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Abstract. The computational approach for solving the Faddeev-Merkuriev equations
in total orbital momentum representation is presented. These equations describe a sys-
tem of three quantum charged particles and are widely used in bound state and scatter-
ing calculations. The approach is based on the spline collocation method and exploits
intensively the tensor product form of discretized operators and preconditioner, which
leads to a drastic economy in both computer resources and time.
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1 Introduction

Since the pioneering work of Hylleraas [1], quantum three-body systems remain the
source of challenges and inspirations for theoretical and experimental physicists. New
effects specific to three-body systems have been predicted, such as Thomas effect [2],
Efimov effect [3], the Phillips line [4, 5]. Direct modeling of nuclear and molecular three-
body systems paved a way to develop and to fine-tune realistic models of inter-atomic
and inter-nucleon interactions [6–9]. Ab-initio calculations of some specific three-atomic
systems may give essential contributions to metrology [10]. The Coulomb quantum
three-body systems are also of great importance. For instance, delicate calculations of
asymmetric heavy-hydrogen molecular ions gave an insight on mu-catalysis [11], studies
of positron-atom interactions are valuable for positron-emission tomography.
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Even though the basic mathematical model for such a broad spectrum of physical
systems is the Schrödinger equation, the diversity of model interactions and particular
physical states leads to a variety of employed computational methods [12–25]. Thus,
our ability to perform direct model-free calculations for such wide range of systems is of
utmost importance for many branches of physics.

Our goal is to present a universal and efficient computational framework applicable
to this broad variety of physical systems and states. In order to achieve this goal we
start from the following presuppositions. The approach should be based on a physically
correct and mathematically sound representation of the problem. The Faddeev equa-
tions formalism [26–28] fulfills all of these requirements. Clear separation of asymptotic
channels corresponding to different clusterisations of the system is one of the main ad-
vantageous features of the formalism from the point of view of practical applications.
Coulomb systems are incorporated into the original formalism by the Merkuriev’s ver-
sion of the Faddeev equations in [29, 30], where the splitting of the Coulomb potentials
into long-rage and short-range parts was introduced. Being mathematically equivalent
to the Schrödinger equation [29, 30], the Faddeev-Merkuriev (FM) equations have ad-
vantages of much simpler boundary conditions and much simpler behavior of their solu-
tions. This leads to much weaker requirements for the basis employed in the calculations.

Direct solution of the FM equations is not, however, a simple task. In order to reduce
the dimensionality of the configuration space the symmetries of the solutions must be
taken into account. We base our computational approach on total orbital momentum rep-
resentation which leads to systems of partial differential equations in three-dimensional
space. Solving such systems numerically is still a challenging task which calls for devel-
oping an effective and robust preconditioning technique. Here we propose a precondi-
tioning scheme based on the tensor-trick algorithm and compare our numerical scheme
with solving the corresponding sparse linear system using PARDISO direct solver. Our
approach clearly outperforms the direct method both in time and memory requirements,
which paves a way to accurate calculations of rather challenging systems, including
highly rotationally excited three-body states.

In the following sections we give a description of the FM equations formalism, de-
scribe our numerical scheme, and give a few computational examples for some well-
studied systems of diverse physical nature.

Throughout the paper we assume h̄ = 1 and we use bold font for vectors as, for in-
stance, x and normal font for their magnitude x= |x|.

2 The Faddeev-Merkuriev equations

2.1 Notation and basic equations

The FM equations for three quantum particles are of the form
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{
Tα+Vα(xα)+ ∑

β 6=α

V
(l)
β (xβ,yβ)−E

}
ψα(xα,yα)

=−V
(s)
α (xα,yα) ∑

β 6=α

ψβ(xβ,yβ), α=1,2,3. (2.1)

These equations describe bound and scattering states with the energy E of a system of
three spinless non-relativistic charged particles of masses mα and charges Zα in their cen-
ter of mass system of coordinates [30]. In what follows the indices α, β, γ run over the
set {1,2,3} enumerating particles and an index, say α, is also used for identifying the
complementary pair of particles, since in the partition {α(βγ)} the pair of particles βγ
is uniquely determined by the particle with the number α. The particle positions are de-
scribed by pairs of Jacobi vectors (see Fig. 1). The standard Jacobi coordinates are defined
for a partition α(βγ) as the relative position vector xα between the particles of the pair βγ
and the relative vector yα between their center of mass and the particle α. In applications
it is convenient to use reduced Jacobi coordinates xα,yα which are Jacobi vectors scaled

by factors
√

2µα and
√

2µα(βγ), respectively, where the reduced masses are given by

µα=
mβmγ

mβ+mγ
, µα(βγ)=

mα(mβ+mγ)

mα+mβ+mγ
. (2.2)

For different α′s the reduced Jacobi vectors are related by an orthogonal transform

xβ= cβαxα+sβαyα, yβ=−sβαxα+cβαyα, (2.3)

where

cβα=−
[

mβmα

(M−mβ)(M−mα)

]1/2

, sβα=(−1)β−αsgn(β−α)(1−c2
βα)

1/2

and M = ∑α mα. In what follows, where it is due, it is assumed that β Jacobi vectors
are represented through α vectors via (2.3). The orientation of Jacobi vectors is impor-
tant, and it is chosen as it is shown in Fig. 1. The kinetic energy operators are given by
Tα≡−∆xα−∆yα . The potentials Vα represent a sum of the pairwise Coulomb interaction

VC
α (xα)=

√
2µαZβZγ/xα (β,γ 6=α) and a short-range Vsh

α (xα) (decreasing faster than 1/x2
α

as xα→∞) potential. The potentials Vα are split into the interior (short-range) V
(s)
α and

the tail (long-range) parts V
(l)
α

Vα(xα)=V
(s)
α (xα,yα)+V

(l)
α (xα,yα). (2.4)

Eqs. (2.1) can be summed up leading to the Schrödinger equation for the wave function
Ψ=∑α ψα, where ψα are the wave function components given by the solution of Eqs. (2.1).
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Figure 1: Jacobi coordinates for three particles.

The splitting procedure (2.4) is especially important for scattering calculations. It
makes the properties of the FM equations for the Coulomb potentials as appropriate for
scattering problems as the standard Faddeev equations in the case of short-range poten-
tials [19, 30]. The key property of the FM Eqs. (2.1) is that the right-hand side of each
equation is a square-integrable function (i.e. confined to the vicinity of the triple collision
point) [30, 31]. Splitting (2.4) of the potentials in general case is done in the three-body
configuration space by the Merkuriev cut-off function χα [30]

V
(s)
α (xα,yα)=χα(xα,yα)V

C
α (xα)+Vsh

α (xα), V
(l)
α (xα,yα)=(1−χα(xα,yα))VC

α (xα). (2.5)

This splitting confines the short-range part of the potential to the regions in the three-
body configuration space corresponding to the three-body collision point (particles are
close to each other) and the binary configuration (xα≪ yα, as yα→∞). The form of the
cut-off function can be rather arbitrary within some general requirements [29]. One of
the most often used variant [32] of this function reads

χα(xα,yα)=2/{1+exp[(xα/x0α)
να /(1+yα/y0α)]} . (2.6)

The parameters x0α, y0α and να >2 can in principle be chosen arbitrarily, but their choice
changes the properties of components ψα that are important from both theoretical and
computational points of view [31]. In the papers [33, 34] we have discussed the choice
of the cut-off function and have presented some practical algorithm of how to choose its
parameters efficiently. In the bound state calculations the splitting can be omitted, that is

one can take V
(s)
α =Vα and V

(l)
α =0. Then Eqs. (2.1) turn into standard Faddeev equations.

On the other hand, in many calculations the choice V
(s)
β =0, V

(l)
β =Vβ with β=3 or β=2,3

is possible [33]. Then the set of Eqs. (2.1) decouples leading to two equations in the first
case, and to the Schrödinger equation in the second case. Therefore in principle, the
methods of this paper are applicable to solving the Schrödinger equation as well.
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Asymptotic boundary conditions are to be added to Eqs. (2.1). The bound state calcu-
lations imply zero Dirichlet-type boundary conditions ψα(xα,yα)→0 as xα or yα→∞. The
resulting eigenvalue problem allows one to determine the discrete energy spectrum. The
scattering problem gives rise to much more complicated radiation boundary conditions
and a subsequent boundary value problem. The exact asymptotic form of each compo-
nent depends on the total energy E. Comprehensive descriptions of scattering boundary
conditions can be found in [30] (for the total energy E of the system below the three-body
breakup threshold see also formula (8) of [33] and discussion therein). Summarizing, for
Eqs. (2.1) two problems are possible:

• determination of discrete energy levels of bound states: eigenvalue problem with
Eqs. (2.1) and asymptotic zero Dirichlet-type boundary conditions;

• scattering problem at a given total energy E: boundary value problem with Eqs. (2.1)
and asymptotic boundary conditions for scattering states.

The methods that we describe in this paper are equally applicable for solving both prob-
lems, but for definiteness in what follows we refer to the bound state problem.

