∫

Ωi

ut+(au)x =−
∫ xi

x⋆i

u(ξ,tn)dξ+
∫ tn+1

tn
a(xi,τ)u(xi,τ)dτ=0. (2.9)

Hence,

H̄i =
∫ tn+1

tn
a(xi,τ)u(xi,τ)dτ=

∫ xi

x⋆i

u(ξ,tn)dξ, (2.10)

where
∫ xi

x⋆i
u(ξ,tn)dξ can be reconstructed with high order from grid points values {un

i }.

Next, we present the flow chart of the SL FD WENO scheme for updating numerical
solutions. The detailed description can be found in [28].
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Step 1: Locate the feet of characteristics x⋆i . Track the characteristic backward in time from
(xi,t

n+1) to time level tn by solving

dX(t)

dt
= a(X(t),t), X(tn+1)= xi (2.11)

to locate X(tn) = x⋆i . In our numerical experiments, a sixth order Runge-Kutta
method is applied to locate x⋆i .

Step 2: Use the grid point values in the neighborhood of xi to reconstruct the integral H̄i=
F(xi)=

∫ xi

x⋆i
u(ξ,tn)dξ. We denote this procedure as

F(xi)
.
=R1[x

⋆

i ,xi](u
n
i−p1

,··· ,un
i+q1

). (2.12)

Step 3: Use F(xi)= H̄i to reconstruct the numerical flux Hi+ 1
2
. We denote this reconstruc-

tion procedure as

Hi+ 1
2

.
=R2(F(xi−p2

),··· ,F(xi+q2
)). (2.13)

The numerical flux Hi+ 1
2

is approximating the flux function H(xi+ 1
2
).

Step 4: Update the solution un+1
i by equation (2.6) with the numerical flux reconstructed in

Step 3.

As studied in [28], Step 2 and Step 3 can be combined as a single reconstruction procedure
R=R2◦R1 with a more compact stencil for numerical stability, i.e.

Hi+ 1
2

.
=R(un

i−p,··· ,un
i+q). (2.14)

In other words, we can reconstruct the numerical flux Hi+ 1
2

from the neighboring point

values {un
j } directly.

Remark 2.1. (Nonexistence of linear weights). As found in [28], linear weights for the
WENO procedure of R (2.14) do not exist in general. To show that we use the following

example: let ξ j−i =
xj−x⋆j

∆x , j = i−1,i,i+1. The reconstruction for H(xi+ 1
2
) on two points

stencil {xi−1,xi} as in (2.14) is

H(xi+ 1
2
)=∆x

(

(−1

2
ξ−1−

1

4
ξ2
−1+

3

4
ξ2

0)u
n
i−1+(

1

4
ξ2
−1−

3

4
ξ2

0+
3

2
ξ0)u

n
i

)

. (2.15)

The reconstructed flux H(xi+ 1
2
) on two points stencil {xi,xi+1} as in (2.14) is given by

H(xi+ 1
2
)=∆x

(

(
1

2
ξ0+

1

4
ξ2

0+
1

4
ξ2

1)u
n
i +(−1

4
ξ2

0+
1

2
ξ1−

1

4
ξ2

1)u
n
i+1

)

. (2.16)
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Also, for three points stencil {xi−1,xi,xi+1}, we have

H(xi+ 1
2
)=∆x

(

(

− 1

6
ξ−1−

1

8
ξ2
−1−

1

36
ξ3
−1+

5

24
ξ2

0+
5

36
ξ3

0−
1

12
ξ2

1+
1

18
ξ3

1

)

un
i−1

+
(1

6
ξ2
−1+

1

18
ξ3
−1+

5

6
ξ0−

5

18
ξ3

0+
1

3
ξ2

1−
1

9
ξ3

1

)

un
i

+
(

− 1

24
ξ2
−1−

1

36
ξ3
−1−

5

24
ξ2

0+
5

36
ξ3

0+
1

3
ξ1−

1

4
ξ2

1+
1

18
ξ3

1

)

un
i+1

)

. (2.17)

In order to apply the classical WENO mechanism, it is desired that there are linear weights
γ1 and γ2, such that the reconstructed flux function H(xi+ 1

2
) in (2.17) is a linear combina-

tion of (2.15) and (2.16). In the case of constant coefficient problem a(x,t)≡ a, such linear
weights exist; however, for the general variable coefficient situation, ξ’s in (2.15)-(2.17)
varies and linear weights may fail to exist. For instance, if ξ−1 = ξ0 = 0 and ξ1 = 1, then
Eqs. (2.15)-(2.17) become

H(xi+ 1
2
)=0·un

i−1+0·un
i , (2.18)

H(xi+ 1
2
)=

1

4
un

i +
1

4
un

i+1, (2.19)

H(xi+ 1
2
)=− 1

36
un

i−1+
2

9
un

i −
1

36
un

i+1. (2.20)

Linear weights do not exists. In [28], an ENO procedure and a WENO procedure with
preset linear weights that do not achieve the optimal accuracy of the full stencil is used.

