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Abstract. In studying biomechanical deformation in articular cartilage, the pres-
ence of cells (chondrocytes) necessitates the consideration of inhomogeneous elas-
ticity problems in which cells are idealized as soft inclusions within a stiff extra-
cellular matrix. An analytical solution of a soft inclusion problem is derived and
used to evaluate iterative numerical solutions of the associated linear algebraic sys-
tem based on discretization via the finite element method, and use of an iterative
conjugate gradient method with algebraic multigrid preconditioning (AMG-PCG).
Accuracy and efficiency of the AMG-PCG algorithm is compared to two other con-
jugate gradient algorithms with diagonal preconditioning (DS-PCG) or a modified
incomplete LU decomposition (Euclid-PCG) based on comparison to the analyti-
cal solution. While all three algorithms are shown to be accurate, the AMG-PCG
algorithm is demonstrated to provide significant savings in CPU time as the num-
ber of nodal unknowns is increased. In contrast to the other two algorithms, the
AMG-PCG algorithm also exhibits little sensitivity of CPU time and number of it-
erations to variations in material properties that are known to significantly affect
model variables. Results demonstrate the benefits of algebraic multigrid precondi-
tioners for the iterative solution of assembled linear systems based on finite element
modeling of soft elastic inclusion problems and may be particularly advantageous
for large scale problems with many nodal unknowns.
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1 Introduction

Biomechanical deformation of articular cartilage, the primary load-bearing soft tissue
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in joints such as the knee, shoulder and hip, is commonly modeled via biphasic contin-
uum mixture theories [16] that idealize the tissue as a fluid-saturated porous medium.
In compressive loading at mechanical equilibrium, biphasic deformation of articular
cartilage can be modeled based on elasticity theory. However, the presence of a single,
sparsely distributed, population of cells (chondrocytes) necessitates the consideration
of inhomogeneous inclusion problems in which each cell is idealized as a soft inclu-
sion within a stiff extracellular matrix. Simulating inhomogeneous deformation in the
biomechanical microenvironment of the cells in articular cartilage is challenging due
to coupled effects among these distinct cartilage regions as they also span disparate
length scales (µm to mm), and a wide range of elastic stiffness (KPa to Mpa).

To date, several numerical methods have been developed to study interface prob-
lems that exhibit inhomogeneous elastic deformation. For example, in [15], an ax-
isymmetric boundary element method (BEM) for linear elastic domains with internal
interfaces was developed. Using direct methods to solve the associated linear alge-
braic system, the BEM was used to determine linear elastic properties of a pericellular
matrix surrounding individual cells via inverse analysis of previously reported exper-
imental data for in situ cell deformation within a cylindrical cartilage explant under
static compression. Z. Li and co-authors [6, 7] developed a new immersed interface
finite element method to capture the jump conditions along an internal interface for
structured meshes. Due to their versatility in generation of unstructured meshes (e.g.,
via triangular or tetrahedral elements), finite element methods are most commonly
used to model elastic deformation in the presence of curved internal interfaces. Use
of iterative methods, such as Krylov subspace methods [19], for solution of the as-
sembled linear algebraic systems ensures scalability to problems of moderate to large
scale. However, it is well known that the convergence rate of an iterative method
depends strongly on the spectral properties of associated operators and, as such, ac-
curacy and efficiency of the associated numerical solutions depend on the choice of
algorithm.