2.2 Total orbital momentum representation. Kinematics

Eqs. (2.1) are six dimensional PDE and therefore their direct solving on the modern com-
puters is quite a challenging problem. One of the ways to decrease the dimension of the
problem is to use some basis expansion for the solution ψα. Among the approaches used
for calculations, an expansion in bipolar harmonics is often used [18, 35, 36], which re-
duces (2.1) to an infinite set of coupled two dimensional integro-differential equations.
This set is then truncated to the finite set of equations to make their numerical solution
possible. In [37] another approach was proposed. It is based on the expansion of compo-
nents ψα in terms of eigenfunctions of the total orbital momentum squared operator. The
total orbital momentum is an integral of motion for the three-particle system. This makes
it possible to reduce the FM equations to a finite set of three dimensional (3D) PDE by
projecting onto a subspace of a given total orbital momentum. These equations are the
3D FM equations in total orbital momentum representation and are the equations that we
solve in this work. In the subsequent part of this section we briefly outline the deriva-
tion of the 3D FM equations by using a notation more appropriate for our purposes than
in [37].

We start by introducing new kinematic coordinates (Xα, Ωα) in the six dimensional
configuration space of the problem. The coordinates Xα = {xα,yα,zα} determine particle
positions in the plane which contains all three particles, zα≡ (xα,yα)/(xαyα) is cosine of
an angle θα between the vectors xα and yα. They are depicted in Fig. 1. The coordinates
Ωα = {φα,ϑα,ϕα} determine the orientation of the plain containing the particles. They
are defined as follows: let xyz be some laboratory system of coordinates and x′′′y′′′z′′′

the body-fixed system of coordinates in which yα is along the z′′′-axis and xα lies in the



260 V. A. Gradusov et al. / Commun. Comput. Phys., 30 (2021), pp. 255-287

xα

yα

x

y

z

(a)

xα

yα

x

y

z,z'

ϕα

x'

y'

(b)

xα

yα

x

y

z

ϑα

y''

x''

z''

(c)

xα

yα

x

y

z

x''φα

y'''

z'''

x'''

(d)

Figure 2: Definition of Euler angles φα,ϑα,ϕα.

.

x′′′z′′′-plane. They are depicted in Fig. 2(d). Then φα,ϑα,ϕα are the Euler angles of rotation
of the laboratory to the body-fixed system of coordinates. Three rotations are being done:
the rotation in counter-clockwise direction around the z-axis by an angle φα ∈ [0,2π) is
followed by the rotation in counter-clockwise direction around the new y′-axis by an
angle ϑα ∈ [0,π), and the last rotation in counter-clockwise direction is around the new
z′′-axis by an angle ϕα ∈ [0,2π) (Fig. 2). These rotations are described by the standard
rotation matrix [38]

R(φα,ϑα,ϕα)

=




cosφαcosϑαcos ϕα−sinφα sinϕα −cosφα cosϑα sinϕα−sinφα cosϕα cosφα sinϑα

sinφαcosϑα cosϕα+cosφα sinϕα −sinφαcosϑαsinϕα+cosφα cosϕα sinφαsinϑα

−sinϑαcos ϕα sinϑαsinϕα cosϑα


.

(2.7)
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Now the connection between sets of coordinates (xα,yα) and (Xα,Ωα) is easily expressed
by

xα = xαR(φα,ϑα,ϕα)




sinθα

0
cosθα


, yα=yαR(φα,ϑα,ϕα)




0
0
1


, (2.8)

tanφα=
(yα)2

(yα)1
, cosϑα=

(yα)3

yα
, cos ϕα=

−(xα)3/xα+cosϑα cosθα

sinϑα sinθα
. (2.9)

In the case of formulae (2.9) the ambiguity of angle values is resolved by the direction of
the rotations described by R(φα,ϑα,ϕα). The connection between different sets of coordi-
nates Xα and Xβ easily follows from (2.3):

xβ =
√

c2
βαx2

α+2sβαcβαxαyαzα+s2
βαy2

α, (2.10a)

yβ =
√

s2
βαx2

α−2sβαcβαxαyαzα+c2
βαy2

α, (2.10b)

zβ =
sβαcβα(y

2
α−x2

α)+(c2
βα−s2

βα)xαyαzα

xβyβ
. (2.10c)

The connection between sets of Euler angles can be written in the form

R(φβ,ϑβ,ϕβ)=R(φα,ϑα,ϕα)R(0,wβα,0), (2.11)

where wβα is the angle such that the rotation by this angle in the plain containing particles
places vector yβ in the position of vector yα. Eq. (2.11) follows immediately from the

identity R
−1(0,wβα,0)R−1(φα,ϑα,ϕα) =R

−1(φβ,ϑβ,ϕβ) which simply expresses the fact
that coordinates of a vector in the body-fixed frames defined with respect to different
Jacobi coordinate sets α and β are connected by the rotation matrix R(0,wβα,0). With the
orientation of Jacobi vectors chosen in this article (see Fig. 1) the angle wβα is given by

wβα=





arccos
−sβαxαzα+cβαyα

yβ
, if (β,α)=(2,1),(3,2),(1,3),

2π−arccos
−sβαxαzα+cβαyα

yβ
, otherwise,

(2.12)

where the range of arccos is [0,π].

2.3 Total orbital momentum representation. Equations

The change of variables in Eqs. (2.1) can be derived quite easily with any symbolic com-
puting system like Mathematica [39]. The equations now read

{
Tα+Vα(xα)+ ∑

β 6=α

V
(l)
β (xβ,yβ)−E

}
ψα(Xα,Ωα)

=−V
(s)
α (xα,yα) ∑

β 6=α

ψβ(Xβ,Ωβ), α=1,2,3, (2.13)
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where ψα(Xα,Ωα) denote the components expressed in new variables. The kinetic energy
operator in new variables takes the form

Tα =−
1

y2
α

∂

∂yα
y2

α

∂

∂yα
− 1

x2
α

∂

∂xα
x2

α

∂

∂xα

−
(

1

y2
α

+
1

x2
α

)(
1

sinθα

∂

∂θα
sinθα

∂

∂θα
+

1

sin2θα

∂2

∂ϕ2
α

)
+

J2−Kα

y2
α

, (2.14)

where J2 is the total orbital momentum squared operator

J2=−
[

1

sinϑα

∂

∂ϑα
sinϑα

∂

∂ϑα
+

1

sin2ϑα

(
∂2

∂φ2
α

−2cosϑα
∂2

∂φα∂ϕα
+

∂2

∂ϕ2
α

)]
(2.15)

and Kα is given by

Kα=
∂

∂θα

(
J
(+)
α + J

(−)
α

)
+cotθα

(
J
(+)
α − J

(−)
α

)
Jz′+2J2

z′ (2.16)

with

J
(±)
α =∓e∓iϕα

[
± ∂

∂ϑα
+

i

sinϑα

∂

∂φα
−icotϑα

∂

∂ϕα

]
, Jz′=−i∂/∂ϕα. (2.17)

Now we introduce Wigner D-functions D J
M,M′

D J
MM′(φα,ϑα,ϕα)=e−iMφαdJ

MM′(ϑα)e
−iM′ϕα , (2.18)

where

dJ
MM′(ϑα)=

√
(J+M′)!(J−M)!

(J+M)!(J−M)!

(
sin

ϑα

2

)M′−M(
cos

ϑα

2

)M′+M

P
(M′−M, M′+M)
J−M′ (cosϑα).

(2.19)

Here P
(α,β)
n are the Jacobi polynomials [40]. The definition (2.18) coincides with those

of [41, 42], but differs from that of [37]. Wigner D-functions are the common eigenfunc-
tions of total orbital momentum squared J2 and its projection Jz =−i∂/∂φα operators

J2D J
MM′= J(J+1)D J

MM′ , JzD J
MM′=−MD J

MM′. (2.20)

They also obey

J
(±)
α D J

MM′=±λJ,±M′D J
MM′±1, Jz′D

J
MM′=−M′D J

MM′ , (2.21)

where

λJM′=
√

J(J+1)−M′(M′+1). (2.22)
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The orthogonality conditions are

∫ 2π

0
dφα

∫ 2π

0
dϕα

∫ π

0
dϑα sinϑα

(
D J1

M1M′1
(φα,ϑα,ϕα)

)∗
D J2

M2M′2
(φα,ϑα,ϕα)

=
8π2

2J1+1
δJ1 J2

δM1M2
δM′1M′2

. (2.23)

Due to the rotation transformation (2.11) the Wigner D-functions of arguments with dif-
ferent index α are bound by the following relationship

D J
MM′(φβ,ϑβ,ϕβ)=

J

∑
M′′=−J

D J
MM′′(φα,ϑα,ϕα)D J

M′′M′(0,wβα,0). (2.24)

Wigner D-functions with integer J≥0 and |M|,|M′|≤ J form a basis in the space of square
integrable functions on the domain [0,2π]×[0,π]×[0,2π]. However, as a basis for the
expansion of FM components we use linear combinations of Wigner D-functions defined
as

F Jτ
MM′(Ωα)=

1√
2+2δM′0

(
D J

MM′(Ωα)+τ(−1)M′D J
M,−M′(Ωα)

)
, (2.25)

where τ=±1 is the parity. They are constructed to be the eigenfunctions not only of J2

and Jz but also of the inversion operator

PF Jτ
MM′(φα,ϑα,ϕα)=F Jτ

MM′(φα+π,π−ϑα,π−ϕα)=τ(−1)J F Jτ
MM′(φα,ϑα,ϕα). (2.26)