2.2 The fifth order WENO-AO reconstruction

Next, we briefly review the WENO-AO reconstruction procedure, which was first in-
troduced by Balsara, Garaian and Shu [4]. Suppose we have a five point stencil Sr5 =
{x−2,x−1,x0,x1,x2}, with three three-point substencils Sr3

1 ={x−2,x−1,x0}, Sr3
2 ={x−1,x0,x1}

and Sr3
3 ={x0,x1,x2}. The i-th reconstructed polynomial corresponding to stencil Sr3

i can
be expressed by the Legendre polynomial

Pr3
i =u0+uaL1(x)+ubL2(x). (2.21)

Here Legendre polynomials for the reference domain
[

− 1
2 , 1

2

]

, are given by

L0(x)=1;

L1(x)= x;

L2(x)= x2− 1

12
;

L3(x)= x3− 3

20
x;

L4(x)= x4− 3

14
x2+

3

560
.

(2.22)
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Below are the coefficients ua and ub for stencils Sr3
i , i=1,2,3, respectively,

ua=−2u−1+u−2/2+3u0/2, ub =(u−2−2u−1+u0)/2,

ua=(u1−u−1)/2, ub =(u−1−2u0+u1)/2,

ua=−3u0/2+2u1−u2/2, ub =(u0−2u1+u2)/2.

(2.23)

The smoothness indicator for each of these stencils can be obtained as a scaled sum of the
square L2 norms of all the derivatives of the relevant reconstructed polynomial [21] and
precomputed as

βr3=(ua)
2+

13

3
(ub)

2. (2.24)

Similarly, the reconstructed polynomial corresponding to stencil Sr5 is given by

Pr5=u0+uaL1(x)+ubL2(x)+ucL3(x)+udL4(x), (2.25)

with

ua=(−82u−1+11u−2+82u1−11u2)/120,

ub=(40u−1−3u−2−74u0+40u1−3u2)/56,

uc=(2u−1−u−2−2u1+u2)/12,

ud=(−4u−1+u−2+6u0−4u1+u2)/24,

(2.26)

and the corresponding smoothness indicator

βr5=(ua+uc/10)2+
13

3
(ub+

123

455
ud)

2+
781

20
(uc)

2+
1421461

2275
(ud)

2. (2.27)

In [4], the linear weights for the stencils Sr5, Sr3
1 , Sr3

2 , and Sr3
3 are given by

γr5=γHi, γr3
1 =(1−γHi)(1−γLo)/2,

γr3
2 =(1−γHi)γLo, γr3

3 =(1−γHi)(1−γLo)/2.
(2.28)

Typically, one set γHi∈ [0.85,0.95] and γLo ∈ [0.85,0.95].
Next, we describe the process of obtaining nonlinear weights for fifth order WENO-

AO reconstruction. To avoid loss of order at inflection points we use the smoothness
indicators to define

τ=
1

3
(|βr5−βr3

1 |+|βr5−βr3
2 |+|βr5−βr3

3 |). (2.29)

We obtain the unnormalized nonlinear weights as

wr5=γr5
3 (1+τ2/(βr5+ǫ)2), wr3

1 =γr3
1 (1+τ2/(βr3

1 +ǫ)2),

wr3
2 =γr3

2 (1+τ2/(βr3
2 +ǫ)2), wr3

3 =γr3
3 (1+τ2/(βr3

3 +ǫ)2),
(2.30)
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where ǫ is a very small number in case the smoothness indicator is zero. Typically ǫ∼
10−12. Then, the normalized weights are given by

w̄r5=wr5/(wr5+wr3
1 +wr3

2 +wr3
3 ), w̄r3

1 =wr3
1 /(wr5+wr3

1 +wr3
2 +wr3

3 ),

w̄r3
2 =wr3

2 /(wr5+wr3
1 +wr3

2 +wr3
3 ), w̄r3

3 =wr3
3 /(wr5+wr3

1 +wr3
2 +wr3

3 ).
(2.31)

The nonlinear weights and linear weights are combined with reconstructed polynomials
as

P(x)=
w̄r5

γr5

(

Pr5(x)−γr3
1 Pr3

1 (x)−γr3
2 Pr3

2 (x)−γr3
3 Pr3

3 (x)
)

+w̄r3
1 Pr3

1 (x)+w̄r3
2 Pr3

2 (x)+w̄r3
3 Pr3

3 (x). (2.32)

The idea is that when all the smoothness indicators seem to have similar values then only
the high order scheme is achieved. Therefore, that when the four smoothness measures

associated with these four stencils have similar values, we have w̄r5 → γr5, w̄r3
1 → γr3

1 ,

w̄r3
2 →γr3

2 , and w̄r3
3 →γr3

3 . We then have P(x)→Pr5.

2.3 WENO-AO reconstruction procedure for the SL FD scheme

In this subsection, we will present the detailed WENO-AO reconstruction under the SL
FD framework for general variable velocity field a(x,t). Our WENO-AO algorithm also
incorporates a flux-based limiter to preserve the positivity of the solution. The algorithm
will be extended to a multi-dimensional setting by dimensional splitting.