Multigrid (MG) methods can be used to significantly accelerate the convergence of
iterative methods [2, 20]. When they are well-suited to an application, MG methods
exhibit convergence that is independent of problem size [9]. Success of MG techniques
is rooted in the differing convergence rates of errors on coarse versus fine grids that
are captured by ”V-cycles” that traverse the coarse and fine grids during the itera-
tive solution procedure. While initially considered for classical scalar elliptic PDEs,
MG methods were later extended to systems of PDEs. Whereas geometric multigrid
(GMG) methods require the use of structured hierarchical meshes, algebraic multigrid
(AMG) methods effectively induce coarse discretization via direct indexing within
the linear algebraic system. Some AMG studies of linear elasticity on unstructured
grids relevant to the current work are those of Griebel et al. [8] and Xiao et al. [17],
and both studies iterate over multiple V-cycles. In [8], equations of 2D and 3D lin-
ear isotropic elasticity were considered and analysis of a blockwise generalization of
an AMG method [18] was performed, demonstrating convergence rates independent
of problem size. In [17], Xiao et al. considered 2D elastic domains with highly dis-
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continuous values for the Young’s modulus and, in one of their numerical examples,
considered a square domain with a circular inclusion. Emphasis was placed on com-
paring scalar-based AMG methods to two new methods based on coarsening with
alignment of coarse grid nodes to the internal interface. In the same study they also
developed a second method, with improved performance, that utilized a block Gauss-
Seidel smoother where the blocks were exclusive to regions in, or on opposite sides
of, the internal interface. While both methods performed substantially better than
scalar-based AMG methods, the number of AMG iterations for the case of the circular
inclusion was dependent on problem size, and increased significantly as the Young’s
modulus of the circular inclusion was increased to 100 times that of the exterior region.

In the current study, our focus is on demonstrating the accuracy, efficiency and
scalability of a numerical approach that combines an iterative conjugate gradient so-
lution technique with use of AMG as a preconditioner (AMG-PCG) in the context of
a finite element discretization with conforming triangular elements. To facilitate this
analysis, an analytical solution of a soft inclusion problem motivated by the biome-
chanical deformation of cells in articular cartilage is derived. The resulting analytical
solution is then used to evaluate accuracy and efficiency of the AMG-PCG algorithm
by comparison to similar methods with two other, commonly used, preconditioners.
Sensitivity of algorithm performance is also evaluated by varying material properties
in ranges representative of articular cartilage and spatial distributions of error are also
determined to evaluate and compare performance of the three algorithms.

2 Model and analytical solution

2.1 Governing equations

Biomechanical deformation in the cellular microenvironment of articular cartilage is
commonly modeled by idealizing the tissue as a biphasic continuum mixture [16] com-
prised of a solid phase that is saturated by a second phase of interstitial fluid. Under
equilibrated, compressive loading in the range of small strain, fluid motion ceases and
the governing equations for biphasic deformation of articular cartilage reduce to those
of linear elastostatics. Modeling cell-matrix interactions necessitates the consideration
of inhomogeneous inclusion problems in which each cartilage cell (c) is idealized as
a soft inclusion within a stiffer region that represents the extracellular matrix (e). For
isotropic materials, this motivates consideration of boundary value problems on a do-
main

Ω = Ωc ∪ Ωe,

where
Ωi = Ωi ∪ Γi, i = c, e,

that are of the form:

∇ · σ = 0, on Ωc ∪ Ωe, with σ = λitr(e)I + 2µie, (2.1a)
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u = f, on Γe, (2.1b)
u+ = u−, on Γc, (2.1c)
σ · n+ = σ · n−, on Γc. (2.1d)

In (2.1a)-(2.1b), σ is the Cauchy stress tensor, e=∇u + (∇u)T is the infinitesimal strain
tensor, u is the displacement, I is the identity tensor, and λi, µi(i = c, e) are solid phase
Lamé coefficients associated with the state of ”drained” biphasic equilibrium in each
of the two sub-domains.

2.2 Radial analytical solution for a circular inclusion

In 2D, there are many well known elementary linear elasticity solutions for a homoge-
neous domain, e.g., plane strain, plane stress etc. A well known solution for inclusion
problems is due to Eshelby [5], but it requires the region outside the inclusion to have
infinite extent. For problems with internal interfaces, another technique for evaluat-
ing the performance of numerical schemes is to develop analytical solutions involv-
ing nonzero body force terms (in Eq. (2.1a)) that are tailored to satisfy the governing
equations, see e.g., [6, 17, 22]. However, such an approach does not accurately reflect
boundary conditions associated with boundary value problems that model loading
conditions for biomechanical inclusion problems, where the body forces are almost
always assumed to be zero.