This equation follows easily from the identity D J
MM′(φα+π,π−ϑα,π−ϕα) =

(−1)J+M′D J
M,−M′(φα,ϑα,ϕα). Eqs. (2.20), (2.21) for F Jτ

MM′ become

J2F Jτ
MM′= J(J+1)F Jτ

MM′ , JzF Jτ
MM′=−MF Jτ

MM′ , Jz′F
Jτ
MM′=−M′F J,−τ

MM′ , (2.27a)
(

J
(+)
α + J

(−)
α

)
F Jτ

MM′=λJ,M′F Jτ
M,M′+1

√
1+δM′0(1−δM′0δτ,−1)

−λJ,−M′F Jτ
M,M′−1

√
1+δM′1(1−δM′0)(1−δM′1δτ,−1), (2.27b)

(
J
(+)
α − J

(−)
α

)
Jz′F

Jτ
MM′=−M′λJ,M′F Jτ

M,M′+1

√
1+δM′0(1−δM′0δτ,−1)

−M′λJ,−M′F Jτ
M,M′−1

√
1+δM′1(1−δM′0)(1−δM′1δτ,−1). (2.27c)

The orthogonality conditions are easily deduced from (2.23)

∫ 2π

0
dφα

∫ 2π

0
dϕα

∫ π

0
dϑα sinϑα

(
F J1τ1

M1 M′1
(φα,ϑα,ϕα)

)∗
F J2τ2

M2M′2
(φα,ϑα,ϕα)

=
8π2

2J1+1
δJ1 J2

δτ1τ2 δM1M2
δM′1M′2

(2.28)
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and the relation between the functions of different arguments follows from (2.24)

F Jτ
MM′(φβ,ϑβ,ϕβ)=

J

∑
M′′=M0

(−1)M′−M′′ 2√
2+2δM′0

F Jτ
M′M′′(0,wβα,0)F Jτ

MM′′(φα,ϑα,ϕα), (2.29)

where we have defined
M0=(1−τ)/2. (2.30)

Finally, from the definition (2.25) and the identity F Jτ
M,−M′= τ(−1)M′F Jτ

M,M′ it follows that

the functions F Jτ
MM′ with integer J≥0, τ=±1, |M|≤ J and (1−τ)/2≤M′≤ J also form a

basis in the space of square integrable functions on the domain [0,2π]×[0,π]×[0,2π].

We are now ready to expand the FM components in terms of the functions F Jτ
MM′

ψα(Xα,Ωα)=
+∞

∑
J=0

∑
τ=±1

J

∑
M=−J

J

∑
M′=M0

ψJτ
αMM′(Xα)

xαyα
F Jτ

MM′(φα,ϑα,ϕα). (2.31)

The factor 1/(xαyα) is introduced here to get rid of the first derivatives in xα and yα in the
resulting equations. Substituting (2.31) into the FM Eqs. (2.1), projecting them onto the

basis functions F Jτ
MM′ and using Eqs. (2.27)-(2.29) we obtain the finite set of 3D equations

for partial components ψJτ
αMM′(Xα)

[
T Jτ

αMM′+Vα(xα)+ ∑
β 6=α

V
(l)
β (xβ,yβ)−E

]
ψJτ

αMM′(Xα)

+T Jτ−
αM,M′−1ψJτ

αM,M′−1(Xα)+T Jτ+
αM,M′+1ψJτ

αM,M′+1(Xα)

=−V
(s)
α (xα,yα) ∑

β 6=α

xαyα

xβyβ

J

∑
M′′=M0

(−1)M′′−M′ 2√
2+2δM′′0

F Jτ
M′′M′(0,wβα,0)ψJτ

βMM′′(Xβ). (2.32)

Here the kinetic part is of the form

T Jτ
αMM′=−

∂2

∂y2
α

+
1

y2
α

(
J(J+1)−2M′2

)

− ∂2

∂x2
α

−
(

1

y2
α

+
1

x2
α

)(
∂

∂zα
(1−z2

α)
∂

∂zα
− M′2

1−z2
α

)
, (2.33)

T Jτ±
αM,M′±1=±

1

y2
α

λJ,±M′
√

1+δM′0(1)

[
−
√

1−z2
α

∂

∂zα
±(M′±1)

zα√
1−z2

α

]
. (2.34)

The key property of the obtained equations is that equations with different J, τ and M
form independent sets of equations. This is the direct consequence of the fact that the total
orbital momentum, its projection and the parity are the integrals of motion for the three-
particle system. For given J, τ and M Eqs. (2.32) are enumerated by indices M′=M0,··· , J
and α=1,2,3 thus forming a finite set of 3nM three dimensional PDEs. Here

nM= J−M0+1 (2.35)
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is the number of possible values of M′ for given J and τ. In addition to zero Dirichlet

asymptotic boundary conditions the partial components ψJτ
αMM′ must also satisfy zero

boundary conditions on the lines xα =0, yα =0 to be continuous.
Eqs. (2.32) are called the (3D) FM equations in total orbital momentum representation.

For the first time they were obtained in [37] in a slightly different form. They are the main
result of this section.

2.4 Permutational symmetry

As is well known from the basics of quantum mechanics, presence of identical particles
in the system leads to a symmetry (antisymmetry) of the wave function. Here we show
how it can be used to reduce the number of 3D FM equations. In the three-particle system
two cases of two or three identical particles are possible. Let the particles α and β be
identical. Then the operator Pαβ which permutes the coordinates of particles α and β
in a wave function is an additional integral of motion for a three-particle system and
commutes with the full Hamiltonian of a system. As a result, equations for symmetric
and antisymmetric parts of the wave function can be solved independently.

Let ψα be the FM components of a symmetric or antisymmetric part of the wave func-
tion Ψ=ψ1+ψ2+ψ3 satisfying PαβΨ= pΨ with p=1 or p=−1 respectively. We now find
the constraints on the components in these cases. Consider for definiteness the symmetry
(antisymmetry) with respect to operator P12. Note that permutation of particles 1 and 2
leads to the following change in pairs of Jacobi vectors:

(x1,y1)→ (−x2,y2), (x2,y2)→ (−x1,y1), (x3,y3)→ (−x3,y3). (2.36)

Then from the relation

P12

(
ψ1(x1,y1)+ψ2(x2,y2)+ψ3(x3,y3)

)
=ψ1(−x2,y2)+ψ2(−x1,y1)+ψ3(−x3,y3)

= pψ1(x1,y1)+pψ2(x2,y2)+pψ3(x3,y3) (2.37)

we obtain the constraints

ψ2(x2,y2)= pψ1(−x2,y2), ψ3(x3,y3)= pψ3(−x3,y3). (2.38)

Thus in the case of two identical particles 1 and 2 the component ψ3 is symmetric (an-
tisymmetric) with respect to its argument x3 and components ψ1 and ψ2 are simply
related by the first identity of (2.38). In the case of three identical particles and fully
(anti)symmetric wave function it obeys P12Ψ= P23Ψ= P13Ψ= pΨ, then additionally we
have

ψ1(x1,y1)=ψ2(x1,y1)=ψ3(x1,y1)= pψ1(−x1,y1). (2.39)

In coordinates (Xα,Ωα) the substitution (xα,yα)→ (−xα,yα) reads

(xα,yα,zα,φα,ϑα,ϕα)→
(

xα,yα,−zα,φα,ϑα,

{
ϕα+π,ϕα∈ [0,π),
ϕα−π,ϕα∈ [π,2π)

)
. (2.40)
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Then from the identity F Jτ
MM′(φα,ϑα,ϕα±π)=(−1)M′F Jτ

MM′(φα,ϑα,ϕα) and the definition of
partial components (2.31) we get

ψα(−xα,yα)= ∑
JτMM′

(−1)M′ ψ
Jτ
αMM′(xα,yα,−zα)

xαyα
F Jτ

MM′(φα,ϑα,ϕα). (2.41)

Thus, finally, the constraints (2.38) and (2.39) for partial components take the form

ψJτ
2MM′(x2,y2,z2)= p(−1)M′ψJτ

1MM′(x2,y2,−z2), (2.42a)

ψJτ
3MM′(x3,y3,z3)= p(−1)M′ψJτ

3MM′(x3,y3,−z3) (2.42b)

and

ψJτ
1MM′(x1,y1,z1)=ψJτ

2MM′(x1,y1,z1)=ψJτ
3MM′(x1,y1,z1)

= p(−1)M′ψJτ
1MM′(x1,y1,−z1). (2.43)

The relations (2.42) and (2.43) allow one to solve Eqs. (2.32) only for components ψJτ
αMM′

with α=1,3 in the case of two identical particles and with α=1 in the case of three identical
particles. The number of coupled three-dimensional equations is then reduced from 3nM

to 2nM and nM, respectively. Moreover, the (anti)symmetry of functions ψJτ
3MM′ and ψJτ

1MM′

in (2.42) and (2.43) reduces the zα-domain in corresponding equations to zα∈ [0,1].