We first discuss the reconstruction procedure for small time step evolution, i.e. |x⋆i −
xi|≤∆x for all i. The scheme for extra large time step will be addressed later. Without loss
of generality, we assume a(xi,t

n)≥0 and x⋆i ∈ [xi−1,xi]. The flowchart of the algorithm is
summarized as Algorithm 1.

When a(xi,t
n)≤0, then xi≤x⋆i ≤xi+1, a different set of stencils will be chosen with S1=

{xi−1,xi,xi+1,xi+2,xi+3}, S2={xi−1,xi,xi+1}, S3={xi,xi+1,xi+2}, and S4={xi+1,xi+2,xi+3}.
We present the reconstructed fluxes H(k)(xi+ 1

2
) and smoothness indicators βk in Ap-

pendix, see Eqs. (A.13)-(A.20).

Here in the first step of Algorithm 1, we derive explicit formulas of H(k)(xi+ 1
2
) from

Sk = {ui−p,··· ,ui+q} by the following procedure. We first integrate the polynomial inter-
polating the point values on Sk over [x⋆j ,xj] (or [xj,x

⋆

j ] depending on the characteristics)

as an approximation to H̄j, where j= i−p,··· ,i+q; then H(k)(xi+ 1
2
) can be reconstructed

from {H̄j}i+q
j=i−p in the classical WENO fashion [21]. Readers can find a detailed descrip-

tion on the reconstruction of H(k)(xi+ 1
2
) from [28, section 3.3.1]. Explicit formulas are

provided in the Appendix for completeness. Here Eqs. (A.1) and (A.13) were newly de-
rived following the procedure described in [28, section 3.3.1], while Eqs. (A.2)-(A.4) and
(A.14)-(A.16) were adopted from [28].
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Algorithm 1 Fifth order WENO-AO reconstruction for fluxes.

1. The flux H(xi+ 1
2
) can be reconstructed from four potential stencils: S1 =

{xi−2,xi−1,xi,xi+1,xi+2}, S2 = {xi−2,xi−1,xi}, S3 = {xi−1,xi,xi+1}, and S4 =
{xi,xi+1,xi+2}. Compute the reconstructed flux H(k)(xi+ 1

2
) by the SL FD scheme

from the operator R as in (2.14) from these four stencils. The formulas are provided
in the Appendix as (A.1)-(A.4). We denote H(k)(xi+ 1

2
) as reconstructions from the

stencils Sk, k=1,··· ,4.

2. Compute the nonlinear weights as outlined in Section 2.2. Formulas are provided
in the Appendix as (A.5)-(A.12).

3. Combine flux functions H(k)(xi+ 1
2
) reconstructed in the previous step through

WENO-AO mechanism

H(xi+ 1
2
)=

w̄1

γ1

(

H(1)(xi+ 1
2
)−γ2H(2)(xi+ 1

2
)−γ3H(3)(xi+ 1

2
)−γ4H(4)(xi+ 1

2
)
)

+
4

∑
k=2

w̄kH(k)(xi+ 1
2
). (2.33)

4. The solution is updated by Eq. (2.6).

In general, a large time stepping size is desired for an SL scheme. Again, we assume
a(xi,t

n)≥0 to explain the idea. When the time step is larger than the CFL restriction, we
denote i⋆ as the index such that x⋆i ∈ (xi⋆−1,xi⋆ ]. From (2.10) we have

H̄i =
∫ xi

x⋆i

u(ξ,tn)dξ=
i

∑
j=i⋆+1

∫ xj

xj−1

u(ξ,tn)dξ+
∫ xi⋆

x⋆i

u(ξ,tn)dξ

and flux function

H(xi+ 1
2
)=

i

∑
j=i⋆+1

∆xun
j +R(ui⋆−p,··· ,ui⋆+q), (2.34)

where R is the reconstruction procedure as presented in Algorithm 1. It was pointed
out in [28] that when the reconstruction procedure R is applied to whole grid points, we
have the term ∑

i
j=i⋆+1∆xun

j . Similar procedure applies when a(xi,t
n)≤0.

To preserve the positivity of the numerical solution, we apply the flux-based limiter
for the SL FD scheme as introduced in [36]. The idea of the flux-based limiter is to modify
the high order numerical flux Hi+ 1

2
towards the first order monotone flux hi+ 1

2
in a way

such that the positivity is preserved. Here the first order monotone flux hi+ 1
2

can be

obtained in a similar way as Hi+ 1
2

with first order reconstruction and can be proved to be
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Algorithm 2 SL FD WENO-AO Algorithm with PP limiter under large time stepping size.

Step 1: Locate the foot of each grid point xi along characteristics line from time level tn+1

to tn. We denote it as x⋆i . Let i⋆ to be the index such that x⋆i ∈ (xi⋆−1,xi⋆ ].

Step 2: • If x⋆i ≤ xi, let ξ j−i =
xj⋆−x⋆j

∆x , j= i−2,··· ,i+2. Compute H(xi+ 1
2
) by

H(xi+ 1
2
)=

i

∑
j=i⋆+1

∆xun
j +H⋆(xi+ 1

2
), (2.35)

where H⋆(xi+ 1
2
) is reconstructed from the variables {ui⋆−2,··· ,ui⋆+2}, as we

presented in Algorithm 1.