Consequently, we develop a 1D (radial) analytical solution of Eqs. (2.1a)-(2.1d) that
more closely reflects the inclusion problem arising for deformation of cells within a
finite region representing the extracellular matrix (ECM) of articular cartilage. It is
known that these cells are much softer than the ECM (Ec≪Ee) and are, typically, more
incompressible than the ECM (0≤νe<νc<0.5), where

λi =
Eiνi

(1 + νi)(1 − 2νi)
and µi =

Ei

2(1 + νi)
, i = c, e.

To this end, consider a disk of radius b representing the ECM region that contains a soft
circular inclusion of radius a modeling the cell (Fig. 1). We build an analytical solution
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Figure 1: Illustration of conforming mesh of triangular finite elements modeling the geometry of the soft
inclusion problem.
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to the 2D plane strain inclusion problem using an Airy stress function ϕ (∇4ϕ=0) in
cylindrical coordinates [1] with the following representation:

ϕc = S1r2, 0 ≤ r ≤ a, (2.2a)

ϕe = S2r2 + S3 ln r, a ≤ r ≤ b, (2.2b)

where S1, S2 and S3 are constants to be determined. Assuming purely radial deforma-
tion, inversion of the stress-strain relations yields the equation

ur

r
= ϵθθ =

1 + ν

E
[
(1 − ν)σθθ − νσrr

]
, (2.3)

where

σrr =
1
r

∂ϕ

∂r
, σθθ =

∂2ϕ

∂r2 , σrθ = 0. (2.4)

Substitution of Eqs. (2.2) and (2.4) into Eq. (2.3), yields the displacement solution rep-
resentation:

ur =

 C1r, for 0 ≤ r < a,

C2r − C3

r
, for a ≤ r ≤ b,

(2.5a)

uθ = 0, for 0 ≤ r ≤ b, (2.5b)

where C1, C2 and C3 are constants to be determined. Continuity of radial displacement
along the interface Γc (r=a) yields the constraint C3=(C2 − C1)a2. Using the strain-
displacement relations in polar coordinates (assuming purely radial deformation):

ϵrr =
∂ur

∂r
, ϵθθ =

ur

r
. (2.6)

Eq. (2.1d) can be expressed as:

σrr(a+) =σrr(a−) ⇒
(
λe + 2µe

)∂ur

∂r
(a+) + λe

ur(a+)
a

=
(
λc + 2µc

)∂ur

∂r
(a−) + λc

ur(a−)
a

. (2.7)

Substituting Eq. (2.5) into Eq. (2.7) and simplifying yields the relation:

C2 = γC1, where γ =
λc + µc + µe

λe + 2µe
. (2.8)

In Eq. (2.1b), we consider a boundary condition of the form:

ur(b) = ϵb, (2.9)
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where ϵ is a compressive apparent (engineering) strain. Combining Eqs. (2.5), (2.8)
and (2.9) yields the following expressions for the unknown constants in Eq. (2.5):

C1 =
ϵb2

a2 + γ(b2 − a2)
, C2 = γC1, C3 = (γ − 1)a2C1. (2.10)

Therefore, the analytical displacement solution of Eqs. (2.1a)-(2.1d) is given by:

ur =


C1r, for 0 ≤ r < a,

C1

(
γr − (γ − 1)a2

r

)
, for a ≤ r ≤ b,

(2.11a)

uθ = 0, for 0 ≤ r ≤ b. (2.11b)

Using Eq. (2.6), the strain components are given by:

ϵrr =


C1, for 0 ≤ r < a,

C1

(
γ +

(γ − 1)a2

r2

)
, for a ≤ r ≤ b,

(2.12a)

ϵrθ = 0, for 0 ≤ r ≤ b, (2.12b)

ϵθθ =


C1, for 0 ≤ r < a,

C1

(
γ − (γ − 1)a2

r2

)
, for a ≤ r ≤ b.