3 The computational scheme

3.1 Basic scheme

We start this section by transforming Eqs. (2.32) by making a substitution

ψJτ
αMM′(xα,yα,zα)=(1−z2

α)
M′
2 ψ̂Jτ

αMM′(xα,yα,zα). (3.1)

The reason for that is as follows. It can be shown [43] that the singular term M′2/(1−z2
α)

in operator T Jτ
αMM′ enforces the partial components to have the following behaviour at

zα=±1

ψJτ
αMM′(xα,yα,zα)

∣∣∣
zα→±1

∼ (1−z2
α)

M′
2 . (3.2)

It makes problematic the use of smooth bases for the expansion of partial components

with odd M′. Substitution (3.1) corrects it. The new partial components ψ̂Jτ
αMM′ obey the
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equations
[

T̂ Jτ
αMM′+Vα(xα)+ ∑

β 6=α

V
(l)
β (xβ,yβ)−E

]
ψ̂Jτ

αMM′(Xα)

+ T̂ Jτ−
αM,M′−1ψ̂Jτ

αM,M′−1(Xα)+ T̂ Jτ+
αM,M′+1ψ̂Jτ

αM,M′+1(Xα)

=−V
(s)
α (xα,yα)

(1−z2
α)

M′
2

∑
β 6=α

xαyα

xβyβ

J

∑
M′′=M0

(−1)M′′−M′ 2√
2+2δM′′0

×F Jτ
M′′M′(0,wβα,0)(1−z2

β)
M′′

2 ψ̂Jτ
βMM′′(Xβ), (3.3)

where the new kinetic part operators are

T̂ Jτ
αMM′=−

∂2

∂y2
α

+
1

y2
α

(
J(J+1)−2M′2

)− ∂2

∂x2
α

−
(

1

y2
α

+
1

x2
α

)(
(1−z2

α)
∂2

∂z2
α

−2(M′+1)zα
∂

∂zα
−M′(M′+1)

)
, (3.4)

T̂ Jτ+
αM,M′+1=

1

y2
α

λ̂JM′
[
−(1−z2

α)
∂

∂zα
+2(M′+1)zα

]
,

T̂ Jτ−
αM,M′−1=

1

y2
α

λ̂J,−M′ ∂

∂zα
, (3.5)

where we have introduced

λ̂J,±M′=λJ,±M′
√

1+δM′0(1). (3.6)

Now we make the last but not least step of preparing the 3D FM equations for discretiza-
tion. For that we represent the sum of the tail parts of potentials at the left hand side of
equations in the form

∑
β 6=α

V
(l)
β (xβ,yβ)= V̂α(yα)+

(

∑
β 6=α

V
(l)
β (xβ,yβ)−V̂α(yα)

)
(3.7)

and rearrange terms in equations so that they become
[

T̂ Jτ
αMM′+Vα(xα)+V̂α(yα)−E

]
ψ̂Jτ

αMM′(Xα)

+ T̂ Jτ−
αM,M′−1ψ̂Jτ

αM,M′−1(Xα)+ T̂ Jτ+
αM,M′+1ψ̂Jτ

αM,M′+1(Xα)

=−Vs
α(xα,yα)

(1−z2
α)

M′
2

∑
β 6=α

xαyα

xβyβ

J

∑
M′′=M0

(−1)M′′−M′ 2√
2+2δM′′0

×F Jτ
M′′M′(0,wβα,0)(1−z2

β)
M′′

2 ψ̂Jτ
βMM′′(Xβ)

−
(

∑
β 6=α

V
(l)
β (xβ,yβ)−V̂α(yα)

)
ψ̂Jτ

αM,M′(Xα). (3.8)
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The potential V̂α is an approximation of ∑β 6=αV
(l)
β in the sense that the new right hand side

term (∑β 6=αV
(l)
β −V̂α)ψ̂

Jτ
αM,M′ is small. For better theoretical and computational properties

of the resulting equations the potential V̂α’s choice must secure the square integrability
of this term. The actual form depends on the problem that is solved. For bound states
and below the breakup threshold scattering calculations the possible choice is V̂α(yα)=

Zα(Zβ+Zγ)
√

2µα(βγ)/(yα+1) (this is the leading term of ∑β 6=αV
(l)
β when yα→+∞ with

xα fixed). Eqs. (3.8) are the final form of 3D FM equations in total orbital momentum
representation that are discretized. The reason for the rearrangement done is that now
variables “almost separate” in the operator at the left hand side and it can be used to
construct an effective preconditioner in the computational scheme.

In a nutshell, our scheme is based on the collocation method with local basis. It results
in the generalized eigenvalue problem of the form

Hc=ESc. (3.9)

To find eigenvalues in the vicinity of a given E=E∗ it is rewritten in the form

S(H−E∗S)−1c̃=
1

E−E∗
c̃ (3.10)

with c̃=(H−E∗S)c. Then an iterative method is applied to find the eigenvalues of the
matrix S(H−E∗S)−1. For solving systems of linear equations with the matrix (H−E∗S)
we use a preconditioning matrix which is an approximation of the inverse matrix of the
operator at the left-hand side of Eqs. (3.8) with E= E∗. This choice of a preconditioner
is exploited in [35, 36, 44]. In the calculations presented in Section 4 we use a local basis
of splines. However, the results presented in Subsections 3.2 and 3.3 remain true for any
basis within some, presented below, requirements on it. We note that there we don’t deal
with the convergence properties of the collocation method applied to 3D FM equations.
Naturally, the specific choice of a basis affects the convergence. See the discussion in
Subsection 3.4 below.

Let the functions Si
α(x), S

j
α(y) and Sk

α(z) form bases of local functions defined on given

intervals [0,Rxα ], [0,Ryα ] and [−1,1] and Si
α(x), S

j
α(y) satisfy zero Dirichlet-type boundary

conditions at the endpoints. Denote by r the overlap rate, i.e. the highest possible number
of basis functions that are nonzero at any point of interval of definition for all sets Si

α,

S
j
α and Sk

α. We seek the solutions ψ̂Jτ
αMM′ of (3.8) in the cubes [0,Rxα ]×[0,Ryα ]×[−1,1]

expanding them in terms of products of those basis functions

ψ̂Jτ
αMM′(xα,yα,zα)=

nxα ,nyα ,nzα

∑
i,j,k=1

cM′
ijk Si

α(xα)S
j
α(yα)S

k
α(zα). (3.11)

We use the same basis set for partial components ψ̂Jτ
αMM′ with different M′. This fact is not

used explicitly in constructing the scheme which can be easily generalized on the case of
M′ dependent basis sets.
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Let us introduce regular grids of collocation points (x
ξ
α,y

η
α ,z

ζ
α) with ξ = 1,··· ,nxα ,

η = 1,··· ,nyα , ζ = 1,··· ,nzα . Again for notation simplicity we use identical sets of collo-
cation points for Eqs. (3.8) with different M′. Requiring the Eqs. (3.8) to be satisfied at
collocation points, we obtain the generalized eigenvalue problem (3.10). The collocation
matrix H is the discretized version of 3D FM Eqs. (3.8) operator with E= 0 and S is the

matrix with elements Si
α(x

ξ
α)S

j
α(y

η
α)S

k
α(z

ζ
α). The obtained matrix H has linear dimension

nM ∑α nxαnyα nzα . However, due to the use of local bases the number of nonzero elements
of H is O(n2

M ∑α nxαnyα nzα) only.

3.2 Preconditioner

We now turn to construction of the preconditioner that allows us to efficiently invert
the operator at the left-hand side of Eqs. (3.8). For that we use tensor product methods
based on the technique that is known as Matrix Decomposition Algorithm (MDA) [45] or
Tensor Trick (TT) [35]. Let us first outline some preliminary facts. The Kronecker product
of n×n matrix A and m×m matrix B is the (nm)×(nm) matrix A⊗B with elements (A⊗
B)(i−1)m+k,(j−1)m+l= aijbkl . The following properties are satisfied:

1.
(A1⊗B1)(A2⊗B2)=(A1A2)⊗(B1B2); (3.12)

2.
(A⊗B)−1=A−1⊗B−1. (3.13)

MDA (TT) is based on the following trick. Suppose we need to invert the (nm)×(nm)
matrix of the form

A1⊗B1+A2⊗B2 (3.14)

with n×n matrices A1,2 and m×m matrices B1,2. Let now WA, WA and ΛA be (if ex-
ist) nonsingular complex matrices which are the solutions of left and right generalized
eigenvalue problems

WA A1=ΛAW A A2, A1WA =A2WAΛA. (3.15)

Then the matrices W A and WA simultaneously diagonalize matrices A1 and A2. They can
be scaled to satisfy

W A A1WA =ΛA, W A A2WA = I, (3.16)

where I is the identity matrix of the proper size. In the following we denote the operation
of finding the solutions of generalized eigenvalue problems that satisfy (3.16) by D

(WA,WA,ΛA)=D(A1,A2). (3.17)

We note that the computational cost of D is O(n3). Now let also

(WB,WB,ΛB)=D(B1,B2). (3.18)
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Then one obtains

A1⊗B1+A2⊗B2=(W
−1
A ⊗W

−1
B )(ΛA⊗ΛB+ I⊗ I)(W−1

A ⊗W−1
B ) (3.19)

and consequently

(A1⊗B1+A2⊗B2)
−1=(WA⊗WB)(ΛA⊗ΛB+ I⊗ I)−1(WA⊗WB). (3.20)

The matrix ΛA⊗ΛB+ I⊗ I is diagonal and is inverted fast. With the use of (3.20) the
inversion of the matrix requires O(n3+m3) instead of O(n3m3) operations if treating it
as a matrix of general form. The matrix-vector product with the matrix of the form (3.20)
requires O(nm(n+m)) multiplications instead of the ordinary O(n2m2). The review of
theory and applications of MDAs can be found in [45].