• If x⋆i ≥ xi, let ξ j−i−1=
x⋆j −xj⋆−1

∆x , j= i−1,··· ,i+3. Compute H(xi+ 1
2
) by

H(xi+ 1
2
)=−

i⋆−1

∑
j=i+1

∆xun
j +H⋆(xi+ 1

2
), (2.36)

where H⋆(xi+ 1
2
) is reconstructed from the variables {ui⋆−1,··· ,ui⋆+3}, similar

to Algorithm 1 but with different flux functions and smoothness indicators as
shown in (A.13)-(A.20).

• Apply the flux-based positivity preserving limiter in the form of (2.37) to mod-
ify numerical flux, in order to ensure the positivity preserving property.

Step 3: Update un+1
i by Eq. (2.6) with H(xi± 1

2
) computed in Step 2.

positivity preserving. In particular, a modified flux

H̃i+ 1
2
= θi+ 1

2

(

Hi+ 1
2
−hi+ 1

2

)

+hi+ 1
2
, (2.37)

is introduced. Here θi+ 1
2

is the parameter to guarantee the positivity preserving prop-

erty, yet to be as close to the high order numerical flux Hi+ 1
2

as possible. High order

accuracy is proved to be maintained in [36]. We omit details of constructing θ’s and in
proving the accuracy preserving property for brevity, but refer readers to [36]. We note
that we assume that the PDE solution has the positivity preserving property. In fact, for
all examples we present in the numerical section, this holds true. The maximum princi-
ple preserving property is quite difficult to achieve in a general setting, and we do not
consider that in this paper.

An SL FD WENO-AO scheme with positivity preserving property for 1D equation
(2.1) follows the flowchart in Algorithm 2. This algorithm allows large time stepping
sizes.
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Algorithm 3 A fourth order dimensional splitting algorithm.

1. Evolve ut+(p(x,y,t)u)x =0 for a1
2 ∆t by Algorithm 2 from un and obtain u(1).

2. Evolve ut+(q(x,y,t)u)y =0 for a1∆t from u(1) by Algorithm 2 and obtain u(2).

3. Evolve ut+(p(x,y,t)u)x =0 for a1+a2
2 ∆t from u(2) by Algorithm 2 and obtain u(3).

4. Evolve ut+(q(x,y,t)u)y =0 for a2∆t from u(3) by Algorithm 2 and obtain u(4).

5. Evolve ut+(p(x,y,t)u)x =0 for a1+a2
2 ∆t from u(4) by Algorithm 2 and obtain u(5).

6. Evolve ut+(q(x,y,t)u)y =0 for a1∆t from u(5) by Algorithm 2 and obtain u(6).

7. Evolve ut+(p(x,y,t)u)x =0 for a1
2 ∆t from u(6) by Algorithm 2 and obtain un+1.

For the 2D problem, we use dimensional-splitting algorithms. A second order Strang
splitting [34] and a fourth order splitting [37,38] are used. The flowchart of a fourth order
splitting algorithm is summarized in Algorithm 3. We consider a prototype 2D transport
equation

ut+(p(x,y,t)u)x+(q(x,y,t)u)y =0. (2.38)

For the initialization, we set up parameters a1 =
1

2−21/3 and a2 =− 21/3

2−21/3 . Let ∆t be the
standard time stepping size.

3 Numerical results

In this section, we present numerical performance of the proposed fifth order SL FD
WENO-AO scheme, denoted as WENO-AO. We also present the performance of other
semi-Lagrangian WENO schemes for comparison. These schemes are the third order
scheme using WENO reconstructions with linear weights 1

6 , 2
3 , 1

6 , denoted as WENO3
[28], fifth order WENO reconstructions for constant coefficient problems, denoted as
WENO5 [28], and WENO-ZQ scheme [41]. The WENO-ZQ scheme is another recon-
struction technique that uses two two-point substencils Sl = {x−1,x0} and Sr = {x0,x1}
and the five-point full stencil. We present its performance for the comparison purpose
for some examples. In our numerical tests, we let the time stepping size for 1D and 2D
problems as

∆t=CFL·∆x and ∆t=
CFL

a/∆x+b/∆y
,

respectively. Here a and b are maximum transport speeds in x and y directions, respec-
tively.
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3.1 1D linear transport problems

Example 3.1. (Linear advection equation). Consider

ut+ux=0, x∈ [−1,1]. (3.1)

We first consider the problem with the initial data u(x,0)=sin(πx) and its exact solution
u(x,t)= sin(π(x−t)). We present the L1 errors and the spatial orders of convergence of
different schemes with a large CFL= 2.2 in Table 1. It is observed that all four schemes
have reached the expected order of convergence, and that WENO-AO preforms the best
in term of the error magnitude especially when the spatial mesh is coarse. Then, we test
four schemes with the initial condition which contains a Gaussian, a square wave, a sharp
triangle wave, and a half ellipse [21]. Fig. 2 shows the performances of these schemes in
capturing solution structures with large time stepping size. We observe that WENO-AO
performs the best in capturing discontinuities sharply and without oscillations, while
WENO-ZQ produces slightly overshoots around contact discontinuities. The oscillations
of WENO-ZQ have been partially discussed in [4, section 5.1].