(2.12c)

Lastly, the stress-strain relations in Eq. (2.1a), give the following stress components:

σrr =


2(λc + µc)C1, for 0 ≤ r < a,

2(λe + µe)γC1 +
2µe(γ − 1)a2C1

r2 , for a ≤ r ≤ b,
(2.13a)

σrθ = 0, for 0 ≤ r ≤ b, (2.13b)

σθθ =


2(λc + µc)C1, for 0 ≤ r < a,

2(λe + µe)γC1 −
2µe(γ − 1)a2C1

r2 , for a ≤ r ≤ b.
(2.13c)

3 Numerical solution

3.1 Finite element discretization

The Finite Element Method (FEM) has seen wide application in the context of mod-
eling the mechanics of linear elastic solids. Consider Eqs. (2.1a)-(2.1d) on a 2D do-
main Ω that has been partitioned into P finite elements {Ωp}P

p=1 with a total of M
nodes. Global assembly based on a standard Galerkin FEM formulation with a Dirich-
let boundary condition, i.e., Eq. (2.1b), leads to a discrete system of the form (i, j=1, 2):

K̃nimjum
j = Fn

i , where K̃nimj =
∫

Ω
Cijkl

∂Nn(x)
∂xk

∂Nm(x)
∂xl

dS, m, n = 1, · · · , M. (3.1)
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In Eq. (3.1), K̃nimj is the global stiffness tensor, Cijkl is the elasticity tensor, un
i , Fn

i
denote the ith displacement and body force components (respectively) at node n,
Nn(x)∈H1(Ω) is the shape function at node n and typically has local support in the
neighboring elements, and the Einstein summation convention applies to repeated in-
dices. By assembling the nodal displacement components into a column vector u, the
global stiffness tensor can be re-written as a global stiffness matrix K, and the reduced
form of Eq. (3.1) is then

Ku = 0.

Accounting for prescribed (essential) boundary conditions in Eq. (2.1b) at nodes along
the domain boundary ∂Ω, a linear algebraic system

Ax = b,

is obtained where x is the column vector of all (unknown) interior nodal displacement
components. For inhomogeneous domains with piecewise constant material proper-
ties, the use of triangular elements that conform to the Cell-ECM interface (e.g., Fig. 1)
enforces displacement continuity (Eq. (2.1c)) as well continuity of tractions (Eq. (2.1d)).

3.2 Algebraic multigrid (AMG) method

To efficiently solve the linear algebraic system described above for a large number
of unknowns, it is necessary to consider iterative methods as an alternative to direct
methods. Multigrid (MG) techniques [2] significantly accelerate iterative solution of
discretized elliptic PDEs and, in particular, are well-suited to domains with multiple
length scales. The hallmark of MG is transitioning (via the V-cycle) between coarse
and fine mesh representations of the domain to, periodically, insert corrections to the
iterative solution based on the coarse mesh representations. The resulting MG ”ac-
celeration” is based on the property that iterative algorithms exhibit different con-
vergence rates for high and low frequency components of the PDE solution. While
many convergence results are known for geometric multigrid (GMG) methods, which
are based on structured (e.g., hierarchical rectangular) meshes, GMG can be difficult
to apply to domains with curved internal interfaces. Such domains are more eas-
ily discretized using unstructured meshes with triangular (2D) (Fig. 1) or tetrahedral
(3D) meshes. Algebraic multigrid (AMG) methods provide an alternative approach in
which coarsening is defined by a subset of the unknowns and indexed directly in the
matrix of the linear algebraic system. AMG methods can employ geometric informa-
tion to aid in coarsening or operate in a fashion wholly independent of the mesh, e.g.,
by defining smooth error as that which persists after a few iterations of relaxation.