We denote the discretized version of the operator at the left-hand side of Eqs. (3.8)
with E = E∗ by L. This matrix is block diagonal with blocks Lα that can be inverted
independently. Consider the Lα block. It is block tridiagonal with blocks LαM′,M′−1,

LαM′M′ and LαM′,M′+1 in row M′=M0,··· , J. Let the collocation points (x
ξ
α,y

η
α ,z

ζ
α) and three-

dimensional basis functions Si
αS

j
αSk

α are enumerated so that the most frequently changing
index is η, then ξ and then ζ (and so as j,i,k). Then the blocks are of the form

LαM′M′=−Szα⊗Sxα⊗Dyα−Szα⊗Dxα⊗Syα+
(

J(J+1)−2M′2
)

Szα⊗Sxα⊗(Yαr2Syα)

−DM′
zα
⊗Sxα⊗(Yαr2Syα)−DM′

zα
⊗(Xαr2Sxα)⊗Syα

+Szα⊗(VαSxα)⊗Syα+Szα⊗Sxα⊗(V̂αSyα)−E∗Szα⊗Sxα⊗Syα , (3.21)

LαM′M′±1=±λ̂J,±M′DM′±
zα
⊗Sxα⊗(Yαr2Syα). (3.22)

Here we have introduced the “one-dimensional” matrices with elements

(Szα)ζk =Sk
α(z

ζ
α), (Sxα)ξi =Si

α(x
ξ
α), (Syα)η j=S

j
α(y

η
α), (3.23a)

(Dxα)ξi =

(
d2

dx2
α

Si
α

)
(x

ξ
α), (Dyα)η j=

(
d2

dy2
α

S
j
α

)
(y

η
α), (3.23b)

(DM′
zα
)ζk =

(
dM′

zα
Sk

α

)
(zζ

α), (DM′±
zα

)ζk =
(

dM′±
zα

Sk
α

)
(zζ

α), (3.23c)

(Xαr2)ξi=δξi
1

(x
ξ
α)2

, (Yαr2)η j=δη j
1

(y
η
α)2

, (3.23d)

(Vα)ξi =δξiVα(x
ξ
α), (V̂α)η j=δη jV̂α(y

η
α), (3.23e)

where we have used the notation

dM′
zα

=
(
1−(zα)

2
) d2

dz2
α

−2(M′+1)zα
d

dzα
−M′(M′+1), (3.24a)

dM′+
zα

=−
(
1−(zα)

2
) d

dzα
+2(M′+1)zα, dM′−

zα
=− d

dzα
. (3.24b)
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Let us find the diagonal representation

(W
M′

zα
,WM′

zα
,Λ̃M′

zα
)=D(DM′

zα
,Szα), M′=M0,··· , J. (3.25)

We introduce block diagonal matrices

W zα =diag
{

W
M0

zα
⊗ I⊗ I,W

M0+1
zα

⊗ I⊗ I,··· ,W J
zα
⊗ I⊗ I

}
, (3.26a)

Wzα =diag
{

WM0
zα
⊗ I⊗ I,WM0+1

zα
⊗ I⊗ I,··· ,W J

zα⊗ I⊗ I
}

. (3.26b)

Then the matrix Lα can be written in the form

Lα=W−1
zα

L
xy
α W−1

zα
, (3.27)

where L
xy
α is a block tridiagonal matrix with blocks L

xy
αM′M′−1, L

xy
αM′M′ and L

xy
αM′M′+1 in row

M′=M0,··· , J,
L

xy
αM′M′=I⊗

(
−Sxα⊗Dyα−Dxα⊗Syα+

(
J(J+1)−2M′2

)
Sxα⊗(Yαr2Syα)

+(VαSxα)⊗Syα+Sxα⊗(V̂αSyα)−E∗Sxα⊗Syα

)

−Λ̃M′
zα
⊗
(
Sxα⊗(Yαr2Syα)+(Xαr2Sxα)⊗Syα

)
, (3.28)

L
xy
αM′M′±1=±λ̂J,±M′

(
W

M′

zα
DM′±

zα
WM′±1

zα

)
⊗Sxα⊗(Yαr2Syα). (3.29)

Now in order to build the preconditioner we introduce the block diagonal matrix L=
diag{L1,L2,L3}. This matrix is the approximation of the matrix L of the operator at the
left-hand side of 3D FM Eqs. (3.8). Its inverse L−1 is used as a preconditioner of the
matrix H−E∗S in the eigenvalue problem (3.10). The block Lα is given by

Lα≡W−1
zα
Lxy

α W−1
zα

, (3.30)

where Lxy
α has exactly the same block structure as the matrix L

xy
α with blocks Lxy

αM′M′−1≈
L

xy
αM′M′−1, Lxy

αM′M′≈L
xy
αM′M′ and Lxy

αM′M′+1≈L
xy
αM′M′+1 in row M′=M0,··· , J. To obtain these

blocks we note that under some assumptions on the basis of functions Sk
α(z) and the

choice of collocation points z
ξ
α given in Appendix A the following approximate equalities

hold

Λ̃M′
zα
≈ΛM′

zα

≡diag
{−M′(M′+1),−(M′+1)(M′+2),··· ,−(M′+nzα−1)(M′+nzα)

}
,

W
M′

zα
DM′±

zα
WM′±1

zα
≈ΛM′±

zα
, (3.31)

where

ΛM′+
zα

=




0

−λM′+1,M′ 0

−λM′+2,M′ 0
. . .

−λM′+nzα−1,M′ 0




, (3.32)
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ΛM′−
zα

=




0 λM′,−M′

0 λM′+1,−M′

. . .

0 λM′+nzα−2,−M′

0




. (3.33)

The justification of approximate equalities (3.31) is given in Appendix A. Then the expres-
sions for matrices Lxy

αM′M′−1, Lxy
αM′M′ , L

xy
αM′M′+1 are obtained from (3.28), (3.29) by making

substitutions Λ̃M′
zα
→ΛM′

zα
, W

M′

zα
DM′±

zα
WM′±1

zα
→ΛM′±

zα
. They are

Lxy
αM′M′=I⊗

(
−Sxα⊗Dyα−Dxα⊗Syα+

(
J(J+1)−2M′2

)
Sxα⊗(Yαr2Syα)

+(VαSxα)⊗Syα+Sxα⊗(V̂αSyα)−E∗Sxα⊗Syα

)

−ΛM′
zα
⊗
(
Sxα⊗(Yαr2Syα)+(Xαr2Sxα)⊗Syα

)
, (3.34)

Lxy
αM′M′±1=±λ̂J,±M′ΛM′±

zα
⊗Sxα⊗(Yαr2Syα). (3.35)

By diagonalizing matrices related to operators in variable zα we have done the first step
of the MDA. In the remaining part of this subsection we deal with the approximate matrix
L and show how to invert it efficiently by diagonalizing matrices related to operators in
xα and yα.

We proceed further by noting that each diagonal block Lxy
αM′M′ of the matrix Lxy

α has

a block diagonal structure with “two-dimensional” blocksMM′
αℓ of the form

MM′
αℓ =Sxα⊗

[
−Dyα+

(
J(J+1)−2M′2

)
(Yαr2Syα)

+ℓ(ℓ+1)(Yαr2Syα)+(V̂αSyα)−E∗Syα

]

+
[
−Dxα+ℓ(ℓ+1)(Xαr2Sxα)+(VαSxα)

]
⊗Syα , ℓ=M′,··· ,M′+nzα−1. (3.36)

Likewise, the off-diagonal blocks Lxy
αM′M′±1 are block matrices with nontrivial blocks

MM′±
αℓ on subdiagonal of Lxy

αM′M′+1 and superdiagonal of Lxy
αM′M′−1. They have the form

MM′+
αℓ = λ̂J,M′

(
ΛM′+

zα

)
ℓ−M′+1,ℓ−M′

Sxα⊗(Yαr2Syα), ℓ=M′+1,··· ,M′+nzα−1, (3.37a)

MM′−
αℓ =−λ̂J,−M′

(
ΛM′−

zα

)
ℓ−M′+1,ℓ−M′+2

Sxα⊗(Yαr2Syα), ℓ=M′,··· ,M′+nzα−2. (3.37b)

Thus the matrix Lxy
α has the form shown in Fig. 3 with blocks with indices M′

ℓ
and M′±

ℓ

denoting matricesMM′
αℓ ,MM′±

αℓ . Now let

(W
ℓ

xα
,Wℓ

xα
,Λℓ

xα
)=D(−Dxα+ℓ(ℓ+1)Xαr2Sxα+VαSxα ,Sxα), ℓ=M0,··· , J+nzα−1. (3.38)
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Figure 3: Structure of the matrices Lxy
α , Ly

α and L0
α.
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Introduce new block diagonal matrices

W xα =diag
{
WM0

xα
,··· ,WM0+nzα−1

xα
,WM0+1

xα
,··· ,WM0+nzα

xα
,··· ··· ··· ,W J

xα
,··· ,W J+nzα−1

xα

}
,

(3.39a)