Table 1: Order of accuracy for (3.1) with u(x,t=0)=sin(x) at T=3. CFL=2.2.

WENO3 WENO5 WENO-ZQ WENO-AO

Mesh L1 error order L1 error order L1 error order L1 error order

40 1.81e-05 – 5.96e-06 – 1.44e-05 – 8.05e-07 –

80 1.61e-06 3.49 1.73e-07 5.11 2.76e-08 9.02 2.43e-08 5.05

160 1.84e-07 3.13 5.32e-09 5.02 7.59e-10 5.18 7.59e-10 5.00

320 2.24e-08 3.04 1.65e-10 5.01 2.37e-11 5.11 2.37e-11 5.00

Figure 2: Discontinuous initial value for linear advection problem. T=4 and CFL=2.2. Middle and right plots
are zoom-in plots around the square wave.

Example 3.2. (Linear equation with variable coefficients). Consider

ut+(sin(x)u)x =0, x∈ [0,2π], (3.2)
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Table 2: Order of accuracy for (3.2) with u(x,t=0)=1 at T=1. CFL=3.

WENO3 WENO-ZQ WENO-AO

Mesh L1 error order L1 error order L1 error order

40 4.61e-4 – 1.48e-04 – 1.41e-04 –

80 2.65e-5 4.12 7.02e-06 4.40 6.82e-06 4.37

160 1.27e-6 4.37 2.51e-07 4.80 2.49e-07 4.78

320 5.89e-8 4.44 8.31e-09 4.93 8.29e-09 4.91

with the initial data u(x,t=0)=1 and the exact solution is u(x,t)= sin(2arctan(e−T tan(x/2)))
sin(x)

.

We apply the SL FD scheme with three different reconstructions: WENO3, WENO-ZQ
and WENO-AO for solving this problem up to T = 1. A large time stepping size with
CFL=3 is used for all schemes. Table 2 gives L1 errors and orders of convergence of these
schemes. The expected orders of convergence are achieved. Compared with the WENO3
scheme, WENO-AO and WENO-ZQ both have better performance in error magnitude
and order of convergence.

3.2 2D linear transport problems

From our 1D tests, we observed that WENO-AO has better performance than the WENO-
ZQ around contact discontinuities. For the 2D tests, we only present numerical results
of WENO-AO, in comparison with WENO3 and WENO5 from [28]. We use the second
order Strang splitting and fourth order dimensional splitting. Unless otherwise specify,
we always apply a PP flux limiter.

Example 3.3. (2D linear advection equation). Consider

ut+ux+uy=0, (x,y)∈ [0,2π]2 , (3.3)

with the initial data u(x,t=0)=sin(x+y) and with the periodic boundary conditions. We
consider the SL FD scheme with three reconstructions, WENO3, WENO5 and WENO-
AO, and with CFL= 2.2. Table 3 shows that all three reconstructions have reached the

Table 3: Order of accuracy for (3.3) with u(x,t=0)=sin(x+y) at T=3.

WENO3 WENO5 WENO-AO

Mesh L1 error order L1 error order L1 error order

402 1.14e-05 – 4.56e-06 – 6.05e-07 –

802 7.61e-07 3.89 1.22e-07 5.22 1.70e-08 5.15

1602 8.33e-08 3.19 3.78e-09 5.01 5.35e-10 4.99

3202 8.97e-09 3.22 1.12e-10 5.07 1.60e-11 5.06
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expected order of convergence. WENO-AO has the best performance in terms of error
magnitude.

Example 3.4. (Rigid body rotation problem). Consider

ut−yux+xuy=0, (x,y)∈ [−π,π]2, (3.4)

with the initial condition,

u(x,y,0)=







rb
0cos( rb(x)π

2rb
0

)6, if rb(x)< rb
0,

0, otherwise,
(3.5)

where rb
0 =0.3π and rb(x)=

√

(x−0.3π)2+y2. In Fig. 3, we present the L1 error vs. CFL
in the logarithm scale. Expected second and fourth order temporal splitting errors are
observed, when the second order Strang splitting and the fourth order splitting schemes
are applied. It is observed that very large CFL numbers are allowed with numerical
stability, and that for large CFL in the range of 10-100, fourth order splitting has better
performance in terms of error magnitudes.

We then perform our numerical test using the initial data containing a slotted disk,
a cone and a smooth hump, see the top left plot in Fig. 4. A spatial mesh of 60×60 is
used and CFL= 2.2. Fig. 4 presents the 3D plot of solutions and Fig. 5 presents 1D cuts
of solutions. From these results, we can observe that the solution resolution of WENO-
AO seems to be better than that of WENO5; and that WENO-AO with the fourth order
splitting performs better than that with Strang splitting when CFL is relatively large.
Fig. 6 verifies the schemes’ ability in preserving positivity of the solution, by looking into
the solutions around zero for schemes with or without PP flux limiter.