Often, MG/AMG algorithms iterate on multiple V-cycles and a suitable iterative
relaxation scheme is chosen on finer meshes, whereas a direct solver is used at the
scale of the coarsest mesh. An alternate approach is to use one AMG V-cycle as a
preconditioner that operates within an iterative relaxation scheme. For example, in an
AMG Preconditioned Conjugate Gradient method (AMG-PCG), a single AMG V-cycle
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serves as the preconditioner through which the solution to

Ax = r,

is found, iteratively, where r is the residual.
In the current study, our focus is on demonstrating the accuracy, efficiency and

scalability of an AMG-FEM approach based on the use of the open source software
library HYPRE [11] to solve soft circular inclusion problems with highly discontin-
uous material properties. HYPRE, developed by Lawrence Livermore National Lab,
is comprised of high performance preconditioners and iterative solvers for the solu-
tion of large, sparse linear systems with capabilities for implementation in parallel
computing environments. The library features a parallel algebraic multigrid solver
(BoomerAMG) [10,18,21], that is well-suited to linear systems arising from discretiza-
tion of elliptic PDEs on unstructured grids. In prior work by Henson and Yang [10,21],
BoomerAMG was shown to be highly accurate and efficient in solving the 3D Laplace
equation using FEM on unstructured grids. While BoomerAMG is capable of paral-
lelization, in the current study, it will be employed in the context of a single processor
environment.

4 Results

The 2D boundary value problem associated with the numerical solution described in
Section 2.2 was numerically discretized using the FEM described in Section 3.1. We
utilized six-node isoparametric quadratic triangular elements that conformed to the
boundary Γe and the cell-ECM interface Γc (Fig. 1). Geometric parameters were fixed
at a=10µm, b=30µm, and the apparent (compressive) strain was set at ϵ=−0.05. Nu-
merical solution of the assembled linear algebraic system was implemented within the
framework of HYPRE by integrating AMG preconditioning, via BoomerAMG, with
the preconditioned conjugate gradient algorithm. All simulations were implemented
in C/C++ and performed on an Apple MacPro desktop computer (Dual 2.26 GHz
Quad-Core Intel Xeon processors).

BoomerAMG provides a variety of coarsening strategies for the AMG V-cycle as
well as several choices for iterative relaxation. We employed Falgout coarsening,
which is a hybrid scheme combining Ruge-Stüben (RS) coarsening [10] with Cleary-
Luby-Jones-Plassman (CLJP) parallel coarsening [4, 13, 14]. Specifically, in Falgout
coarsening, RS is used to coarsen interior regions while CLJP is used to coarsen near
boundaries [10]. For iterative relaxation, we used pointwise Gauss-Seidel hybrid re-
laxation (pointwise Gauss-Seidel on the interior and a Jacobi-like smoother near the
boundaries) with Gaussian elimination for solution on the coarsest grid [10, 21].

The performance of the Conjugate Gradient Algorithm with AMG preconditioning
(AMG-PCG) was compared to two alternative preconditioners: (i) diagonal precondi-
tioning (DS-PCG), and (ii) a modified incomplete LU (ILU(k)) decomposition (Euclid-
PCG) [11] with level of fill-in taken as k=0 [12]. In AMG-PCG, the selection of the



Z. Z. Hu and M. Haider / Adv. Appl. Math. Mech., 3 (2011), pp. 729-744 737

Table 1: Values of parameters for all test cases.

case 0 case 1 case 2 case 3 case 4
Ee = 500KPa Ee = 500KPa Ee = 500, 50, 5KPa Ee = 500KPa Ee = 500KPa
Ec = 0.35KPa Ec = 0.35KPa Ec = 0.35KPa Ec = 0.35KPa Ec = 0.35KPa
νe = 0.05 νe = 0.05, 0.15, 0.25, 0.35 νe = 0.05 νe = 0.05 νe = 0.05
νc = 0.45 νc = 0.45 νc = 0.45 νc = 0.45, 0.35, 0.25 νc = 0.45
tol= 10−7 tol= 10−7 tol= 10−7 tol= 10−7 tol= 10−7, 10−6, 10−5

coarsest mesh was automated in the sense that it was proportional to the logarithm of
the total number of nodal unknowns.