Wxα =diag
{
WM0

xα
,··· ,WM0+nzα−1

xα ,WM0+1
xα

,··· ,WM0+nzα
xα ,······ ··· ,W J

xα ,··· ,W J+nzα−1
xα

}
,

(3.39b)

whereW ℓ

xα
=W

ℓ

xα
⊗ I andW ℓ

xα
=Wℓ

xα
⊗ I. Then one can check that

Lxy
α =W−1

xα
Ly

αW−1
xα

, (3.40)

where the new matrix Ly
α has exactly the same form as Lxy

α shown in Fig. 3 with blocks

N M′
αℓ , N M′±

αℓ . These new blocks are

N M′
αℓ = I⊗

(
−Dyα+

(
J(J+1)−2M′2+ℓ(ℓ+1)

)
(Yαr2Syα)+V̂αSyα−E∗Syα

)
+Λℓ

xα
⊗Syα ,

(3.41a)

N M′+
αℓ = λ̂J,M′

(
ΛM′+

zα

)
ℓ−M′+1,ℓ−M′

I⊗(Yαr2Syα), ℓ=M′+1,··· ,M′+nzα−1, (3.41b)

N M′−
αℓ =−λ̂J,−M′

(
ΛM′−

zα

)
ℓ−M′+1,ℓ−M′+2

I⊗(Yαr2Syα), ℓ=M′,··· ,M′+nzα−2. (3.41c)

They are in turn block diagonal

N M′
αℓ =diag{N M′

αℓ1,N M′
αℓ2,··· ,N M′

αℓnxα
}, (3.42a)

N M′±
αℓ =diag{N M′±

αℓ0 ,N M′±
αℓ0 ,··· ,N M′±

αℓ0 }, (3.42b)

where the “one-dimensional” matrices have the form

N M′
αℓixα

=−Dyα+V̂αSyα−E∗Syα+
(

Λℓ
xα

)
ixα ,ixα

Syα+
(

J(J+1)−2M′2+ℓ(ℓ+1)
)
(Yαr2Syα),

ℓ=M′,··· ,M′+nzα−1, ixα =1,··· ,nxα , (3.43a)

N M′+
αℓ0 =λ̂J,M′

(
ΛM′+

zα

)
ℓ−M′+1,ℓ−M′

(Yαr2Syα), ℓ=M′+1,··· ,M′+nzα−1, (3.43b)

N M′−
αℓ0 =−λ̂J,−M′

(
ΛM′−

zα

)
ℓ−M′+1,ℓ−M′+2

(Yαr2Syα), ℓ=M′,··· ,M′+nzα−2. (3.43c)

Now we make the last step of diagonalization process. Introduce

(W
ℓixα
yα

,W
ℓixα
yα

,Λ
ℓixα
yα

)=D
(
−Dyα+V̂αSyα−E∗Syα+

(
Λℓ

xα

)
ixα ixα

Syα ,Yαr2Syα

)
,

ℓ=M0,··· , J+nzα−1, ixα =1,··· ,nxα . (3.44)
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Then using the matrices

W yα =diag{WM0

yα
,··· ,WM0+nzα−1

yα
,WM0+1

yα
,··· ,WM0+nzα

yα
,······ ··· ,W J

yα
,··· ,W J+nzα−1

yα
},

(3.45a)

Wyα =diag{WM0
yα

,··· ,WM0+nzα−1
yα ,WM0+1

yα
,··· ,WM0+nzα

yα ,······ ··· ,W J
yα ,··· ,W J+nzα−1

yα },
(3.45b)

whereW ℓ

yα
andW ℓ

yα
are in turn block diagonal matrices of the form

W ℓ

yα
=diag

{
W

ℓ1
yα

,··· ,Wℓnxα
yα

}
, (3.46a)

W ℓ
yα
=diag

{
Wℓ1

yα
,··· ,Wℓnxα

yα

}
, (3.46b)

we represent

Ly
α=W−1

yα
L0

αW−1
yα

. (3.47)

Here the matrix L0
α has exactly the same form as Lxy

α and Ly
α shown in Fig. 3 with blocks

PM′
αℓ , PM′±

αℓ . These new blocks are diagonal matrices with elements

(
PM′

αℓ

)
(ixα−1)nyα+iyα ,(ixα−1)nyα+iyα

=
(

Λ
ℓ,ixα
yα

)
iyα ,iyα

+ J(J+1)−2M′2+ℓ(ℓ+1), (3.48a)

(
PM′+

αℓ

)
(ixα−1)nyα+iyα ,(ixα−1)nyα+iyα

= λ̂J,M′
(

ΛM′+
zα

)
ℓ−M′+1,ℓ−M′

, (3.48b)

(
PM′−

αℓ

)
(ixα−1)nyα+iyα ,(ixα−1)nyα+iyα

=−λ̂J,−M′
(

ΛM′−
zα

)
ℓ−M′+1,ℓ−M′+2

,

ixα =1,··· ,nxα , iyα =1,··· ,nyα . (3.48c)

In other words the matrix L0
α is a band matrix with three nonzero diagonals. It is easy to

show that there exists a permutation matrix P such that

L0
α=P

(
PL0

αP
)

P=PL̃0
αP, (3.49)

where L̃0
α is block diagonal with each block being a three-diagonal matrix. Every block

comprises rows of L0
α with numbers forming sets of numbers with equal remainders of

the division by (nzα−1)nxα nyα . Thus the matrix L0
α can be inverted fast.

Summarizing, we have obtained

Lα =W−1
zα
W−1

xα
W−1

yα
PL̃0

αPW−1
yα
W−1

xα
W−1

zα
(3.50)

and the approximate preconditioner can be presented in the form

L−1=diag{L−1
1 ,L−1

2 ,L−1
3 }, (3.51)
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with

L−1
α =WzαWxαWyα P

(
L̃0

α

)−1
PWyαW xαW zα . (3.52)

Formulae (3.51), (3.52) are the analogue of formula (3.20) and thus we have done the
last step of the MDA applied to the matrix L. The operations (3.44) are the most com-
puter time and memory consuming operations in calculating and storing the precon-
ditioner. It is needed to store and calculate the total amount of ∑α(nM+nzα−1)nxα

pairs (W
ℓ,ixα

yα
,W

ℓ,ixα
yα ) of matrices of general form. Thus the estimated memory require-

ments are 2∑α(nzα+nM)nxα n2
yα

numbers and the computational cost scales asO(∑α(nzα+

nM)nxα n3
yα
). Finally, each matrix-vector product with the preconditioner L−1 requires

O(nM ∑α nxαnzα nyα(nxα+nzα+nyα)) operations.

3.3 Matrix storage

In the last part of this section we discuss the storage of the full matrix H which is the
most memory consuming part of the scheme. In this discussion it is more convenient
to refer to the 3D FM equations written in the form (3.3). Let H = L̃+ R̃ with L̃ and R̃
being the discretized versions of the operators at the left- and right-hand sides of 3D FM
Eqs. (3.3). The matrices L̃ and R̃ contain diagonal and off-diagonal with respect to com-
ponent numbers α blocks of the full matrix H and thus can be stored independently. Now
one obvious way is to keep those matrices in memory as sparse matrices using one of the
well known storage schemes like the CSR format [46]. The estimated storage size and
computational cost of matrix-vector product are (3nM−2)r3 ∑α nxαnyα nzα numbers and

multiplications for L̃ and 2n2
Mr3 ∑α nxαnyα nzα for R̃. Here r is the overlap rate introduced

in Subsection 3.1.

These requirements can be drastically lowered in the case of using the same basis

set for expanding components ψ̂Jτ
αMM′ with different M′ and identical sets of collocation

points for Eqs. (3.8) with different M′. One possible storage scheme that we use in the
calculations is presented here. The blocks L̃α of the matrix L̃ are stored in the form

L̃α= IM⊗Dxαyαzα+MSzα⊗SYSxαyα+MDzα⊗XSYSxαyα . (3.53)

Here the matrix IM is the nM×nM identity matrix in the space of momenta numbers M′.
The matrices that are stored in memory as sparse matrices in CSR format are: Dxαyαzα is
the discretized version of the three-dimensional operator

− ∂2

∂y2
α

− ∂2

∂x2
α

−
(

1

y2
α

+
1

x2
α

)
(1−z2

α)
∂2

∂z2
α

+Vα(xα)+ ∑
β 6=α

V
(l)
β (xβ(Xα),yβ(Xα))−E (3.54)
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and other matrices have the form

SYSxαyα =Sxα⊗(Yαr2Syα), (3.55a)

XSYSxαyα =(Xαr2Sxα)⊗Syα+Sxα⊗(Yαr2Syα), (3.55b)

MSzα = JM⊗Szα +Λ−M⊗D1zα−Λ+
M⊗

(
(I−Z2

α)D1zα

)
+2
(
(MM+ IM)Λ+

M

)
⊗(ZαSzα),

(3.55c)

MDzα =2(MM+ IM)⊗(ZαD1zα)+(MM(MM+ IM))⊗Szα . (3.55d)

Here we have additionally denoted by D1zα and Zα the matrices with elements

(D1zα)ζk =

(
d

dzα
Sk

α

)
(zζ

α), (Zα)ζk =δζkz
ζ
α (3.56)

and the matrices in the space of momenta numbers are

JM=diag
{

J(J+1)−2M2
0 , J(J+1)−2(M0+1)2,··· , J(J+1)−2J2

}
, (3.57a)

MM=diag{M0,M0+1,··· , J} , (3.57b)

Λ−M =




0

λ̂J,−(M0+1) 0

λ̂J,−(M0+2) 0
. . .