Figure 3: Temporal order of accuracy for (3.4) using WENO-AO with Strang splitting and fourth order splitting.
Lines with slope 2 and 4 are plotted as reference. A spatial mesh of 160×160 is used.
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Figure 4: Initial data (upper left), numerical solutions of WENO5 with Strang splitting (upper right), WENO-AO
with Strang splitting (lower left) and WENO-AO with fourth order splitting (lower right) for (3.4). T=12π.

Figure 5: Slides of numerical solution of Fig. 4 at x=0, y=−1.6, and y=1.54.

Example 3.5. (Swirling deformation problem).

ut−
(

cos2
( x

2

)

sin(y)g(t)u

)

x

+

(

sin(x)cos2
(y

2

)

g(t)u

)

y

=0, (x,y)∈ [−π,π]2, (3.6)

with g(t)=cos(πt
T )π. We first test the temporal orders of accuracy of WENO-AO with the

Strang splitting and fourth order splitting, using the initial condition (3.5). As shown in
Fig. 7, the schemes are stable under very large CFL and expected orders of convergence
are observed.
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Figure 6: The 1D cuts of the solution of WENO-AO with fourth order splitting with PP limiter and without
PP limiter. T=12π.

Figure 7: Temporal order of accuracy for (3.6) at T= 1.5 using Strang splitting and fourth-order splitting. A
spatial mesh of 320×320 is used.

We then test the performance of the scheme using the same initial data as in the previ-
ous example. We numerically integrate the solution up to 0.75, when the initial data are
greatly deformed and to time T=1.5 when the initial data are recovered. CFL=2.2 is used
for all simulations. Fig. 8 shows the results of WENO3 with Strang splitting and WENO-
AO with the fourth order splitting at the final integration time T=1.5. 1D cuts of solutions
are plotted in Fig. 9 benchmarked with the exact solution. From Figs. 8-9, WENO-AO is
observed to perform slightly better than WENO3. Fig. 10 shows the meshes and contour
plots of the numerical solution of WENO-AO at final integration time 0.75.

3.3 Application to nonlinear Vlasov simulations

Consider the Vlasov-Poisson system



J. Chen et al. / Commun. Comput. Phys., 30 (2021), pp. 67-96 83

Figure 8: Plots of numerical solution for Eq. (3.6) at T=1.5. CFL=2.2 and final integration time is 1.5. The
mesh of 60×60 is used.

Figure 9: Plots of slides of numerical solution for (3.6) at x=0, y=−1.6 and y=1.54 with CFL=2.2 and final
integration time is 1.5. The mesh of 60×60 is used.

∂ f

∂t
+v·∇x f +E(t,x)·∇v f =0, (x,v)∈Ωx×R, (3.7)

E(t,x)=−∇xφ(t,x), −∆xφ(t,x)=ρ(t,x), (3.8)

ρ(t,x)=
∫

R

f (x,v,t)dv− 1

|Ωx |
∫

Ωx

∫

R

f (t0,x,v)dvdx. (3.9)

In (3.7)-(3.9), x is the position, v is velocity, E is the electric field, φ is the self-consistent
electrostatic potential and f (t,x,v) is the probability distribution function. Periodic bound-
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Figure 10: Plots of WENO-AO with fourth order splitting for Eq. (3.6) with T=1.5. CFL=1 and final integration
time is 0.75. The mesh of 60×60 is used.

ary condition is imposed in the x-direction and zero boundary condition is imposed in
the v-direction for all our tests. A Fast Fourier Transform is used for the Poisson equa-
tion. ρ(t,x) is computed by rectangular rule, ρ(t,x)=∑ j f (t,x,vj)∆v, which is spectrally
accurate [7], when the underlying function is smooth enough. There are some classical
preservation results about VP system [29]:

1. the preservation of the Lp norm, for 1≤ p≤∞,

d

dt

∫

v

∫

x
f (x,v,t)pdxdv=0; (3.10)

2. the preservation of the entropy,

d

dt

∫

v

∫

x
f (x,v,t)log( f (x,v,t))dxdv=0; (3.11)

3. the preservation of the energy,

d

dt
(
∫

v

∫

x
f (x,v,t)v2dxdv+

∫

x
E2(x,t)dx)=0. (3.12)

We would like to emphasize that our new scheme is mass conservative. The other norms
preservation is highly nontrivial. Here we track these norms to assess the performance of
different numerical schemes. Below we test three different schemes: WENO5 with Strang
splitting, WENO-AO with Strang splitting and fourth order splitting to compare their
performances. We only apply the positivity-preserving limiter for WENO-AO schemes
for all simulations in this subsection.