In Section 4.1, the accuracy and efficiency of the AMG-PCG strategy is evaluated
using the analytical solution and in the context of a baseline case (Table 1, case 0)
with material properties that are representative of articular cartilage and a prescribed
relative residual tolerance (”tol” in Table 1). In Section 4.2, three other cases (Table 1,
cases 1-3) are considered in which several material properties (νe, Ee, and νc) are varied
to assess effects on efficiency of the iterative algorithm with a fixed tolerance. Lastly,
in Section 4.3, the spatial distribution of error is compared to demonstrate differences
between the three algorithms being considered.

4.1 Case 0: the baseline case

Analytical solutions for the baseline case are illustrated in Fig. 2. To evaluate efficiency,
both the iteration counts and the CPU time (in seconds) required to solve the linear al-
gebraic system are reported in Table 2 for the three algorithms considered. We observe
that the number of iterations used by AMG-PCG solver does not increase as the num-
ber of degrees of freedom (DOF) increases. In contrast, the iteration count for the DS-
PCG and the Euclid-PCG algorithms increases dramatically. Since there is significant
overhead associated with AMG preconditioning, the associated CPU times were also
compared (Table 2). As the number DOF is increased between roughly 9,000-141,000,

Table 2: Iteration counts and CPU time (seconds) for the baseline (case 0, Table 1).

iteration counts CPU time (seconds)
DOF DS-PCG Euclid-PCG AMG-PCG DS-PCG Euclid-PCG AMG-PCG
N1 = 2261 215 79 9 6.48E-2 7.34E-2 6.83E-2
N2 = 8905 418 157 9 5.13E-1 5.89E-1 3.22E-1
N3 = 35345 850 309 9 6.14E+0 4.59E+0 1.62E+0
N4 = 140833 1689 592 9 5.70E+1 4.18E+1 7.78E+0

Table 3: Errors and convergence rates of the radial displacement ur for the baseline (case 0, Table 1).

Error in L∞ Error in L2
DOF DS-PCG Euclid-PCG AMG-PCG DS-PCG Euclid-PCG AMG-PCG
N1 = 2261 3.0132E-3 3.0132E-3 3.0146E-3 9.5337E-4 9.5338E-4 9.5336E-4
N2 = 8905 7.0834E-4 7.0834E-4 7.0964E-4 2.3301E-4 2.3302E-4 2.3300E-4
N3 = 35345 1.7137E-4 1.7368E-4 1.6900E-4 5.7917E-5 5.7892E-5 5.7837E-5
N4 = 140833 4.7281E-5 4.6916E-5 4.1281E-5 1.4933E-5 1.4870E-5 1.4576E-5
Rate 2.0029 2.0043 2.0641 1.9998 2.0017 2.0104
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Figure 2: Analytical solutions for the baseline case (case 0, Table 1): (a) radial displacement, (b) radial
normal strain, (c) angular normal strain, (d) radial normal stress.

we observe that the AMG-PCG algorithm is 1.8-5.4 times faster than the Euclid-PCG
algorithm and 1.6-7.3 times faster than the DS-PCG algorithm.