λ̂J,−J 0




, (3.57c)

Λ+
M =




0 λ̂J,M0

0 λ̂J,M0+1

. . .

0 λ̂J,J−1

0




. (3.57d)

If blocks of the matrix L̃ are stored in the form (3.53), then it requires a storage
of O(r3 ∑α nxα nyα nzα+4nMr∑α nzα+2r2 ∑α nxα nyα) numbers and it takes O(nM(r3+2r2+
4r)∑α nxα nyαnzα) multiplication operations for matrix-vector product.

The matrix R̃ is a block matrix with blocks R̃αβ. If no permutational symmetry is taken

into account, it has trivial diagonal blocks R̃αβ =0, α= β. The nonzero blocks R̃αβ can be
stored in the form

R̃αβ=FαβS̃αβ, (3.58)

with
S̃αβ= IM⊗Sαβ, (3.59)

where the “three-dimensional” matrix Sαβ that is stored in memory as CSR sparse matrix
has elements

(
Sαβ

)
ζξη,kij

=Sk
β(zβ(x

ξ
α,y

η
α ,z

ζ
α))S

i
β(xβ(x

ξ
α,y

η
α ,z

ζ
α))S

j
β(yβ(x

ξ
α,y

η
α ,z

ζ
α)). (3.60)
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Note that if different basis sets are used for expanding components ψ̂Jτ
αMM′ , the decompo-

sition (3.58) still makes sense, but S̃αβ cannot be presented in the form (3.59). Instead, it
is then block diagonal with nM different blocks. Each stored in memory matrix Fαβ is a

block matrix with blocks FM′M′′
αβ , M′,M′′= M0,··· , J. Each block is a “three-dimensional”

diagonal matrix with elements

(
FM′M′′

αβ

)
ζξη,kij

=−δζkδξiδη j
x

ξ
αy

η
α

xβ(x
ξ
α,y

η
α ,z

ζ
α)yβ(x

ξ
α,y

η
α,z

ζ
α)

(
1−(zβ(x

ξ
α,y

η
α ,z

ζ
α))

2
)M′′/2

(1−(zα)2)M′/2

×V
(s)
α (x

ξ
α,y

η
α)(−1)M′′−M′ 2√

2+2δM′′0
F Jτ

M′′M′(0,wβα,0). (3.61)

The matrix Fαβ is stored in memory as a set of diagonal matrices. Storing blocks of ma-

trix R̃ in the form (3.58) requires storage of O
((

n2
M+r3

)
∑α nxαnyα nzα

)
numbers and the

same number of multiplication operations for matrix-vector product. This is the drastical
progress as compared with storing R̃ as sparse matrix of general form. However, simple
analysis shows that using the forms (3.53) and (3.58) gives advantage compared with the
full matrix CSR storage only if nM is greater than one.

3.4 Discussion

We notice that the presented in Subsections 3.2 and 3.3 tensor product structure of the
preconditioner and the matrix H is not specific to the collocation method. Rather, it is
more a consequence of the choice of a tensor product basis, i.e. a basis consisting of
three-dimensional basis functions being products of one-dimensional ones, and a special
structure of the operator of the 3D FM equations (3.8). It can be shown that, for example,
the Finite Element Method with appropriately chosen basis results in the same tensor
product structure of the preconditioning matrix (3.51), (3.52) and the representation (3.53)
of the matrix of the operator at the left-hand side of the 3D FM equations. However, in
this case the properties of the matrix of the operator at the right-hand side of the 3D
FM equations change. Particularly, it is not that easy to guarantee the good sparsity
properties of this matrix due to the complicated overlap of the finite elements in different
Jacobi coordinates Xα and Xβ (used to represent partial components with different indices

ψ̂Jτ
αMM′(Xα) and ψ̂Jτ

βMM′(Xβ)).

In the calculations presented in the next section we use the method of spline colloca-
tion at Gauss points. This is a frequently used method for solving the elliptic PDEs that
gives good convergence in many cases [47]. As is mentioned in the beginning of this sec-
tion the theoretical convergence analysis of this method applied to the 3D FM equations
is not between the aims of this work. It is a complicated task and requires a separate
research to accomplish. A review of existing results on the convergence of spline col-
location at Gauss points applied to two-dimensional elliptic PDEs can be found in [47].
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However, our usage of the method presented in the next section (see also [33]) shows that
a fast convergence is achieved.

4 Examples

In our realization of the described method the basis functions are in the space of quintic
Hermite splines S3

5 (splines of degree 5 with 2 continuous derivatives). Each basis func-
tion is local and nonzero only on two adjoining intervals of the grid. There are three
functions associated with each grid node and thus for this choice of basis the defined in
previous section overlap rate r=6. The spline nodes on the solution interval are chosen
by mapping the equidistant grid with some function. The mapping function [48]

sin(zα(i)π/2), (4.1)

where zα(i) are points of the equidistant grid on interval [−1,1], is used for splines in
coordinate zα in all calculations except those with high values of total orbital momen-
tum J presented in Table 3. In this case the more suited equidistant nodes have been
used. For splines in coordinates xα and yα the mapping functions are chosen depending
on the physical problem being solved. We use collocation at Gaussian points [47, 49].
The largest modulus eigenvalues of the eigenvalue problem (3.10) are obtained by Im-
plicitly Restarted Arnoldi Method (IRAM) [50,51]. We use the algorithm implemented in
ARPACK [52] realization of IRAM. In the process of IRAM iterations the matrix (H−E∗S)
of (3.10) is being inverted by preconditioned GMRES algorithm [46]. Complex arithmetic
is used in the calculations. The realization is written in C++ programming language with
the use of Intel Parallel Studio XE 2019 Update 4 software package. Parallelization of
the program is achieved by using functions from Intel MKL [53] mathematical library.
All calculations are done on a 6 core machine with Intel Xeon X5675 processor with 32
Gbytes RAM. In the presentation of results we adapt the notation

(α : nxα ,nyα ,nzα ; β : nxβ
,nyβ

,nzβ
), (α : Rxα ,Ryα ; β : Rxβ

,Ryβ
) (4.2)

for the basis sizes used to represent the partial components ψ̂Jτ
αMM′ and lengths of intervals

they are defined on.
We used two physical systems for the test calculations of bound state energies: the

Helium atom and the molecular Helium trimer. All calculations for the Helium atom
were conducted in atomic units. Since we have taken the results of [54] as benchmark
results for atomic Helium energies, infinite (1015 a.u. in practice) Helium core mass was
used in the calculations as in [54]. To generate nodes of spline in variable xα (yα) on
interval [0,Rxα ] ([0,Ryα ]) we employed the mapping [55]

4

((
1+

Rxα(Ryα)

4

)u(i)

−1

)
, (4.3)



280 V. A. Gradusov et al. / Commun. Comput. Phys., 30 (2021), pp. 255-287

Table 1: Comparison of the tensor product preconditioner approach and the Pardiso-based approach. Two lower
energy levels 21P and 31P (i.e. J=1, τ=1 states with the parity with respect to exchange of electrons p=1) of
the Helium atom have been requested in each run. The solution domains are (1: 36.0, 36.0; 3: 9.0, 6.0) a.u.
The benchmark calculations [54] energy values are −2.12384308649810135925 and −2.05514636209194353689
a.u.

Tensor product preconditioner Pardiso

Basis sizes Total
memory/
H−E∗S/
Preconditioner
size, GB

Calculate
matrices/
IRAM
wall
time,
minutes

Total
CPU
time,
minutes

Total
memory/
H−E∗S
size, GB

Calculate
matrices/
IRAM
wall time,
minutes

Total
CPU
time,
minutes

E, a.u.

(1: 22, 22, 9;
3:19, 19, 12)

0.14/0.09/0.01 0.01/0.3 2.1 2.29/0.28 0.05/0.6 2.7 -2.12524
-2.05654

(1: 31, 31, 9;
3: 22, 22, 15)

0.25/0.16/0.02 0.02/0.7 4.5 5.31/0.55 0.04/1.9 9.5 -2.12365
-2.05495

(1: 40, 40, 12;
3: 25, 25, 18)

0.45/0.30/0.04 0.05/1.2 7.3 12.5/1.07 0.1/6.9 35 -2.12378
-2.05508

(1: 49, 49, 12;
3: 28, 28, 21)

0.68/0.45/0.06 0.08/1.9 12 21.3/1.62 0.1/14 73 -2.12385
-2.05513

(1: 58, 58, 12;
3: 28, 28, 21)

0.85/0.56/0.10 0.1/2.3 15 29.4/2.04 0.2/22 120 -2.12384
-2.05514

with u(i) = xα(i)/Rxα(yα(i)/Ryα) and equidistant points xα(i) (yα(i)). Splitting of the
Coulomb potentials were done with the Merkuriev cut-off function of the form (2.6) with
να =2.01, x0α =1 a.u. and y0α =+∞. The potentials V̂α in Eqs. (3.8) are chosen to be

V̂α(yα)=
Zα(Zβ+Zγ)√

2µα(βγ)yα

(
1−e

(
− yα

0.05Ryα

)2
)

. (4.4)

The permutational symmetry with respect to electrons have been used in the calculations
by reducing the number of Eqs. (3.8) to 2nM for a given orbital momentum J.