Example 3.6. (Weak Landau damping). Consider

f (x,v,t=0)=
1√
2π

(1+αcos(kx))exp
(−v2

2

)

, (3.13)
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Figure 11: Weak Landau damping: time evolutions of electric field in L2 norms, L1 norms and L2 norms of the
solution as well as the discrete kinetic energy and entropy.

with α = 0.01 and k = 0.5. The computation domain is [0,4π]×[−vmax,vmax]. The pa-
rameters of numerical simulations are vmax = 5, Nx = Nv = 128, CFL= 2.2 and the final
integration time is T=60. We observe that all three schemes generate very consistent re-
sults. The time evolution of the L2 norm of the electric field is plotted in the top left panel
of Fig. 11; the correct damping of the electric field is observed, benchmarked with the
red line is the theoretical value γ=0.1533 [15]. The time evolution of variation of the L2

norms of solution, energy, and entropy in the discrete sense are also presented. All three
schemes have comparable performance on preserving the physical norms. The relevant
physical norms are preserved better by WENO-AO than WENO5, especially, WENO-AO
with Strang splitting has the best performance on preserving the physical norms. The
scheme is mass conservative and positivity preserving, thus preserves the L1 norm up to
machine precision. We omit this plot for brevity.

Example 3.7. (Strong Landau damping). Consider Eq. (3.13) with the initial condition
(3.13) with α=0.5 and k=0.5. The numerical simulation parameters for all schemes are
vmax=5, Nx =Nv =128. We first test the temporal orders of accuracy of WENO-AO with
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Figure 12: Strong Landau damping. Left: temporal order of accuracy of schemes for (3.13) with the initial
condition (3.13) with α= 0.5 and k= 0.5. T= 2. The reference solution produced from the same scheme with
CFL=0.01. Right: surface plots of numerical solutions of WENO-AO with PP limiter at T=60 with CFL=2.2.

Strang splitting and fourth order splitting; we solve this problem up to T= 2. From the
left plot of Fig. 12, we observe that both schemes have reached expected order. Fourth
order splitting scheme has the much smaller error magnitude than the Strang splitting
scheme. We then simulate this problem up to T= 60 and present the surface plot of the
solution on the right plot of Fig. 12.

The time evolution of the L2 norm of the electric field with the linear decay rate γ1=
−0.2812 and γ2 =0.0770 [9, 19] are plotted in the first plot of Fig. 13. The time evolution
of variation of the L2 norms of the solution, energy and entropy in the discrete sense are
also presented in Fig. 13. All three schemes have comparable performance on preserving
these physical invariances. With the mass conservation property and PP flux limiter, the
L1 norm of the solution is preserved. We skip the plot for brevity.

Example 3.8. (Two stream instability). Consider

f (x,v,t=0)=
2e

−v2

2

7
√

2π

(

1+5v2
)

(

1+α
cos(2kx)+cos(3kx)

1.2
+cos(kx)

)

, (3.14)

with α=0.01, k=0.5 on the computation domain [0,4π]×[−vmax,vmax]. Set our simulation
parameters as vmax = 5, Nx = Nv = 128, and CFL= 2.2. As in Examples 3.6 and 3.7, we
simulate this example up to T = 60 and report the surface plot of the solution in the
first plot of Fig. 14. In Fig. 14, the L2 norm of the electric field and the time evolution
of L2 norms, energy, and entropy of the solutions in the discrete sense are presented.
Notice that, the energy and entropy should be preserved theoretically. However, the
schemes in this paper only preserve the mass; The deviation of these norms from the
exact initial value help to assess the performance of different schemes under the same
mesh resolution.
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Figure 13: Strong Landau damping: time evolutions of electric field in L2 norms, L∞ norms, L1 norms and L2

norms of the solution as well as the discrete kinetic energy and entropy.

3.4 Application to 2D guiding center Vlasov model

Now we consider the guiding center model [10, 12, 32],

ρt+E⊥ ·∇ρ=0, (3.15)

where the unknown variable ρ denotes the charge density of the plasma, E⊥=(−E2,E1)
with the electrostatic field E=(E1,E2), satisfying

∆Φ=ρ, E=−∇Φ. (3.16)

It is well known that the L2 norms of enstrophy ρ and energy E are constants in time,

d

dt
‖ρ(t)‖2 =

d

dt
‖E(t)‖2 =0. (3.17)

For this example, classical linear weights for WENO5 do not exist; we will test the WENO-
AO and WENO3 schemes and compare their performances.
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Figure 14: Two stream instability. Upper left: surface plots of the numerical solutions at T=60. Time evolutions
of electric field in L2 norms (upper right), L2 norm of the solution, discrete kinetic energy and entropy (bottom
plots).

Example 3.9. (Kelvin-Helmholtz instability [10]). We consider (3.15) with the initial con-
dition

ρ(x,y,0)=sin(y)+0.015cos(x), x∈ [0,4π] , y∈ [0,2π] . (3.18)

We set Nx = Ny = 128, CFL= 2.2 and final integration time T = 20. We applied Strang
splitting in time to both WENO3 and WENO-AO. The 2D contour plot of WENO-AO
scheme is presented in the first plot of Fig. 15. Then we present a 1D cut of the numerical
solutions at y = π, comparing solutions from WENO3 and WENO-AO. In the second
row of Fig. 15, we present the time evolution of the energy and enstrophy in the discrete
sense. We observed that WENO-AO scheme is slightly better than the WENO3 scheme.
The performance is not significantly better as the errors of both schemes are dominated
by the temporal splitting error.