To assess accuracy, the numerical solution for radial displacement ur is compared
with the analytical solution given in Eq. (2.11b) using both L∞ and L2 norms (Table 3).
Note that both error norms for ur were calculated at all nodal points of the triangular
elements. In addition, to evaluate the convergence rate, for a given number of DOF the
minimum side length of the triangular elements was used to obtain h=1.6µm on the
coarsest mesh with h/2, h/4 and h/8, respectively, on the three successively refined

0.1 0.6 1.1 1.6 2
10

−5

10
−4

10
−3

log h

lo
g 

(e
rr

or
) 

(in
 L

2)

 

 

DS−PCG 
Euclid−PCG
AMG−PCG

Figure 3: Illustration of effective convergence rate (see Table 3) for the baseline case (case 0, Table 1) using
the L2 norm and the minimum side length (h) of the triangular elements.



Z. Z. Hu and M. Haider / Adv. Appl. Math. Mech., 3 (2011), pp. 729-744 739

meshes. The resulting effective convergence rates for all three algorithms are shown
in Table 3 and Fig. 3. Given the tolerance specified in Table 1 (case 0), we observe that
all three algorithms exhibit very similar accuracy and convergence rates in both the
L∞ and L2 norms. We note that our observed convergence rate for quadratic elements
(≈2), which is strongly affected by the use of a conforming mesh based on triangu-
lar elements, could be improved via specialized techniques along the boundary and
interface, see e.g., [3, 7].

4.2 Sensitivity to material properties

To analyze effects of sensitivity of the solution to variations in material properties on
performance of the three algorithms, we consider cases 1-3 (see Table 1). Illustrations
of sensitivity of the analytical solution to parameter variations are shown for case 1
(Fig. 4) and case 2 (Fig. 5). We observe high sensitivity of analytical solutions to the
variations in νe (Fig. 4), and sensitivity to variations in Ee when the extracellular region
is highly stiff relative to the cell (Fig. 5). We observe in case 1 (Fig. 4(b)) that, for a stiff
extracellular region, the radial strain is tensile near the internal interface, even though
the cellular and the prescribed engineering strain (ϵ=−0.05) are both compressive.
Analytical solutions for case 3 are not shown since sensitivity of model variables to
variations in νc between 0.25 and 0.45 were much less pronounced than for cases 1
and 2.
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Figure 4: Analytical solutions for case 1 (Table 1) in which the Poisson’s ratio (νe) of the extracellular region
is varied in the cases νe = 0.05 (solid), νe = 0.15 (dashed), νe = 0.25 (dash-dotted) and νe = 0.35 (dotted):
(a) radial displacement, (b) radial normal strain, (c) angular normal strain, (d) radial normal stress.
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Figure 5: Analytical solutions for case 2 (Table 1) in which the Young’s modulus (Ee) of the extracellular
region is varied in the cases Ee = 500KPa (solid), Ee = 50KPa (dashed) and Ee = 5KPa (dash-dotted): (a)
radial displacement, (b) radial normal strain, (c) angular normal strain, (d) radial normal stress.

Effects of parameter sensitivity on performance of the three numerical algorithms
were evaluated by comparing CPU times for cases 1-3 (Fig. 6). The AMG-PCG tech-
nique exhibited significantly reduced CPU times as compared to the DS-PCG and
Euclid-PCG approaches. In addition, AMG-PCG algorithm exhibited very little sen-
sitivity to variations in material properties considered in cases 1-3, in contrast to the
other two algorithms. Furthermore, CPU times for the DS-PCG and Euclid-PCG al-
gorithms increased more dramatically than for the AMG-PCG algorithm as the DOF
were increased.
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Figure 6: A comparison of CPU times for the DS-PCG algorithm (dash-dotted), the Euclid-PCG algorithm
(dashed) and the AMG-PCG algorithm (solid): (a) case 1: νe = 0.05 (no markers), νe = 0.15 (diamonds),
νe = 0.25 (stars), and νe = 0.35 (circles), (b) case 2: Ee = 500KPa (no markers), Ee = 50KPa (diamonds),
and Ee = 5KPa (stars), (c) case 3: νc = 0.45 (no markers), νc = 0.35 (diamonds), and νc = 0.25 (stars).
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Figure 7: Absolute error of ur for the three algorithms as the relative residual tolerance is varied.