The Helium trimer is a weakly-bound molecular system that has only two bound
states with J = 0 with extremely small energy values and spatially extended wave func-
tions. Calculations of these energy levels is a well-known computational challenge. We
compare our test calculation results with benchmark calculations of [10]. The interatomic
interactions are described by the TTY potential and atomic Helium mass is taken to be
MHe=7296.2994 a.u. To normalize the values of coordinates xα and yα in the calculations
we used 1/MHe a.u. as energy units and

√
MHe a.u. as length units. For xα spline nodes

we used the mapping (4.3) and for yα

(((
Ryα+1

) 1
3−1

)
u(i)+1

)3

−1 (4.5)

with u(i) = yα(i)/Ryα and equidistant points yα(i). The permutational symmetry with
respect to all three particles in this case implies one Eq. (3.8).



V. A. Gradusov et al. / Commun. Comput. Phys., 30 (2021), pp. 255-287 281

Table 2: Convergence of the ground state (J=0, p=1) energy level of Helium trimer with respect to basis sizes.
The solution domain is (1: 1200.0, 2450.0) a.u. The benchmark calculations of [10] give value −4.00720e-7.

Basis sizes E, 10−7 a.u.

(1: 58, 58, 12) -2.9142

(1: 88, 88, 15) -4.0895

(1: 118, 118, 18) -4.0219

(1: 148, 148, 21) -4.0070

(1: 178, 178, 24) -4.0081

(1: 208, 208, 27) -4.0081

(1: 223, 223, 27) -4.0077

Table 1 shows comparison of the presented tensor product preconditioner approach
and an alternative approach based on applying the Intel MKL Pardiso solver [53] for
inverting the matrix (H−E∗S) of (3.10) for IRAM iterations. We note that although the
matrix (H−E∗S) is inevitably stored as a sparse matrix in CSR format in the Pardiso
approach, the memory allocated for storing its elements values (the known CSR “aa”
array of values) is freed right after the matrix has been factorized by Pardiso (phases 1
and 2 of Intel MKL Pardiso [53]). In other words, we tried to do our best to minimize
memory usage in the Pardiso approach. However, as is seen from Table 1, memory and
CPU time usage grow very fast as the number of basis functions increases.

Fig. 4 and Table 2 demonstrate convergence of energy level values of atomic Helium
and molecular Helium trimer with respect to basis sizes. In the calculations, the largest
presented basis sets lead to the matrices of linear size 4246848 for atomic Helium and
1342683 for molecular Helium. In both cases, the agreement with benchmark values is
good and our universal approach provides a clear convergence to these values. In the
simpler case of atomic Helium the relative error of approximately 10−8–10−9 is reached
with basis size that is far from maximal possible one available for our calculations.

Table 3 shows performance of the present paper algorithm for the high J=10 case. In
this case a set of twenty coupled 3D PDEs (3.8) has been solved. Table 3 shows that the
relative error of approximately 10−5 is reached with relatively small computer resources.

5 Conclusions

In this work we have presented the computational approach for solving the quantum
three-body problem. It is based on solving the Faddeev-Merkuriev equations in total
orbital momentum representation. These are the finite set of coupled three-dimensional
PDEs, that are solved by the method of spline collocations. The idea of fast inverting the
matrix of the operator at the left-hand side of the FM equations written in tensor product
form is used. In our approach it is done in the form of approximate preconditioning.
The tensor product form is also used in the matrix storage scheme, which leads to a
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Figure 4: Convergence of 31D (J=2, τ=1, p=1) energy level of atomic Helium with respect to basis sizes in
different coordinates. In each figure the chosen parameter of the final basis (1: 238, 238, 24; 3: 52, 40, 27) is
being changed. The solution domains are (1: 45.0, 45.0; 3: 11.0, 6.0) a.u. The difference ∆E is that of the
calculated value and the benchmark value −2.05562073285224648939 of [54].

significant economy in both computer resources and time under some assumptions on
bases and collocation points. In the calculations, we have shown the universality and
efficiency of our approach in solving bound state problems of different nature. In the
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Table 3: Performance of the present paper algorithm for the high J case. The ground and first excited state
energies of the Helium atom with J=10, τ=1, p=1 are calculated in each run. The solution domains are (1:
280.0, 280.0; 3: 2.0, 2.0) a.u.

Basis sizes Matrix
linear
size

Total
memory/
H−E∗S/
Preconditioner
size, GB

Calculate
matrices/
IRAM
wall
time,
minutes

Total
CPU
time,
minutes

E, a.u.

(1:58,58,6;
3:4,4,6)

223080 0.62/0.17/0.11 0.1/6.3 38 -2.00398
-2.00332

(1:88,88,9;
3:7,7,9)

771507 2.2/0.59/0.43 0.7/33 200 -2.00412
-2.00346

(1:118,118,9;
3:7,7,9)

1383327 4.1/1.06/1.01 1.9/60 350 -2.00413
-2.00347

(1:118,118,12;
3:7,7,12)

1844436 7.3/1.41/1.18 2.4/280 1500 -2.00413
-2.00347

future, we plan to use it for solving multichannel scattering problems in various systems
of three neutral and charged particles.
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Appendix A

In this Appendix we clarify the assumptions under which the approximate equali-
ties (3.31) hold. Let us first introduce the eigenfunctions of the operator dM′

zα
defined

in (3.24)

gM′
ℓ
(zα)=

√
2ℓ+1

2

(ℓ−M′)!
(ℓ+M′)!

PM′
ℓ

(zα)

(1−z2
α)

M′/2
, (A.1)

where PM′
ℓ

are the associated Legendre polynomials [40]. From their properties it follows

that gM′
ℓ
≡0 when ℓ<M′, otherwise gM′

ℓ
is a polynomial of degree ℓ−M′. They satisfy

dM′
zα

gM′
ℓ
(zα)=−ℓ(ℓ+1)gM′

ℓ
(zα), (A.2)

dM′±
zα

gM′±1
ℓ

(zα)=∓λℓ,±M′gM′
ℓ
(zα), (A.3)
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with the operators dM′±
zα

from (3.24).
Now we are able to formulate the following statements:

1. If for a given M′=M0,··· , J the basis of functions Sk
α(z) is chosen so that it approx-

imates the first nzα eigenfunctions gM′
ℓ

(ℓ= M′,··· ,M′+nzα−1) and their first two

derivatives on the grid of collocation points z
ζ
α chosen close to roots of gM′

M′+nzα
, then

the approximate equalities (3.31) hold.

2. If (nonlocal) basis functions Sk
α are polynomials of degree k and roots of gM′

M′+nzα
are

chosen as collocation points to represent Eq. (3.8) with given M′, then approximate
equalities (3.31) are exact.

To justify the statements, we note that since by definition (3.25) the equality DM′
zα

WM′
zα

=

SzαWM′
zα

Λ̃M′
zα

holds, Λ̃M′
zα

is the matrix of approximate eigenvalues and columns of WM′
zα

are the expansion coefficients in terms of basis functions Sk
α of approximate eigenvectors

of the differential eigenvalue problem (A.2), obtained via collocation procedure. Then
by assumption 1 the first approximate equality of (3.31) follows. Now the approximate
equality

DM′−
zα

WM′−1
zα

≈SzαWM′→
zα

Λ
M′−↓
zα (A.4)

is the consequence of exact equality (A.3) with lower sign. Here the matrix

Λ
M′−↓
zα =diag{λM′−1,−M′,λM′,−M′,··· ,λM′+nzα−2,−M′} (A.5)

and the matrix WM′→
zα

is obtained from WM′
zα

by shifting its columns by one position to the
right with replacing first column with zeros and throwing off the last column. Similarly,
the approximate equation

DM′+
zα

WM′+1
zα

≈(SzαWM′←
zα

∣∣g̃M′
M′+nzα

)
Λ

M′+↑
zα

(A.6)

is the consequence of (A.3) with upper sign. The matrix

Λ
M′+↑
zα =diag{−λM′+1,M′ ,−λM′+2,M′ ,··· ,−λM′+nzα ,M′} (A.7)

and the matrix WM′←
zα

is obtained from WM′
zα

by shifting its columns by one position to the

left with throwing off the first one. The column g̃M′
M′+nzα

is filled with approximate values

of the function gM′
M′+nzα

at collocation points. By assumption the approximate equality

g̃M′
M′+nzα

≈0 is true. Then using (A.4), (A.6) and the definition (3.25) of matrices W
M′

zα
, WM′

zα

we obtain the remaining approximate equalities

W
M′

zα

(
DM′−

zα
WM′−1

zα

)
≈
(

W
M′

zα
SzαWM′→

zα

)
Λ

M′−↓
zα =ΛM′−

zα
, (A.8a)

W
M′

zα

(
DM′+

zα
WM′+1

zα

)
≈
(

W
M′

zα
SzαWM′←

zα

∣∣0
)

Λ
M′+↑
zα =ΛM′+

zα
. (A.8b)
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If a polynomial basis is used and collocation points are roots of polynomials gM′
M′+nzα

, then

WM′
zα

is an exact representation of functions gM′
ℓ

in this basis and one has g̃M′
M′+nzα

=0. Thus

all approximate equalities above are exact.
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