3.5 Application to the 2D incompressible Euler equations

We now consider the 2D incompressible Euler equations in the vorticity-stream function,

ωt+∇·(uω)=0, (3.19)

u=∇⊥Φ=
(

−∂yΦ,∂xΦ
)

, ∆Φ=ω. (3.20)
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Figure 15: Kelvin-Helmholtz instability: vorticity of WENO-AO at T = 20 (upper left), 1D cuts of solutions
(upper right), and time evolutions of the energy (lower left) and enstrophy (lower right).

This system preserves the L2 norm of enstrophy and L2 norm of energy as we described
in the guiding center Vlasov model. As we mentioned in Section 3.3, our new scheme
is only mass conservative. The other norms preservation is highly nontrivial. Here we
track these norms to assess the performance of different numerical schemes. We apply
the Strang splitting in time to both WENO3 and WENO-AO.

Example 3.10. (Shear flow problem). We set the initial condition [5, 39],

ω(x,y,0)=

{

δcos(x)− 1
ρ sech2((y−π/2)/ρ), if y≤π,

δcos(x)+ 1
ρ sech2((3π/2−y)/ρ), if y≥π,

(3.21)

with δ=0.05 and ρ=π/15. We use Nx=Ny=128 with CFL=2.2 and the final integration
time T=8. The contour plots of both solutions are plotted in the first row of Fig. 16. The
variational time evolution of L2 norm of enstrophy and energy are plotted in the second
row of Fig. 16. We can observe that WENO-AO preserves enstrophy and energy slightly
better than WENO3. Both schemes have similar dissipation property since the errors of
both schemes are dominated by the splitting errors.
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Figure 16: Shear flow problem: vorticity of WENO-AO and WENO3 at T=8 with variational time evolutions
of the energy and enstrophy.

Example 3.11. (Vortex patch problem). We set the initial condition [28],

ω(x,y,0)=

{

−1, x∈ [π/2,3π/2] , y∈ [π/4,3π/4]

1, x∈ [π/2,3π/2] , y∈ [5π/4,7π/4] .
(3.22)

We set Nx=Ny=128, CFL=2.2 and final integration time T=10. The contour WENO-AO
solutions and the time evolution of L2 norms of enstrophy and energy are plotted in the
Fig. 17. The WENO-AO scheme preserves energy and enstrophy norms better. Again,
both schemes have roughly similar dissipation property since the errors of both schemes
are dominated by the splitting errors.
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Figure 17: Vortex patch problem. Vorticity of WENO-AO at T=10 (left) and time evolution of energy (middle)
and enstrophy (right) in the discrete sense.

Appendix

Flux functions H(k)(xi+ 1
2
) for a(xi,t

n)≥0: Let ξ j−i =
xj−x⋆j

∆x , j= i−2,··· ,i+2.

H(1)(xi+ 1
2
)=

∆x

43200
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(1440ξ−2+1500ξ2
−2+700ξ3

−2+150ξ4
−2+12ξ5

−2−1170ξ2
−1−1430ξ3
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1
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2−330ξ3
2+135ξ4
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n
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1−648ξ5
1−1440ξ2

2+1680ξ3
2−630ξ4

2+72ξ5
2)u

n
i−1

+(2160ξ2
−2+2280ξ3

−2+720ξ4
−2+72ξ5

−2+7020ξ2
−1−780ξ3

−1−2340ξ4
−1

−468ξ5
−1+33840ξ0−14100ξ3

0+1692ξ5
0+14580ξ2

1+1620ξ3
1−4860ξ4

1

+972ξ5
1+3240ξ2

2−3420ξ3
2+1080ξ4

2−108ξ5
2)u

n
i

+(−960ξ2
−2−1120ξ3

−2−420ξ4
−2−48ξ5

−2−2340ξ2
−1−520ξ3

−1+1170ξ4
−1

+312ξ5
−1−11280ξ2

0+7520ξ3
0+1410ξ4

0−1128ξ5
0+19440ξ1−8100ξ2

1

−5400ξ3
1+4050ξ4

1−648ξ5
1−4320ξ2

−2+3120ξ3
−2−810ξ4

−2+72ξ5
−2)u

n
i+1

+(180ξ2
−2+220ξ3

−2+90ξ4
−2+12ξ5

−2+390ξ2
−1+130ξ3
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Nonlinear weights calculation:

Compute the linear weights as follows: in our implementation, we set γHi=γLo=0.85.

γ1=γHi, γ2=(1−γHi)(1−γLo)/2,

γ3=(1−γHi)γLo, γ4=(1−γHi)(1−γLo)/2.
(A.5)

Compute the smoothness indicator βi for each stencil Sr, r=1,2,3,4 by
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Compute τ by

τ=
1

3
(|β1−β2|+|β1−β3|+|β1−β4|). (A.10)
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Compute the unnormalized nonlinear weights as (A.11), where ǫ = 10−8 in our imple-
mentation.

wi=γi(1+τ2/(βi+ǫ)2), i=1,··· ,4. (A.11)

Normalize the nonlinear weights by

w̄i=wi/(w1+w2+w3+w4), i=1,··· ,4. (A.12)

Flux functions H(k)(xi+ 1
2
) for a(xi,t

n)≤0:
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Smoothness indicators for a(xi,t
n)≤0:
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