4.3 Comparison of spatial error

Motivated by the results described above, we also evaluated spatial errors to compare
the performance of the three algorithms when the tolerance was varied (case 4, Table
1) with the number of DOF set at N3=35345. The effect of varying tolerance on CPU
time is shown in Table 4, and the spatial variation of absolute errors was evaluated
for the radial displacement (Fig. 7) and the radial normal strain (Fig. 8). Since our nu-
merical FEM was formulated in polar coordinates, the radial normal strain ϵrr exhibits
a singular limit as r→0 that affects its numerical accuracy and, hence, the associated
strain error assessments. Consequently, in evaluating the spatial variation in error for

Table 4: Iteration counts and CPU times (seconds) as tolerance is varied (case 4) with N3 = 35345.

iteration counts CPU time (second)
Tol DS-PCG Euclid-PCG AMG-PCG DS-PCG Euclid-PCG AMG-PCG
10−5 493 179 5 3.52E+0 3.22E+0 1.26E+0
10−6 698 251 7 5.09E+0 4.10E+0 1.46E+0
10−7 850 309 9 6.14E+0 4.59E+0 1.62E+0
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Figure 8: Absolute error of ϵrr for the three algorithms as the relative residual tolerance is varied. Boundaries
of Cell and ECM are indicated by thin black lines.

ϵrr, we excluded a region of radius 4µm central to the domain containing the point
r=0 (Fig. 8).

Although all three algorithms demonstrate almost identical accuracy as the relative
residual tolerance is reduced to 10−7 (Table 3), AMG-PCG exhibits less pronounced
spatial error for larger values of the relative residual tolerance. Based on the first
two rows of Figs. 7(a)-(c) and Figs. 7(d)-(f), we observe that, for a fixed tolerance,
displacement error for the AMG-PCG algorithm is more spatially confined to regions
inside the cell and near the cell-ECM interface as compared to errors for the other two
algorithms. Differences in strain error are most pronounced at the largest tolerance
value (Fig. 8(a)-(c)) where error magnitudes in the ECM region are smaller for the
AMG-PCG algorithm but somewhat more pronounced in the cellular region.

5 Conclusions

In this study, an analytical solution of a soft inclusion problem relevant to biomechan-
ical deformation of cells in articular cartilage was developed and used to evaluate
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iterative conjugate gradient numerical solutions of the associated linear algebraic sys-
tem using algebraic multigrid preconditioning (AMG-PCG) in the context of a finite
element discretization. The AMG-PCG algorithm was compared to two other pre-
conditioning algorithms based on the use of diagonal preconditioning (DS-PCG) or
a modified incomplete LU decomposition (Euclid-PCG). Overall, the AMG-PCG al-
gorithm exhibited significant savings in CPU time with increasing number of nodal
unknowns. A hallmark of successful application of MG is independence of the num-
ber of iterations on the number of DOF of the mesh, and this behavior was clearly
evident in our application (Table 2). The specific MG algorithm (AMG-PCG) used in
this study also exhibited little sensitivity of CPU time (Fig. 6) to variations in material
properties that are known to significantly affect model variables. Evaluation of spa-
tial error for the three algorithms (Figs. 7 and 8) demonstrates distinct convergence
patterns, as well as slower convergence near the internal interface. Taken together,
these findings demonstrate that the use of algebraic multigrid techniques for pre-
conditioning iterative solution of assembled linear systems for soft elastic inclusion
problems can significantly accelerate computation speed while preserving accuracy.
While the current study focused on a single inclusion problem, where an analytical
solution was developed for detailed evaluation of the numerical method, our results
demonstrate the potential advantages of AMG-based preconditioning for the solution
of larger scale problems, e.g., with many soft inclusions.
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